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1. Introduction

A supply network consists of suppliers, manufacturers, warehouses, and stores, that perform
the functions of materials procurement, their transformation into intermediate and finished
goods, and the distribution of the final products to customers among different production
facilities. Mathematical models are used to monitor cost-efficient distribution of parts and
to measure current business processes. The main aim is to plan supply networks so as to
reduce the dead times and to avoid bottlenecks, obtaining as a result a greater coordination
leading to the optimization of the production process of a given good. Several questions arise
in the design of optimal supply chain networks: can we control the maximum processing
rates, or the processing velocities, or the input flow in such way to minimize the value the
queues attain and to achieve an expected outflow? The formulation of optimization problems
for supply chain management is an immediate consequence of performing successful supply
modeling and hence simulations.
Depending on the scale, supply networks modelling is characterized by different
mathematical approaches: discrete event simulations and continuous models. Since
discrete event models are based on considerations of individual parts, the principal
drawback of them, however, is their enormous computational effort. A cost-effective
alternative to discrete event models is continuous models (e.g. for models based on
ordinary differential equations see Daganzo (2003), Helbing et al. (2004), Nagatani & Helbing
(2004), Helbing & Lämmer (2005), Helbing et al. (2006)), in particular fluid-like network
models using partial differential equations describing averaged quantities like density and
average velocity (see Armbruster et al. (2004), Göttlich et al. (2005), Armbruster et al. (2006a),
Armbruster et al. (2006b), Armbruster et al. (2006c), Göttlich et al. (2006), Herty et al. (2007),
D’Apice et al. (2010)). Probably the first paper for supply chains in continuous direction was
Armbruster et al. (2006b) where the authors, taking the limit on the number of parts and
suppliers, have obtained a conservation law, whose flux is described by the minimum among
the parts density and the maximal productive capacity.
Due to the difficulty of finding solution for the general equation proposed in Armbruster et al.
(2006b), other fluid dynamic models for supply chains were introduced in Göttlich et al.
(2005), D’Apice & Manzo (2006) and Bretti et al. (2007).
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2 Supply Chain Coordination and Management

The work D’Apice & Manzo (2006) is based on a mixed continuum-discrete model, i.e. the
supply chain is described by a graph consisting of consecutive arcs separated by nodes. The
arcs represent processors or sub-chains, while the nodes model connections between arcs at
which the dynamics can be regulated. The chain load, expressed by the part density and
the processing rate, follows a time-space continuous evolution on arcs, and at nodes the
conservation of the goods density is imposed, but not of the processing rate. In fact, on
each arc an hyperbolic system of two equations is considered: a conservation law for the
goods density, and a semi-linear evolution equation for the processing rate. At nodes a
way to solve Riemann Problems, i.e. Cauchy problems with constant initial data on each
arc, is prescribed and a solution at nodes guaranteeing the conservation of fluxes is defined.
Moreover, existence of solutions to Cauchy problems was proved.
The paper Göttlich et al. (2005) deals with a conservation law, with constant processing rate,
inside each supply sub-chain, with an entering queue for exceeding parts. The dynamics at a
node is solved considering an ode for the queue. Some optimization technique for the model
described in Göttlich et al. (2005) is developed in Göttlich et al. (2006), while the existence
of solutions to Cauchy problems with the front tracking method is proved in Herty et al.
(2007). In particular in Göttlich et al. (2006) the question of optimal operating velocities for
each individual processing unit is treated for a supply chain network consisting of three
processors. The maximal processing rates are fixed and not subject to change. The controls
are the processing velocities. Given some default initial velocities the processing velocities
are found to minimize the height of the buffering queues and producing a certain outflow.
Moreover given a supply chain network with a vertex of dispersing type, the distribution rate
has been controlled in such way to minimize the queues.
It is evident that the models described in Göttlich et al. (2005) and D’Apice & Manzo (2006)
complete each other. In fact, the approach of Göttlich et al. (2005) is more suitable when
the presence of queue with buffer is fundamental to manage goods production. The model
of D’Apice & Manzo (2006), on the other hand, is useful when there is the possibility to
reorganize the supply chain: in particular, the productive capacity can be readapted for some
contingent necessity.
Starting from the model introduced in D’Apice & Manzo (2006) and fixing the rule that
the objects are processed in order to maximize the flux, two different Riemann Solvers
are defined and equilibria at a node are discussed in Bretti et al. (2007). Moreover,
discretization algorithms to find approximated solution to the problem are described,
numerical experiments on sample supply chains are reported and discussed for both the
Riemann Solvers.
In D’Apice et al. (2010) existence of solutions to Cauchy problems is proven for both
continuum-discrete supply chains and networks models, deriving estimates on the total
variation of the density flux, density and processing rate along a wave-front tracking
approximate solution.
Observe that while the papers Armbruster et al. (2006b), D’Apice & Manzo (2006), Bretti et al.
(2007) treat the case of chains, i.e. sequential processors, modelled by a real line seen as a
sequence of sub-chains corresponding to real intervals, the model in Göttlich et al. (2005) and
the extended results in Göttlich et al. (2006), Herty et al. (2007), D’Apice et al. (2009) refer to
networks.
In this Chapter we describe the continuum-discrete models for supply chains and networks
reporting the main results of D’Apice & Manzo (2006), Bretti et al. (2007) and D’Apice et al.
(2009).
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Continuum-Discrete Models for Supply Chains and Networks 3

