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1. Introduction 

The organized vascular system is established through three successive steps, vasculogenesis, 

angiogenesis and vascular remodeling. Vasculogenesis is the initiation of nascent embryonic 

vessel formation by the differentiation of mesoderm-derived angioblasts into endothelial 

cells. The nascent primitive vascular plexus then expands and reorganizes into hierarchical 

vascular structures by the process of angiogenesis, which involves sprouting, bridging, and 

intussusceptive division of preexisting vessels. Vascular smooth muscle cells are then 

recruited to the vessels and the highly organized mature vascular system is established after 

vascular remodeling. By using gene disruption strategies, a number of molecules have been 

identified as being involved in the development of the vascular system. These identified 

molecules include transcription factors, cell adhesion molecules, secretory molecules and 

their receptors, of which deprivation lead to failure of angiogenesis and/ or vascular 

remodeling in most cases. Despite the substantial expansion of the list of molecules that are 

essential for angiogenesis, we do not yet understand sufficiently how these molecules 

regulate the discrete processes of angiogenesis and vascular remodeling. Indeed, we know 

very little how normal endothelial cells behave in response to various angiogenic stimuli 

and cooperate to generate blood vessels during embryogenesis. It is critically important to 

establish an experimental model to study the functions of key molecules at the cellular level 

by monitoring the behavior of normal endothelial cells involving in angiogenesis. 

In vitro differentiation systems of embryonic stem (ES) cells have been serving as an 

excellent experimental maneuver of developmental biology since Doetschman et al. reported 

that hematopoietic cells were generated in vitro from ES cells (Doetschman et al., 1985). The 

ES cell differentiation systems have three important features. First, as differentiation of cells 

and tissues takes place in a culture dish instead of uterus, the process of differentiation can 

be directly monitored. Second, intermediate stages of differentiation can be identified and 

isolated as a cell population. Third, cell differentiation and proliferation can be controlled by 

either adding exogenous signaling molecules, introducing exogenous genes or modifying 

endogenous genes. Following the pioneering report of angiogenic differentiation from 

mouse ES cells engrafted onto quail chorioallantoic membrane (Risau et al., 1988), in vitro 

derivation of vascular endothelial cells from ES cells has a history of almost two decades 

(Bloch et al., 1997; Feraud et al., 2001; Vittet et al., 1996; Wang et al., 1992). These earlier 

studies relied upon formation of cell aggregates termed cystic embryoid bodies from ES 

cells, whereby real-time monitoring of cell differentiation with a high resolution was 
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hampered. Since Nishikawa's group developed a culture system in which ES cells 

differentiate into hematopoietic and endothelial cell lineages on type IV collagen-coated 

substrates or OP9 stromal cell layers (Hirashima et al., 1999; Yamashita et al., 2000), the 

simplicity of the culture system allowed detailed analysis of developmental steps essential 

in the formation of vascular and hematopoietic systems (Eilken et al., 2009; Kondo et al., 

2009). This system thus provides a useful model to study cell biological regulation of 

endothelial cells in the process of angiogenesis and vascular remodeling. The aim of this 

chapter is to review our experimental models for the direct examination of differentiation, 

cell-cell adhesion, migration and morphological regulation of ES cell-derived endothelial 

cells, and discuss the cellular mechanisms underlying the process of vascular development. 

2. Endothelial cell-specific gene promoters and enhancers 

2.1 Endothelial differentiation from murine ES cells 
It has been demonstrated that murine ES cells differentiate into Flk-1-expressing lateral 

mesodermal cells when cultured on a layer of OP9 stromal cell line (Endoh et al., 2002; 

Hashimoto et al., 2007; Kataoka et al., 1997; Nakano et al., 1994). In this culture system, 

undifferentiated ES cells are simply added to a culture flask pre-seeded with OP9 cells and 

incubated for 4 days in α-MEM supplemented with 2-mercaptoethanol and fetal calf serum. 

Cultured cells are dissociated by incubating in a buffer containing chelating reagent, and 

stained with a monoclonal antibody against Flk-1. The cells expressing Flk-1, an equivalent 

population of proximal lateral mesoderm in the embryo (Kataoka et al., 1997), can be 

purified by fluorescence-activated cell sorting (FACS). When the purified Flk-1+ 

mesodermal cells are further cultured on a freshly prepared OP9 cell layer, they continue to 

differentiate into several cell lineages including primitive and definitive hematopoietic cells, 

cardiomyocytes, smooth muscle cells and endothelial cells. Vascular endothelial (VE)-

cadherin can be used as a specific marker to identify the endothelial cells. VE-cadherin+ (and 

also Flk-1+ CD31+) endothelial cells are finally isolated by FACS with specific monoclonal 

antibodies. Alternatively, when undifferentiated ES cells are allowed to differentiate on the 

OP9 cell layer for more than 5 days, endothelial cells can be isolated in a single step from the 

culture by FACS. In this case, Flk-1+ VE-cadherin- mesodermal cells become detectable on 

the 3rd day of differentiation, and Flk-1+ VE-cadherin+ endothelial cells on the 5th day of 

differentiation (Endoh et al., 2002; Hashimoto et al., 2007). Consequently, this culture system 

is a potent and reproducible way to induce ES cell differentiation into the lateral mesoderm 

and its derivatives. 

While the lineage-specific markers such as Flk-1 and VE-cadherin can be detected by using 

specific monoclonal antibodies thereby providing means to isolate desired cell populations, 

the induced expression of reporter genes under the control of lineage-specific gene 

promoter/ enhancer is another useful method especially for real-time monitoring of the 

process of cell differentiation. For example, Hirai et al. reported that a combination of 5’ 

flanking region and 3’ portion of the first intron of the Kdr (Flk-1) gene drove the expression 

of enhanced green fluorescent protein (EGFP) reporter gene shortly after generation of VE-

cadherin+ endothelial cells during the differentiation of ES cell-derived Flk-1+ mesodermal 

cells (Hirai et al., 2003). As the Kdr promoter/ enhancer discriminates mature committed 

endothelial cells from immature endothelial cells that still possess a hematopoietic potential, 

it should be of use for monitoring the maturation process of endothelial cells. By contrast, a 

combination of 5’ flanking region and 5’ half of the first intron of the Cdh5 (VE-cadherin) 
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gene was reported to be active exclusively in all of the VE-cadherin+ endothelial cells during 

the course of ES cell differentiation, suggesting that the activity of the Cdh5 

promoter/ enhancer reflects that of the endogenous Cdh5 gene (Hisatsune et al., 2005). 