We recall the basic supply chain model under consideration: a supply chain consists of
sequential processors or arcs which are going to assemble and construct parts. Each processor
is characterized by a maximum processing rate µe, its length Le and the processing time Te.
The rate Le/Te represents the processing velocity.
The supply chain is modelled by a real line seen as a sequence of arcs corresponding to real
intervals [ae,be] such that [ae,be] ∩

[
ae+1,be+1

]
= ve: a node separating arcs. The dynamic of

each arc is governed by a continuum system of the type

ρt + fε(ρ,µ)x = 0,

µt − µx = 0,

where ρ(t,x) ∈ [0,ρmax] is the density of objects processed by the supply chain at point x and
time t and µ(t,x) ∈ [0,µmax] is the processing rate. For ε > 0, the flux fε is given by:

fε(ρ,µ) =

{
mρ, if ρ ≤ µ,
mµ + ε(ρ − µ), if ρ ≥ µ,

where m is the processing velocity.
The evolution at nodes ve has been interpreted thinking to it as Riemann Problems for the
density equation with µ data as parameters. Keeping the analogy to Riemann Problems, we
call the latter Riemann Solver at nodes. In D’Apice & Manzo (2006) the following rule was
used:

SC1 The incoming density flux is equal to the outgoing density flux. Then, if a solution with
only waves in the density ρ exists, then such solution is taken, otherwise the minimal µ
wave is produced.

Rule SC1 corresponds to the case in which processing rate adjustments are done only if
necessary, while the density ρ can be regulatedmore freely. Thus, it is justified in all situations
in which processing rate adjustments require re-building of the supply chain, while density
adjustments are operated easily (e.g. by stocking). Even if rule SC1 is the most natural also
from a geometric point of view, in the space of Riemann data, it produces waves only to
lower the value of µ. As a consequence in some cases the value of the processing rate does
not increase and it is not possible to maximize the flux. In order to avoid this problem two
additional rules to solve dynamics at a node have been analyzed in Bretti et al. (2007):

SC2 The objects are processed in order to maximize the flux with the minimal value of the
processing rate.

SC3 The objects are processed in order to maximize the flux. Then, if a solution with only
waves in the density ρ exists, then such solution is taken, otherwise the minimal µ wave
is produced.

The continuum-discrete model, regarding sequential supply chains, has been generalized to
supply networks which consist of arcs and two types of nodes: nodes with one incoming arc
and more outgoing ones and nodes with more incoming arcs and one outgoing arc.
The Riemann Problems are solved fixing two “routing” algorithms:

RA1 Goods from an incoming arc are sent to outgoing ones according to their final
destination in order to maximize the flux over incoming arcs. Goods are processed
ordered by arrival time (FIFO policy).
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4 Supply Chain Coordination and Management

RA2 Goods are processed by arrival time (FIFO policy) and are sent to outgoing arcs in order
to maximize the flux over incoming and outgoing arcs.

For both routing algorithms the flux of goods is maximized considering one of the two
additional rules, SC2 and SC3.
In order to motivate the introduction of the model and to understand the mechanism of the
above rules, we show some examples of real supply networks.
We analyze the behaviour of a supply network for assembling pear and apple fruit juice
bottles, whose scheme is in Figure 1 (left).
Bottles coming from arc e1 are sterilized in node v1. Then, the sterilized bottles, with a certain
probability α are directed to node v3, where apple fruit juice is bottled, and with probability
1− α to node 4, where the pear fruit juice is bottled. In nodes v5 and v6, bottles are labelled.
Finally, in node 7, produced bottles are corked. Assume that pear and apple fruit juice bottles
are produced using two different bottle shapes. The bottles are addressed from arc e2 to
the outgoing sub-chains e3 and e4 in which they are filled up with apple or pear fruit juice
according to the bottle shape and thus according to their final destination: production of apple
or pear fruit juice bottles. In a model able to describe this situation, the dynamics at node v2

is solved using the RA1 algorithm. In fact, the redirection of bottles in order to maximize the
production on both incoming and outgoing sub-chains is not possible, since bottles with apple
and pear fruit juice have different shapes.
Consider a supply network for colored cups (Figure 1, right). The white cups are addressed
towards n sub-chains in which they are colored using different colors. Since the aim is to
maximize the cups production independently from the colors, a mechanism is realized which
addresses the cups on the outgoing sub-chains by taking into account their loads in such
way as to maximize flux on both incoming and outgoing sub-chains. It follows that a model
realized to capture the behavior of the described supply network is based on rule RA2.
Let us now analyze an existing supply network where both algorithms shows up naturally:
the chips production of the San Carlo enterprise. The productive processes follows various
steps, that can be summarized in this way: when potatoes arrive at the enterprise, they are
subjected to a goodness test. After this test, everything is ready for chips production, that
starts with potatoes wash in drinking water. After washing potatoes, they are skinned off,
rewashed and subjected to a qualification test. Then, they are cut by an automatic machine,
and, finally, washed and dried by an air blow. At this point, potatoes are ready to be fried in
vegetable oil for some minutes and, after this, the surplus oil is dripped. Potatoes are then
salted by a dispenser, that nebulizes salt spreading it on potatoes. An opportune chooser
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Fig. 1. Fruit juice network and cups production.
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Continuum-Discrete Models for Supply Chains and Networks 5

Fig. 2. Graph of the supply network for chips production (top) and possible arcs (bottom).

is useful to select the best products. The final phase of the process is given by potatoes
confection. A simplified vision of the supply chain network is in Fig. 2 (top).
In phases 1, 5 and 10 a discrimination is made in production in order to distinguish good and
bad products. In such sense, we can say that there is a statistical percentage α of product, that
follows the production steps, while the percentage 1− α is the product discarded (obviously,
the percentage α can be different for different phases). Therefore, the goods routing in these
nodes follows the algorithm RA1. On the other side, phase 6 concerns the potatoes cut: as the
enterprise produces different types of fried potatoes (classical, grill, light, stick, etc.), different
ways of cutting potatoes must be considered. Assume that, for simplicity, there are only
two types of potatoes production, then the supply network is as in Fig. 2 (bottom). If the
aim is only the production maximization independently from the type, then the potatoes are
addressed from node 6 towards the outgoing arcs according to the RA2 algorithm.
The Chapter is organized as follows. Section 2 is devoted the description of the
continuum-discrete model for supply chain. In particular Subsection 2.1 gives the basic
definitions of supply chain and Riemann Solver. Then the dynamics inside an arc is studied.
In Subsection 2.2 particular Riemann Solvers according to rules SC1, SC2 and SC3 are defined
and explicit unique solutions are given. Moreover test simulations are reported. Section 3
extends the model to simple supply networks.

491Continuum-Discrete Models for Supply Chains and Networks
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6 Supply Chain Coordination and Management

2. A continuum-discrete model for supply chains

In this Section we present a model able to describe the load dynamics on supply chains, i.e.
sequential processors, modelled by a real line seen as a sequence of sub-chains corresponding
to real intervals.