Therefore, it provides a valuable tool for the endothelial cell-specific induction of a 

transgene expression regardless of differentiation stages. In the next section, we show 

another example of an endothelial-related enhancer element that might be useful to monitor 

endothelial cell differentiation from their precursor stages. 

2.2 Mef2c enhancer element and endothelial cell commitment 
De Val et al. reported that a 44bp element (F10-44) of an endothelial-specific transcriptional 

enhancer of the Mef2c gene directed expression of lacZ reporter specifically to the 

developing vascular endothelium of the mouse embryo (De Val et al., 2008). The element 

consists of a FOX:ETS motif that is present in many known endothelial-specific enhancers. 

The F10-44-lacZ reporter mice demonstrated that this element was sufficient to direct 

endothelial cell-specific expression from the blood island stage at embryonic day (E) 7.5 

through angiogenesis and remodeling at E9.5, and extinguished after E10.5 (De Val et al., 

2008). The activity of F10-44 as early as E7.5, when the expression of VE-cadherin  

also becomes detectable (Breier et al., 1996; Nishikawa et al., 1998), prompted us to  

determine exactly when F10-44 is activated upon commitment of mesodermal cells to 

endothelial cells. 

 

 

Fig. 1. Construction of F10-44-EGFP expression vector. 

The EGFP reporter gene was connected to downstream of the F10-44 enhancer element and 

Hsp68 minimal promoter. Two ETS motifs and a FOX motif in the F10-44 element are 

indicated together with consensus sequences. 

We transfected wild-type ES cells with a plasmid vector harboring EGFP reporter gene that 

is connected to downstream of F10-44 enhancer element and Hsp68 minimal promoter 

(Figure 1). ES cell clones were screened for proper controllability of EGFP expression by heat 

shock and sufficient capability of differentiating into endothelial cell lineage.  We obtained 

three independent clones that showed essentially the same results. The F10-44-EGFP ES cells 

were cultured on OP9 stromal cell layer for 6 days to induce endothelial cell differentiation 

as described above. Flow cytometry analyses revealed that essentially all the VE-cadherin+ 

CD31+ endothelial cells activated the F10-44 enhancer as judged by expression of EGFP, 

indicating that the ES cell differentiation system recapitulated the activity of F10-44 in 

developing vascular endothelium of the mouse embryos (Figure 2). Expression of EGFP also 

distributed in the VE-cadherin- cell population, and the majority of them expressed  

Flk-1 yet. 
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Fig. 2. Activity of F10-44 in ES cell-derived endothelial cells  

F10-44-EGFP ES cells were co-cultured with OP9 cells for 6 days. Differentiating cells were 

dissociated and analyzed for expression of endothelial cell markers and EGFP by flow 

cytometry. Numbers indicate the percentage of the cells in the quartered areas. 

  

 

Fig. 3. Activation of F10-44 in ES cell-derived mesodermal cells 

(A) F10-44-EGFP ES cells were co-cultured with OP9 cells for 2-4 days. Differentiating cells 

were dissociated and analyzed for expression of Flk-1 and EGFP. (B) Three independent 

clones of F10-44-EGFP ES cells were co-cultured with OP9 cells for 4 days and analyzed in 

the same way as (A). Numbers indicate the percentage of the cells in the quartered areas. 

In order to determine when the expression of EGFP begins during the course of ES cell 

differentiation, we examined the kinetics of mesodermal differentiation and EGFP 

expression. When F10-44-EGFP ES cells were allowed to differentiate on OP9 cell layer, an 

EGFP-expressing cell population emerged exclusively as a major subset of Flk-1+ 

mesodermal cells (Figure 3). As three independent ES clones showed the same pattern of 
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EGFP expression, the activation of F10-44 in mesodermal cells is not a peculiar case of a 

selected clone, although we cannot exclude the possibility that it is specific to in vitro 

differentiation of ES cells. 

 

 

Fig. 4. Differentiation of Flk-1+ EGFP- cells to Flk-1+ EGFP+ cells 

F10-44-EGFP ES cells were co-cultured with OP9 cells for 4 days. Flk-1+ EGFP- cells and Flk-

1+ EGFP+ cells (indicated by the rectangles) were purified by FACS and re-cultured with 

OP9 cells. After 24 hours, cells were harvested and analyzed for expression of Flk-1 and 

EGFP. Numbers indicate the percentage of the cells in the quartered areas. 

We next tested whether the Flk-1+ EGFP- cells differentiate to the Flk-1+ EGFP+ cells, and 

vice versa, by separating these cell populations with FACS and re-culturing them for 24 

hours on a freshly prepared layer of OP9 cells. Figure 4 shows that the Flk-1+ EGFP- cells 

gave rise to the Flk-1+ EGFP+ cells within the culture period, while the Flk-1+ EGFP+ cells did 

not produce the Flk-1+ EGFP- cells. This observation suggests that the Flk-1+ EGFP- subset is 

more immature than the Flk-1+ EGFP+ subset. With the aim of characterizing the two subsets 

of mesodermal cells in terms of multi-lineage differentiation capacity, we performed single 

cell sorting of these populations and examined for capabilities of each single cells to 

differentiate into endothelial cells, smooth muscle cells and cardiomyocytes, the three major 

derivatives of lateral mesoderm. Single cells were cultured separately on OP9 stromal cell 

layers for 7 days, followed by immunofluorescence staining of VE-cadherin (endothelial 

cells), desmin (smooth muscle cells) and troponin I (cardiomyocytes). Out of 48 single cells 

isolated from each of the Flk-1+ EGFP- and Flk-1+ EGFP+ cell subsets by FACS, thirty-six cells 

of each subsets showed the differentiation of at least one of the three cell lineages (Figure 5). 
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Among of them, eighty percent of the Flk-1+ EGFP+ cells produced unipotential colonies 

containing only endothelial cells, although the rest of them retained a potential to 

differentiate into smooth muscle cells. By contrast, the Flk-1+ EGFP- cells produced a 

bipotential and a tripotential colony that contained cardiomyocytes, in addition to colonies 

containing endothelial cells and/ or smooth muscle cells. This observation supports the 

above assumption that the Flk-1+ EGFP- subset represents earlier differentiation stage of 

lateral mesoderm than the Flk-1+ EGFP+ subset. 

 

 

Fig. 5. Multi-lineage differentiation potential of mesodermal cells 

F10-44-EGFP ES cells were co-cultured with OP9 cells for 4 days. Forty-eight single cells of 

Flk-1+ EGFP- and Flk-1+ EGFP+ subsets were separately deposited into wells pre-seeded 

with OP9 cells. After 7 days cultivation, wells were stained with antibodies against VE-

cadherin (red), desmin (green) and troponin I (blue). (A) Number of wells that were positive 

for any of the three cell lineages. (B) A colony containing only endothelial cells. (C) A colony 

containing endothelial cells and smooth muscle cells. (D) A colony containing all the three 

cell lineages. Scale bars indicate 100 μm. 

Our results suggest that the F10-44 enhancer element is first activated in a subset of lateral 

mesoderm, of which differentiation potential becomes restricted to the endothelial and 

smooth muscle cell lineages. As smooth muscle cells derived from Flk-1+ EGFP+ cells did not 

retain the expression of EGFP (data not shown), the F10-44 activity persists specifically in 

the endothelial cell lineage. It remains to be elucidated whether the early mesodermal 

activation of F10-44 also takes place in the mouse embryos, and whether the initiation of the 

F10-44 activity in the mesoderm and its maintenance in the endothelium are regulated by 

the same trans-activators. 
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2.3 Monitoring endothelial differentiation of mesodermal cells 
As mentioned above, F10-44 directed EGFP expression from endothelial precursors through 

differentiation of mature endothelial cells in ES cell cultures. Taking advantage of high 

visibility of EGFP fluorescence in living cells, the developmental process of endothelial 

precursors can be directly monitored by time-lapse analysis of differentiating ES cells. In 

order to detect the initiation of the F10-44 activity in mesodermal cells, we seeded F10-44-

EGFP ES cells onto OP9 stromal cell layer and performed time-lapse imaging analyses of 

differentiating cells. 

 

 

 
 

 
 

 

Fig. 6. Time-lapse analysis of differentiating mesodermal cells 

F10-44-EGFP ES cells were seeded on the OP9 cell layer to induce the mesodermal 

differentiation. After 3 days, the cultures were subjected to time-lapse analyses under a 

fluorescence microscope. Numbers indicate elapsed time counted by hours. (A) EGFP 

fluorescence images. (B) Phase contrast images. 

As shown in Figure 6, progression of mesodermal cell differentiation as revealed by the 

emergence of EGFP fluorescence occurred within a group of cells in a relatively 

synchronous manner, rather than a clonal expansion of a single ancestral EGFP+ cells. This 

observation suggests that a group of mesodermal cells has determined their fate toward the 

endothelial cell lineage at a certain point, and then a combination of trans-activators activate 

F10-44 enhancer element synchronously in this population. The same sequence of events 

may also take place independently in other groups of mesoderm cells in culture. 
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Fig. 7. Time-lapse analysis of differentiating endothelial cells 

F10-44 EGFP ES cells were co-cultured with OP9 cells for 4 days, and Flk-1+ EGFP+ cells 

were purified by FACS. Cells were seeded on OP9 cell layer, and cultured in the presence of 

VEGF-A. After 36 hours, the cultures were subjected to time-lapse analyses under a 

fluorescence microscope. Numbers indicate elapsed time counted by hours. (A) EGFP 

fluorescence images. (B) Phase contrast images. 

The F10-44 enhancer element also provides means of tracking how endothelial precursors are 

organized into endothelial structures in culture. F10-44-EGFP ES cells were co-cultured with 

OP9 stromal cells for 4 days. FACS-purified Flk-1+ EGFP+ cells were re-cultured on OP9 cell 

layer in the presence of 50 ng/ mL vascular endothelial growth factor A (VEGF-A), and 

subjected to time-lapse analyses (Figure 7). The EGFP+ endothelial precursors first generated 

small groups of endothelial cells, and then the cells were rearranged to form large elongated 

clusters. Endothelial cells were further organized into a network of cord-like structures 

through splitting of elongated clusters, sprouting of endothelial cells with lamellipodial 

protrusions, migration and interconnection of elongated endothelial cells. These processes are 

reminiscent of those found in vasculogenesis and angiogenesis in the yolk sac vasculatures. 

Therefore, by combining the endothelial cell differentiation on OP9 stromal cell layer with the 

expression of fluorescent molecular probes, ES cell differentiation systems provide powerful 

experimental models to investigate the behavior of normal endothelial cells in response to 

angiogenic stimuli. We will discuss this point a little bit more in the next section. 

3. Cell-cell adhesion and motility of endothelial cells 

3.1 Cell-cell junction as a regulating factor of endothelial cells 
Endothelial cells adhere to each other through tight junctions and adherens junctions. The 

tight junction regulates paracellular permeability and maintains cell polarity (Tsukita et al., 
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2001). The tight junction is mediated by occludin, claudins and other transmembrane 

proteins associated with intracellular components such as ZO-1. The loss of claudin-5, a 

major adhesion molecule involved in the tight junction of endothelium, caused size-selective 

loosening of the blood-brain barrier (Nitta et al., 2003). Meanwhile, the adherens junction 

regulates the integrity of endothelium, paracellular permeability to solute, and 

transmigration of leukocytes across the endothelium (Bazzoni and Dejana, 2004). The 

adherens junction in endothelium is mediated by the homotypic binding of VE-cadherin 

and its anchorage to actin microfilaments through intracellular catenins. Disruption of the 

Cdh5 gene that encodes VE-cadherin resulted in impaired vascular remodeling and vessel 

collapse thereby led to embryonic lethality at E9.5 (Carmeliet et al., 1999; Gory-Faure et al., 

1999). 

Endothelial cells growing as sparse cells in culture are generally deemed to mimic the 

behavior of cells undergoing angiogenesis. They are stimulated to proliferate by growth 

factors and behave like fibroblasts, exhibiting elongated spindle-like shape and high 

motility. By contrast, confluent endothelial cells in culture are generally considered to be a 

model of resting endothelium. They develop organized adherens junctions and tight 

junctions, lose the ability to proliferate in response to growth factors, exhibit phenotypes of 

epithelioid cells, and remain static (Dejana, 2004). Indeed, in the absence of VE-cadherin, 

endothelial cells fail to display contact inhibition in culture and grow to higher density than 

cells expressing VE-cadherin (Grazia Lampugnani et al., 2003). Endothelial cells lacking VE-

cadherin also fail to respond to VEGF-A that protects them from apoptosis (Carmeliet et al., 

1999). VE-cadherin and β-catenin form a complex with Flk-1/ VEGFR-2 and modulate its 

downstream signaling by influencing the phospholipase Cγ and phosphatidylinositol 3-

kinase pathways, which regulates cell proliferation and survival, respectively. Therefore, the 

adherens junction appears to regulate not only the integrity of endothelium but also the 

proliferation and survival of endothelial cells. It is also reported that oligomerized 

angiopoietin-1 bridges Tie2 receptor at cell-cell contacts of confluent endothelial cells, 

resulting in formation of trans-association of Tie2 and activation of the Akt-Foxo1 and Akt-

endothelial NO synthase signaling pathways, which may enhance endothelial survival and 

integrity (Fukuhara et al., 2008). 