2.1 Basic definitions

We start from the conservation law model of Armbruster et al. (2006b):

ρt + (min{µ(t,x),ρ})x = 0. (1)

To avoid problems of existence of solutions, we assume µ piecewise constant and an evolution
equation of semi-linear type:

µt +Vµx = 0, (2)

where V is some constant velocity. Taking V = 0, we may have no solution to a Riemann
Problem for the system (1)–(2) with data (ρl ,µl) and (ρr ,µr) if min{µl ,ρl} > µr. Since we
expect the chain to influence backward the processing rate we assumeV < 0 and for simplicity
we set V = −1.
We define a mixed continuum-discrete model in the following way. On each arc e, the
evolution is given by (1)–(2). On the other side, the evolution at nodes ve is given solving
Riemann Problems for the density equation (1) with µs as parameters. Such Riemann
Problems may still admit no solution as before if we keep the values of the parameters µs
constant, thus we expect µ waves to be generated and then follow equation (2). The vanishing
of the characteristic velocity for (1), in case ρ > µ, can provoke resonances with the nodes
(which can be thought as waves with zero velocities). Therefore, we slightlymodify the model
as follows.
Each arc e is characterized by a maximum density ρemax, a maximum processing rate µe

max and
a flux f eε . For a fixed ε > 0, the dynamics is given by:

{
ρt + f eε (ρ,µ)x = 0,
µt − µx = 0.

(3)

The flux is defined as:

(F) f eε (ρ,µ) =

{
ρ, 0≤ ρ ≤ µ,
µ + ε(ρ − µ), µ ≤ ρ ≤ ρemax,

f eε (ρ,µ) =

{
ερ + (1− ε)µ, 0≤ µ ≤ ρ,
ρ, ρ ≤ µ ≤ µe

max,

see Figure 3.
The conservation law for the good density in (3) is a ε perturbation of (1) in the sense that
‖ f − fε‖∞ ≤ Cε, where f is the flux of (1). The equation has the advantage of producing waves
with always strictly positive speed, thus avoiding resonance with the “boundary”problems at
nodes ve.

Remark 1 We can consider a slope m, defining the flux

fε(ρ,µ) =

{
mρ, if ρ ≤ µ,
mµ + ε(ρ − µ), if ρ ≥ µ,

(4)
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Fig. 3. Flux (F): Left, f (ρ̄,µ). Right, f (ρ, µ̄).

or different slopes me, considering the flux

f eε (ρ,µ) =

{
meρ, 0≤ ρ ≤ µ,
meµ + ε(ρ − µ), µ ≤ ρ ≤ ρemax,

(5)

where me ≥ 0 represents the velocity of each processor and is given by me = Le

Te , with Le and Te,
respectively, fixed length and processing time of processor e.

From now on, for simplicity we assume that ε is fixed and the flux is the same for each arc
e, we then drop the indices thus indicate the flux by f (ρ,µ). The general case can be treated
similarly.
The supply chain evolution is described by a finite set of functions ρe,µe defined on [0,+∞[×
[ae,be]. On each sub-chain [ae,be], we say that Ue := (ρe,µe) : [0,+∞[× [ae,be] �→ R is a weak
solution to (3) if, for every C∞-function ϕ : [0,+∞[× [ae,be] �→ R

2 with compact support in
]0,+∞[× ]ae,be[ ,

+∞∫

0

be∫

ae

(
Ue ·

∂ϕ

∂t
+ f (Ue) ·

∂ϕ

∂x

)
dxdt = 0,

where

f (Ue) =

(
f (ρe,µe)
−µe

)
,

is the flux function of the system (3). For the definition of entropy solution, we refer to Bressan
(2000).
For a scalar conservation law, a Riemann Problem (RP) is a Cauchy problem for an initial
data of Heavyside type, that is piecewise constant with only one discontinuity. One looks
for centered solutions, i.e. ρ(t,x) = φ( xt ) formed by simple waves, which are the building
blocks to construct solutions to the Cauchy problem via wave- front tracking algorithm. These
solutions are formed by continuous waves called rarefactions and by travelling discontinuities
called shocks. The speed of waves are related to the values of f ′, see Bressan (2000).
Analogously, we call Riemann Problem for a junction the Cauchy problem corresponding to
an initial data which is constant on each supply line.