Although many features of endothelial cells in the activated or resting state, especially cell 

proliferation and survival, are modeled by cultured endothelial cells, the supposed 

incompatibility between endothelial cell junctions and motility remains uncertain. 

Furthermore, it is also obscure whether the cell biological behaviors characterized by using 

cultures of mature endothelial cells such as human umbilical vein endothelial cells 

(HUVECs) are applicable to that of nascent endothelial cells involved in vascular 

development in the embryos. In this context, endothelial differentiation of ES cells may 

provide a means to investigate the behavior of nascent endothelial cells derived directly 

from progenitor cells. 

3.2 Endothelial cell movement compatible with junctional integrity 
We had developed a culture system in which endothelial cells derived from ES cells grow to 

form sheet-like colonies on a layer of OP9 stromal cells (Hirashima et al., 1999; Matsumura et 

al., 2003). In this culture system, differentiation of VE-cadherin+ CD31+ endothelial cells is 

induced first from ES cells by co-cultivating with OP9 stromal cells. Endothelial cells are 

then purified by FACS and re-cultured on OP9 cell layers to allow colonies to form. In the 
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absence of exogenous factors except for those secreted by OP9 cells or already contained in 

the serum, most of the colonies are round clusters of flat polygonal endothelial cells that are 

connected to each other via adherens junctions and tight junctions, which are revealed by 

VE-cadherin and claudin-5 immunostaining, respectively (Figure 8 and Guo et al., 2007).  

 

 

Fig. 8. Morphology of ES cell-derived endothelial cell colony 

ES cells were co-cultured with OP9 cells for 5 days. VE-cadherin+ CD31+ endothelial cells 

were purified by FACS, and seeded on OP9 cell layer. After 3 days, cultures were 

fluorescently stained with anti-VE-cadherin antibody to reveal endothelial cell colonies. 

Interestingly, time-lapse analyses under a phase contrast microscope showed that 

endothelial cells moved continuously within the colonies. The average rate of cell movement 

was about 15 μm per hour. Moving endothelial cells frequently displayed protrusive 

expansion of cell membrane in the direction of movement. To examine whether the 

endothelial cell movement involves active cell locomotion, we investigated subcellular 

dynamics of actin and Arp2/ 3 complex by using ES cell clones that constitutively express 

cytoplasmic β-actin or p41-Arc, a subunit of the Arp2/ 3 complex, both fused to EGFP. Time-

lapse analyses of EGFP-β-actin- or EGFP-p41Arc-expressing endothelial cell colonies under 

a fluorescence microscope revealed that the protrusive expansion of cell membrane was 

accompanied by dynamic accumulation of actin and Arp2/ 3 complex, which resembled the 

process of lamellipodium formation seen at the leading edge of a moving cell (Guo et al., 

2007). These observations indicate an involvement of lamellipodium formation and active 

cell locomotion in the movement of endothelial cells within the colonies, even though the 

endothelial cells stay connected via adherens junctions and tight junctions. 

In order to visualize the adherens junction and the tight junction on living endothelial cells, 

we established ES cell clones that express VE-cadherin or claudin-5, both tagged with Venus 

(a derivative of yellow fluorescent protein), under the control of the endothelial specific 

promoter/ enhancer of the Cdh5 (VE-cadherin) gene (Guo et al., 2007). When endothelial 

differentiation on the OP9 cell layer was induced from these ES cell clones, the VE-cadherin-

Venus or Venus-claudin-5 proteins were selectively localized at cell-cell boundaries of 

endothelial cell colonies. Time-lapse analyses of endothelial cell colonies under a 

fluorescence microscope demonstrated that moving endothelial cells changed shape 

continuously to maintain the integrity of adherens junctions and tight junctions (Figure 9 

and Guo et al., 2007). Intercellular junctions underwent dynamic remodeling at the leading 

edge of moving endothelial cells, especially when a cell protrudes membrane and moves 

toward a lateral side of a contiguous cell. 
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Fig. 9. Time-lapse imaging of adherens junctions on endothelial cells 

An ES cell clone that express VE-cadherin-Venus under the control of endothelial-specific 

promoter/ enhancer of the Cdh5 gene was induced to differentiate into endothelial cells. 

FACS-purified endothelial cells were cultured on OP9 cell layer to form colonies. Colonies 

were subjected to time-lapse analysis under a fluorescence microscope to reveal dynamics of 

VE-cadherin-mediated adherens junctions. Numbers indicate elapsed time counted by 

hours. Three cells are individually labeled with alphabets to show the cell movement. Scale 

bars indicate 50 μm. 

These results clearly indicate that the integrity of the adherens junction and the tight 

junction can be maintained as an endothelial cell migrates. It was reported that a 

monoclonal antibody against VE-cadherin disrupted adhesion of endothelial cells in 

growing vessels and prevented angiogenesis, suggesting that continuity of homotypic 

interaction of VE-cadherin is necessary for the process of angiogenesis (Corada et al., 2002). 

The compatibility of cell motility with junctional integrity should be an important 

characteristic of endothelial cells participating in angiogenesis. ES cell-derived endothelial 

cell colony formation serves as a useful model to study cell biological regulation of vascular 

development as further emphasized in the next section. 

4. Regulation of endothelial cell morphology during angiogenesis 

4.1 Essential role of Foxo1 in vascular development 
Vascular development involves morphogenetic processes such as vasculogenesis, 

angiogenesis, and vascular remodeling. Mutant mouse models have implicated several key 

molecules in vascular development, including VEGF, platelet-derived growth factor, 

transforming growth factor-β (TGF-β), angiopoietin, Notch, and ephrin/ Eph, the loss of 

which result in abnormal vascular development. However, little is known about how these 

molecules regulate the behavior of vascular components, indicating the importance of 

research at the cellular level that connects function of molecules and phenotype of mutant 

animals. A study on the regulation of angiogenesis by Foxo1 would be an example of such 

research. 

Foxo1 is a member of the Foxo subfamily of forkhead box transcription factors that promote 

cell cycle arrest, repair of damaged DNA, oxidative stress resistance, apoptosis and 

gluconeogenesis by regulating specific genes (van der Horst and Burgering, 2007). A role for 

Foxo1 in the developing vasculature was demonstrated by the observation that Foxo1(-/ -) 
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mice die around E11 due to defects in the development of branchial arches and 

malformation in major vessels of the embryo and the yolk sac (Furuyama et al., 2004; Hosaka 

et al., 2004). Foxo1(-/ -) embryos developed a small first branchial arch, but no second 

branchial arch, and often exhibited marked pericardial swelling. The dorsal aorta was 

severely underdeveloped and irregularly formed. Hypoplasia of aortic arch artery was also 

observed. Foxo1(-/ -) yolk sacs showed primitive vascular plexus similar to that of wild-type 

yolk sacs at E8.75, but failed to develop a normal vasculature at E9.5. These observations 

suggested that vasculogenesis, but not angiogenesis and remodeling, proceeds without 

Foxo1. Expression of the Foxo1 gene was detected in developing vasculature of normal 

mouse embryos including the dorsal aorta, the intersomitic vessels, the vitelline and 

umbilical vessels and others (Furuyama et al., 2004; Hosaka et al., 2004). Although Foxo1 has 

been considered as a key regulator of energy metabolism and lifespan, the role of this 

transcription factor in the vascular development can hardly be understood from the well-

known target genes. There was no significant difference between wild-type and Foxo1(-/ -) 

yolk sac in the expression levels of genes involved in vascular development including 

VEGF-A, VEGFR-1, VEGFR-2, angiopoietin-1, angiopoietin-2, Tie-1, Tie-2 and EphB4. Still, 

Foxo1(-/ -) yolk sac vasculature appeared to had lost an arterial property as indicated by 

reduced expression of arterial markers such as ephrinB2 and connexin-40 (Furuyama et al., 

2004). 

In order to delineate the role of Foxo1 in angiogenesis, we employed an in vitro 

differentiation system of ES cells for investigating the expression and function of Foxo1 in 

endothelial cells. Foxo1 transcripts were detected in the VE-cadherin+ CD31+ endothelial 

cells derived from wild-type ES cells differentiating in the co-culture with OP9 stromal cells 

(Furuyama et al., 2004). Comparable number of endothelial cells were able to be obtained 

from the cultures initiated from wild-type and Foxo1(-/ -) ES cells. Endothelial cells of the 

two genotypes also gave rise to comparable number and size of monostratal endothelial 

colonies when purified by FACS and re-seeded on the OP9 cell layer, suggesting that the 

loss of Foxo1 did not influence the proliferation and survival of endothelial cells. This notion 

may contrast with a previous report that Foxo1 induced apoptosis in HUVECs, which was 

inhibited by angiopoietin-1 signaling via activation of Akt pathway (Daly et al., 2004). This 

discrepancy could reflect the difference in the differentiation stage of endothelial cells, 

namely, nascent immature endothelial cells derived from ES cells and mature endothelial 

cells isolated from established endothelium. The former may resemble the cells that 

undertake vascular development in the embryos. 

We took advantage of the ES cell-derived endothelial cell colony formation assay to 

compare behavior of wild-type and Foxo1(-/ -) endothelial cells in response to various 

angiogenic stimuli. In the absence of exogenously added factors, endothelial cells of both 

genotypes formed monostratal colonies composed of rough-edged flat cells as described 

above. When VEGF-A was added in the medium during colony formation, however, wild-

type and Foxo1(-/ -) endothelial cells exhibited quite different morphological responses. 

VEGF-A induced elongation of wild-type endothelial cells, thereby led to form colonies with 

corded structure composed of long spindle-shaped endothelial cells entwining with each 

other. In contrast to the response of wild-type endothelial cells, Foxo1(-/ -) endothelial cells 

remained flatten in the presence of exogenous VEGF-A. Yet they changed morphology from 

rough-edged to polygonal shape with rather straight adherens junctions and partially 

overlapped to the neighboring cells (Figure 10). (Endothelial cell overlapping as a stable 

condition is rarely observed in unstimulated monostratal colonies.) Induced expression of 
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Foxo1 cDNA in the Foxo1(-/ -) endothelial cells by using the endothelial-specific 

promoter/ enhancer of the Cdh5 (VE-cadherin) gene restored cell elongation in response to 

VEGF-A, implying a cell-autonomous function of Foxo1 in the morphological response of 

endothelial cells (Furuyama et al., 2004). Taken together, these results suggest that Foxo1 

regulates endothelial cell elongation in response to VEGF-A signaling, and the failure of 

proper morphological response of endothelial cells to angiogenic stimuli likely accounts for 

the compromised angiogenesis in the Foxo1(-/ -) embryos. 

 

 

Fig. 10. Morphological response of endothelial cells to VEGF-A 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 5 days. VE-cadherin+ 

CD31+ endothelial cells were purified by FACS and seeded onto OP9 cell layer. Cells were 

cultured for 3 days in the presence or absence of exogenously added VEGF-A. Endothelial 

cell colonies were revealed by immunofluorescent staining of VE-cadherin. 

4.2 Endothelial cell elongation induced by angiogenic factors 
Severe dilation of the yolk sac blood vessels in Foxo1(-/ -) mice are reminiscent of mice 

lacking components of the TGF-β signaling pathway including Alk5, Alk1, endoglin and 

Smad5 (Larsson et al., 2001; Li et al., 1999; Oh et al., 2000; Yang et al., 1999). It is well known 

that endothelial cells provide TGF-β signaling to neighboring mesenchymal cells and 

promote their differentiation into smooth muscle cells which support and stabilize the 

vessels (ten Dijke and Arthur, 2007). However, endothelial cell-specific disruption of the 

Tgfbr2 or Alk5 gene resulted in the phenotype indistinguishable from that of the Tgfbr2-null 

or Alk5-null embryos, suggesting an endothelial cell-intrinsic role of TGF-β signaling in the 

regulation of angiogenesis (Carvalho et al., 2004; Jiao et al., 2006). In order to examine 

whether Foxo1 and TGF-β are involved in a common process of angiogenesis, we tested the 

effect of TGF-β on the morphology of ES cell-derived endothelial cells. VE-cadherin+ CD31+ 

endothelial cells derived from wild-type and Foxo1(-/ -) ES cells differentiating in the co-

culture with OP9 cells were purified by FACS and re-seeded on the OP9 cell layer in the 

presence of TGF-β. Wild-type endothelial cells produced cord-like colonies composed of 

spindle-shaped cells in response to TGF-β. By contrast, Foxo1(-/ -) endothelial cells failed to 

produce cord-like colonies, but they exhibited partial overlapping as in the case of VEGF-A 

treatment (Matsukawa et al., 2009). These observations indicate that TGF-β induces 

elongation of endothelial cells in a Foxo1-dependent manner. 