Definition 2 A Riemann Solver for the node ve consists in a map RS :
[0,ρemax] × [0,µe

max] × [0,ρe+1
max] × [0,µe+1

max] �→ [0,ρemax] × [0,µe
max] × [0,ρe+1

max] ×
[0,µe+1

max] that associates to a Riemann data (ρe,0,µe,0,ρe+1,0,µe+1,0) at ve a vector
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8 Supply Chain Coordination and Management

(ρ̂e, µ̂e, ρ̂e+1, µ̂e+1) so that the solution is given by the waves (ρe,0, ρ̂e) and (µe,0, µ̂e) on the
arc e and by the waves (ρ̂e+1,ρe+1,0), and (µ̂e+1,µe+1,0) on the arc e+ 1. We require the consistency
condition

(CC) RS(RS(ρe,0,µe,0,ρe+1,0,µe+1,0)) = RS((ρe,0,µe,0,ρe+1,0,µe+1,0)).

Once a Riemann Solver is assigned we can define admissible solutions at ve.

Definition 3 Assume a Riemann Solver RS is assigned for the node ve. Let U = (Ue,Ue+1) be such
that Ue(t, ·) and Ue+1(t, ·) are of bounded variation for every t ≥ 0. Then U is an admissible weak
solution of (3) related to RS at the junction ve if and only if the following property holds for almost
every t. Setting

Ũe(t) = (Ue(·,be−),Ue+1(·, ae+))

we have RS(Ũe(t)) = Ũe(t).

Our aim is to solve the Cauchy problem for t≥ 0 for given initial data.

2.1.1 Dynamics on arcs

Let us fix an arc e and analyze system (3): it is a system of conservation laws in the variables
U = (ρ,µ):

Ut + F(U)x = 0, (6)

with flux function given by F(U) = ( f (ρ,µ),−µ), thus the Jacobian matrix of the flux is:

DF(ρ,µ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0
0 −1

)
, if ρ < µ,

(
ε 1− ε
0 −1

)
, if ρ > µ.

The eigenvalues and eigenvectors are given by:

λ1(ρ,µ) = −1, r1(ρ,µ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0
1

)
, if ρ < µ,

(
− 1−ε

1+ε
1

)
, if ρ > µ,

λ2(ρ,µ) =

{
1, if ρ < µ,
ε, if ρ > µ,

r2(ρ,µ) =

(
1
0

)
.

Hence the Hugoniot curves for the first family are vertical lines above the secant ρ = µ and
lines with slope close to −1/2 below the same secant. The Hugoniot curves for the second
family are just horizontal lines. Since we consider positive and bounded values for the
variables, we fix the invariant region:

D = {(ρ,µ) : 0≤ ρ ≤ ρmax, 0≤ µ ≤ µmax,

0≤ (1+ ε)ρ + (1− ε)µ ≤ (1+ ε)ρmax = 2(1− ε)µmax}
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see Figure 4.
Observe that

ρmax = µmax
2

1+ ε
. (7)

Proposition 4 Given (ρ0,µ0), the minimal value of the flux at points of the curve of the first family
passing through (ρ0,µ0) is given by:

fmin((ρ
0,µ0)) =

{
2ε
1+ε ρ0, i f ρ0 ≤ µ0,

ερ0 +
ε(1−ε)
1+ε µ0, i f ρ0 > µ0.

Lemma 5 Given an initial datum (ρ0,µ0), the maximum value of the density of the curve of the second
family passing through (ρ0,µ0) and belonging to the invariant region is given by

ρM(µ0) = ρmax − µ0 ρmax − µmax

µmax
. (8)

2.2 Riemann Solvers at nodes

In this Section we discuss possible definitions of a general Riemann Solver, which conserves
the flux at nodes. We fix a node ve and a Riemann initial datum: constantly equal to (ρe,0,µe,0)
on e and constantly equal to (ρe+1,0,µe+1,0) on e+ 1.
First observe that the following Lemmas hold:

Lemma 6 On the incoming arc, only waves of the first family may be produced, while on the outgoing
arc only waves of the second family may be produced.