Sequestration of a low concentration of endogenous VEGF-A pre-existing in the culture 

(mainly secreted by OP9 cells) by addition of Flt1-Fc chimeric protein diminished TGF-β-

induced elongation of wild-type endothelial cells, indicating that endothelial cell elongation 

induced by TGF-β depends upon VEGF-A signaling (Matsukawa et al., 2009). As the amount 
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of Vegfa transcripts in OP9 cells was not influenced by the stimulation with TGF-β, two 

possible mechanisms might be implied. First, TGF-β may synergize with VEGF-A to 

regulate endothelial cell morphology, and Foxo1 is possibly involved in the TGF-β signaling. 

It is indeed reported that Foxo proteins interacted with Smad3 and Smad4 to form a p21Cip1 

transactivation complex in the regulation of neuroepithelial and glioblastoma cell 

proliferation by TGF-β (Seoane et al., 2004). Alternatively, TGF-β may reduce the threshold 

of VEGF-A-responsiveness of endothelial cells, thereby facilitates cell elongation under the 

presence of a limited amount of VEGF-A, which is dependent upon Foxo1. Nevertheless, the 

observations that TGF-β induced endothelial cell elongation in a Foxo1-dependent manner 

and that disruption of Foxo1 and TGF-β signaling resulted in a similar phenotype in 

vascular development suggest important roles of Foxo1-dependent endothelial cell 

elongation in the process of angiogenesis. 

4.3 Distinct functions of Foxo subfamily members 
The Foxo subfamily of forkhead box transcription factors consists of four members (Foxo1, 

Foxo3, Foxo4 and Foxo6). Somatic deletion of the Foxo1, Foxo3 and Foxo4 genes in adult mice 

revealed that Foxo1 is the major regulator of endothelial stability which suppresses 

endothelial growth and hemangioma development, yet a certain degree of functional 

redundancy appears to exist among the Foxo members (Paik et al., 2007). Indeed, both Foxo1 

and Foxo3 were reported to induce apoptosis in HUVECs (Daly et al., 2004; Kim et al., 2005). 

Foxo1 and Foxo3, but not Foxo4, were also shown to comparably inhibit endothelial cell 

migration and tube formation in vitro (Potente et al., 2005). However, Foxo1 appears to have 

nonredundant functions in vascular development during embryogenesis. In contrast to the 

defect of angiogenesis in Foxo1(-/ -) embryos, both Foxo3(-/ -) and Foxo4(-/ -) mice are born 

alive with no detectable abnormality of vascular development (Castrillon et al., 2003; Hosaka 

et al., 2004). Dispensability of these two genes for vascular development possibly due to 

differential tissue distribution of the Foxo members in developing embryos, since the 

expression of Foxo1, Foxo3 and Foxo4 mRNA in the embryos were complementary to each 

other (Furuyama et al., 2000). Alternatively, molecular functions of the Foxo members in the 

endothelium are possibly diversified. For instance, expression of several genes that are 

related to inflammation and angiogenesis (e.g. angiopoietin-2 and interleukin-8) are 

differentially regulated by Foxo1 and Foxo3 in HUVECs (Potente et al., 2005). 

We examined expression of Foxo3 during the course of ES cell differentiation into 

endothelial cell lineage. While Foxo1 was expressed constantly by undifferentiated ES cells, 

Flk-1+ mesodermal cells and various stages of VE-cadherin+ CD31+ endothelial cells, 

expression of Foxo3 was not detected in any of these cell populations (Matsukawa et al., 

2009). Therefore, Foxo1 appears to be a primary and nonredundant factor that regulates 

morphological response of developing endothelial cells to angiogenic stimulations. In order 

to gain insight into the molecular mechanisms underlying the cell morphological regulation 

by Foxo1, we investigated whether or not Foxo3 is able to functionally replace Foxo1 when 

expressed as a transgene in Foxo1(-/ -) endothelial cells (Matsukawa et al., 2009). We 

recruited a tetracycline-regulated gene expression system to induce the expression of either 

Foxo1 or Foxo3 protein in Foxo1(-/ -) endothelial cells. In this system, a tetracycline 

responsive promoter drives expression of either the Foxo1 or Foxo3 transgene when activated 

by a tetracycline transactivator in the absence of tetracycline, or suppresses it in the presence 

of tetracycline. The expression system was introduced into Foxo1(-/ -) ES cells, and tightly 

www.intechopen.com



ES Cell Differentiation as a Model to Study Cell Biological Regulation of Vascular Development   

 

595 

controllable clones were selected. The Foxo1- or Foxo3-inducible Foxo1(-/ -) ES cell clones 

were allowed to differentiate into endothelial cells by co-culturing with OP9 stromal cells 

for 5 days in the presence of tetracycline (to suppress the transgene expression), followed by 

FACS purification of endothelial cells. The sorted endothelial cells were seeded onto OP9 

cell layer in the presence of VEGF-A, and the transgene was activated by withdrawal of 

tetracycline. Morphological examination of endothelial cell colonies revealed that induction 

of Foxo1 in Foxo1(-/ -) endothelial cells led to cell elongation that is almost comparable to 

wild-type endothelial cells. In contrast to the effect of Foxo1, induction of Foxo3 in Foxo1(-/ -

) endothelial cells failed to restore the VEGF-A-dependent elongation, suggesting that Foxo3 

is not able to exert the same function as does Foxo1 in promoting endothelial cell elongation 

in response to VEGF-A signaling (Matsukawa et al., 2009). 

ES cell-derived endothelial cell cultures represent ongoing processes of endothelial cell 

differentiation such as the upregulation of CD34 and Flt1 expression and activation of the 

promoter/ enhancer element of the Flk-1 gene (Hirai et al., 2003; Hirashima et al., 1999; 

Hirashima et al., 2003). Interestingly, when endothelial cells were isolated from 6 days 

culture of differentiating Foxo3-inducible ES cell clones (i.e. 24 hours later than the above-

described experiments) and examined for morphological response to VEGF-A, induction of 

Foxo3 restored the VEGF-A-dependent endothelial cell elongation (Matsukawa et al., 2009). 

It is thus suggested that endothelial cells serially activate two different mechanisms of 

morphological regulation during the differentiation process. Foxo1 is involved in both 

mechanisms, while Foxo3 is able to participate only in the late-acting mechanism. Taken 

together, we hypothesize that distinct functions as well as distribution of Foxo1 and Foxo3 

in endothelial cells may account for the difference of the phenotypes between Foxo1(-/ -) and 

Foxo3(-/ -) embryos. 

The functional disparity of Foxo members in endothelial cells should provide valuable clue 

to clarify the molecular mechanisms underlying the regulation of endothelial cell 

morphology by Foxo1. Identification of Foxo1 target genes that are responsible for the 

morphological regulation is of critical importance. We performed DNA microarray analysis 

to compare gene expression profiles of the endothelial cells derived from wild-type and 

Foxo1(-/ -) ES cells by using the 3D-Gene Mouse Oligo chip 24 (Toray Industries Inc.). 

Among a total of 25,392 genes, we identified 207 genes that were differentially expressed in 

the wild-type and Foxo1(-/ -) endothelial cells. From the 207 genes, we further excluded 

genes of which expression was influenced in the same direction (increased or decreased) by 

the induction of Foxo1 or Foxo3 in Foxo1(-/ -) endothelial cells. Thirty-one genes were finally 

selected as candidate genes, and in vitro functional screening is currently underway. Once a 

target gene of Foxo1 that is responsible for the regulation of endothelial cell morphology is 

identified, expression of the candidate gene should be genetically manipulated in the Foxo1(-

/ -) embryos to examine whether or not it restores the abnormal angiogenesis caused by 

Foxo1-deficiency, which will finally testify to the importance of Foxo1-dependent 

morphological regulation of endothelial cells in vascular development. 

4.4 Vessel-like structure formation from ES cells 
In order to understand the role of Foxo1 in the regulation of endothelial cell morphology, it 

is important to investigate how the cytoskeletal organization of endothelial cells is 

influenced in the absence of functional Foxo1. However, the OP9 cell-dependent two-

dimensional culture described in the preceding sections is not suitable for microscopic 
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observation of cytoskeletal structures of endothelial cells due to interference of the robust 

cytoskeleton of OP9 cells. In addition, endothelial cell behavior is induced not only by 

exogenously added factors but might also be influenced by unknown molecules secreted by 

OP9 cells. It is thus necessary to establish an experimental model in which endothelial cell 

behavior can be examined in the absence of stromal cells. Yamashita et al. previously 

reported that ES cell-derived Flk-1+ mesodermal cells produced vessel-like structures 

consisting of endothelial tubes supported by smooth muscle cells in a type I collagen gel 

culture with VEGF-A (Yamashita et al., 2000). This three-dimensional culture system is able 

to circumvent the need of OP9 feeder cells and provide an in vitro model for studying the 

morphological change of endothelia cells into a capillary-like structure and its association 

with smooth muscle cells. We employed and further improved the culture system to 

investigate the impact of Foxo1-deficiency on the cytoskeletal organization of endothelial 

cells and the formation of vessel-like structures (Park et al., 2009). 

In the culture system, ES cells were cultured with OP9 cells for 4 days to induce 

differentiation of Flk-1+ mesodermal cells. Flk-1+ cells were purified by FACS and allowed 

to aggregate in suspension culture. Flk-1+ cell aggregates were embedded in type I collagen 

gel and cultured for 4 days in the presence of VEGF-A to form vessel-like structures. Dome-

like collagen gels were finally flattened by liquid absorption for fixation and 

immunostaining. Gel flattening greatly facilitated immunofluorescence staining and 

confocal microscopic observation of the vessel-like structures deeply embedded in the gels 

(Park et al., 2009). Wild-type endothelial cells showed spindle-shaped elongation as revealed 

by rectilinear staining of VE-cadherin along the long axis of the cells, and organized into 

long cord-like structures. On the other hand, Foxo1(-/ -) endothelial cells failed to elongate 

and produced only short bundles with irregularly kinked adherens junctions, 

demonstrating that Foxo1 is essential for elongation of endothelial cells that are organized 

into vessel-like structures in vitro (Figure 11, 12 and Park et al., 2009). 

 

 

Fig. 11. Abnormal vessel-like structure formation from Foxo1(-/ -) mesodermal cells 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A for 4 days. 

Vessel-like structures were fluorescently stained with phalloidin, anti-VE-cadherin antibody 

and DAPI. Scale bars indicate 10μm. 
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Fig. 12. Microtubular organization of endothelial cells in the vessel-like structures 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A for 4 days. 

Vessel-like structures were fluorescently stained with antibodies against tubulin and VE-

cadherin together with DAPI. Scale bars indicate 10μm. 

Phalloidin staining revealed that prominent filamentous cortical actin which co-localized 

with VE-cadherin at the adherens junction was present in wild-type endothelial cells. By 

contrast, F-actin was not only accumulated to the adherens junctions but also scattered as 

punctate structures in Foxo1(-/ -) endothelial cells. The punctate accumulation of F-actin is 

unlikely to represent the focal adhesion complex, because only vinculin, but not paxillin nor 

focal adhesion kinase, was co-localized with the punctate structures. Indeed, the stress fiber 

formation was not observed in both wild-type and Foxo1(-/ -) endothelial cells (Park et al., 

2009). These results suggested that Foxo1-deficiency led to abnormal organization of actin 

cytoskeleton, which might influence the adhesion and migration of endothelial cells. 

Cell elongation requires the reorganization of microtubules as well as actin cytoskeleton. 

While long filamentous microtubules in a mesh-like network were observed in wild-type 

endothelial cells, Foxo1(-/ -) endothelial cells developed thick circumferential accumulation of 

microtubules with small spikes at the tip of cells (Park et al., 2009). It is thus suggested that 

Foxo1-deficiency leads to disorganization of microtubular system in endothelial cells, which 

may resemble a condition resulted from hyper stabilization of microtubules (Gloushankova et 

al., 1994). It was proposed that cell length is controlled by the equilibrium of two antagonistic 

forces: elongation exerted by integrated microtubular system and contraction exerted by actin-

myosin system (Kharitonova and Vasiliev, 2008). We hypothesize that hyper stabilization of 

microtubules as well as circumferential accumulation of actin microfilaments may contribute 

to the failure of elongation of Foxo1(-/ -) endothelial cells. 

Pharmacological approaches by using chemicals that influence the cytoskeletal organization 

would be useful to investigate the molecular basis of impaired elongation of Foxo1(-/ -) 

endothelial cells. One of the advantages of the three-dimensional culture system is that it 

circumvents the need of OP9 stromal cell layer, which might otherwise be affected by such 

chemicals and secondarily influence the morphology of endothelial cells. Taking advantage 

of the culture system, we tested effects of Y27632, a compound that inhibits Rho kinase 

(ROCK), on the formation of vessel-like structures (Figure 13 and 14). 
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Fig. 13. Aberrant dependency on RhoA/ ROCK pathway in Foxo1(-/ -) endothelial cells 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A and 

presence or absence of Y27632. Vessel-like structures were fluorescently stained with 

phalloidin, anti-VE-cadherin antibody and DAPI. Scale bars indicate 10μm. 

Flk-1+ cells isolated from differentiating wild-type or Foxo1(-/ -) ES cells were allowed to 

aggregate and embedded in type I collagen gel and cultured in the presence of 50 ng/ mL 

VEGF-A and presence or absence of 10 μM Y27632. VE-cadherin immunofluorescence 

staining of flattened gels revealed that wild-type Flk-1+ cells generated capillary-like 

structures consisting of spindle-shaped endothelial cells regardless of whether Y27632 was 

present or absent in the culture. Actin microfilaments and microtubule networks were not 

also affected by Y27632 treatment.  These observations indicate that ROCK inhibition does 

not affect the elongation of wild-type endothelial cells and the formation of capillary-like 

structures in vitro. By contrast, treatment with Y27632 resulted in extreme disintegration of 

cell organization in the cultures of Foxo1(-/ -) endothelial cells. Adherens junctions revealed 

by VE-cadherin and F-actin staining became fragmentary and distributed in a disorderly 

manner. Microtubules also exhibited short fluffiness with random distribution. 

Consequently, Foxo1(-/ -) endothelial cells no longer maintained even short bundles in the 

presence of Y27632. Foxo1(-/ -) endothelial cells thus appear to be abnormally dependent on 

the RhoA/ ROCK pathway. 
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Fig. 14. Microtubular organization of ROCK-inhibited endothelial cells 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A and 

presence or absence of Y27632. Vessel-like structures were fluorescently stained with 

antibodies against tubulin and VE-cadherin together with DAPI. Scale bars indicate 10μm. 

 

Our results suggest that the RhoA/ ROCK pathway is not involved in the regulation of 

endothelial cell morphology or there might be some compensatory pathways in the wild-

type genetic background. On the other hand, Foxo1(-/ -) endothelial cells are suggested to 

harbor an abnormal enhancement of the RhoA/ ROCK pathway or lack the putative 

compensatory pathways. However, the enhancement of ROCK-dependency itself might be 

the effect, rather than the cause, of abnormal morphological response of Foxo1(-/ -) 

endothelial cells to VEGF-A, because the inhibition of ROCK activity did not restore the 

abnormal phenotype. Nevertheless, the aberrant requirement of the RhoA/ ROCK pathway 

for the maintenance of cell organization provides clue to how a loss of Foxo1 compromises 

cytoskeletal organization and morphological response of endothelial cells during 

angiogenesis. 
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4.5 Association between endothelial cells and smooth muscle cells 
Correct association and interaction between endothelial cells and smooth muscle cells is 

known to be essential for vascular maturation. The capillary-like structure generated in vitro 

from ES cell-derived Flk-1+ mesodermal cells consists of endothelial tubes associated with 

mural cells that express α-smooth muscle actin (αSMA). A massive investment of mural 

cells is usually observed along the vascular-like structures. Endothelial cells and mural cells 

exhibit patchy formation of desmosome-like junctions and some collagen fibers are evident 

adjacent to the mural cells, indicating that these cells interact with each other to form mature 

vessel-like structures in vitro (Yamashita et al., 2000). 

Interestingly, while the capillary-like structures generated from wild-type mesodermal cell 

aggregates were thoroughly covered by αSMA+ mural cells, no such coverage of αSMA+ 

cells was observed along the short endothelial cell bundles generated from Foxo1(-/ -) 

mesodermal cell aggregates (Figure 15 and Park et al., 2009). Yet, αSMA+ cells were 

abundantly detected in the core region of Foxo1(-/ -) cell aggregates and occasionally apart 

from cell aggregates, and Foxo1(-/ -) αSMA+ cells are morphologically indistinguishable 

from wild-type αSMA+ cells (Figure 16). Therefore, differentiation of smooth muscle cells 

from Flk-1+ cells was not affected by the absence of Foxo1. These results suggest that Foxo1 

is essential for either the migration of mural cells or the physical interaction between mural 

cells and endothelial cells, although it is obscure whether functional Foxo1 is required 

autonomously in mural cells or heteronomously in endothelial cells. 

 

 

 

 

 
 

 

 

Fig. 15. Impaired association of mural cells with endothelial cells in Foxo1(-/ -) cultures 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A for 4 days. 

Vessel-like structures were fluorescently stained with antibodies against αSMA and VE-

cadherin together with DAPI. Scale bars indicate 10μm. 
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We hypothesize from the above observations that Foxo1 is involved in the recruitment of 

mural cells to nascent blood vessels. However, it has not been documented whether or not 

the interaction of endothelial cells and mural cells is maintained in the blood vessels of 

Foxo1(-/ -) embryos (Furuyama et al., 2004; Hosaka et al., 2004). Thus, further phenotypic 

characterization of the knockout embryos is clearly important. The yolk sac vasculature of 

Foxo1(-/ -) embryos had dilated and lost the arterial identity as mentioned above. This might 

be an indicative of a loss of supportive force exerted by mural cells to maintain the 

hemodynamic property that is necessary to induce arterial differentiation (Heil et al., 2006). 

The functional necessity of Foxo1 in vascular smooth muscle cells in the embryo is an 

important subject for future studies.  

 

 

Fig. 16. Morphology of ES cell-derived smooth muscle cells 

Wild-type and Foxo1(-/ -) ES cells were co-cultured with OP9 cells for 4 days. FACS-purified 

mesodermal cells were cultured in type I collagen gel in the presence of VEGF-A. Smooth 

muscle cells were revealed by immunofluorescent staining with anti-αSMA antibody. Scale 

bars indicate 10μm. 

5. Conclusion 

Differentiation, migration, cell-cell adhesion and morphological regulation of vascular 

endothelial cells are the important cell biological processes that drive vasculogenesis and 

angiogenesis. In vitro differentiation of ES cells provides useful means to elucidate the 

mechanisms underlying cell biological regulation of vascular development. Further 

improvement will, however, be necessary for simplification of the system to raise the 

controllability of cell biological processes. Such an improvement should encompass the 

replacement of the OP9 stromal cell layer with a defined extracellular matrix with variable 

elasticity. Establishing the cell biology of normal endothelial cells and understanding the 

cell biological control of vascular development will contribute to not only developmental 

biology but also clinical approaches for regulation of physiological and pathological 

neoangiogenesis in ischemic tissues and tumors. 
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