Lemma 7 The Riemann Problem at node ve admits a solution if the following holds.
If ρe,0 ≤ µe,0 then

µe+1,0(1− ε) + ε(ρe+1
max −

2

1+ ε
ρe,0) ≥ 0. (9)
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10 Supply Chain Coordination and Management

If ρe,0 > µe,0 then

(1− ε)

(
µe+1,0−

ε

1+ ε
µe,0

)
+ ε(ρe+1

max − ρe,0) ≥ 0. (10)

Remark 8 Conditions (9) and (10) are fulfilled if ρe+1
max ≥ 2ρe,0 and µe+1,0 ≥ µe,0, which is a condition

on the initial datum.

We are now ready to describe a general solution to a Riemann Problem at ve. From Lemma 6,
given the initial datum (ρe,0,µe,0,ρe+1,0,µe+1,0), for every Riemann Solver it follows that

ρ̂e = ϕ(µ̂e),

µ̂e+1 = µe+1,0,

where the function ϕ(·) describes the first family curve through (ρe,0,µe,0) as function of µ̂e:

ϕ(µ̂e) =

⎧
⎪⎨
⎪⎩

µ̄e, if µ̂e ≥ µ̄e,
(ε−1)µ̂e+2ρe,0

1+ε , if µ̂e
< µ̄e,ρe,0 ≤ µe,0,

(ε−1)(µ̂e−µe,0)+(1+ε)ρe,0

1+ε , if µ̂e
< µ̄e,ρe,0 > µe,0,

with µ̄e the value in which the expression of such curve changes:

µ̄e =

{
ρe,0, if ρe,0 ≤ µe,0,
1+ε
2 ρe,0 + 1−ε

2 µe,0, if ρe,0 > µe,0.
(11)

Let us now discuss how ρ̂e+1 and µ̂e can be chosen. The conservation of flux at the node can
be written as

f (ϕ(µ̂e), µ̂e) = f (ρ̂e+1,µe+1,0). (12)

We have to distinguish two cases:

Case α) µe+1,0
< µ̄e;

Case β) µ̄e ≤ µe+1,0.

In both cases µ̄e and µe+1,0 individuate in the plane (ρ̂e+1, µ̂e) four regions, A, B, C, D, so
defined:

A= {(ρ̂e+1, µ̂e) : 0≤ ρ̂e+1 ≤ µe+1,0, µ̄e ≤ µ̂e ≤ µe
max};

B = {(ρ̂e+1, µ̂e) : µe+1,0 ≤ ρ̂e+1 ≤ ρe+1
max, µ̄

e ≤ µ̂e ≤ µe
max};

C = {(ρ̂e+1, µ̂e) : 0≤ ρ̂e+1 ≤ µe+1,0,0≤ µ̂e ≤ µ̄e};
D = {(ρ̂e+1, µ̂e) : µe+1,0 ≤ ρ̂e+1 ≤ ρe+1

max,0≤ µ̂e ≤ µ̄e}.

The equation (12) is satisfied in case β) along the line depicted in Figure 5 and in case α) there
are solutions, only under some conditions, along the dashed line.
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Continuum-Discrete Models for Supply Chains and Networks 11

2.2.1 A Riemann Solver according to rule SC1.

A geometrically natural Riemann Solver is the following. In case β) we can define a Riemann
Solver mapping every initial datum on the line µ̂e = c to the intersection of the same line with
that drawn in Figure 5.
In case α), it may happen that there is no admissible solution on a given line µ̂e = c. Therefore,
we can use the same procedure if the line µ̂e = c intersects the dashed line of Figure 5, while
mapping all other points to the admissible solution with the highest value of µ̂e.
The obtained Riemann Solver is depicted in Figure 6 and satisfies the policy SC1. On the
left, there is case β) with all points mapped horizontally, while, on the right, there is case α):
all points of the white region are mapped horizontally and all points of the dark region are
mapped to the point indicated by the arrow.

Remark 9 If ρ̂e+1 ≤ µe+1,0, then the solution (ρ̂e+1,ρe+1,0) is a contact discontinuity. The same
happens if ρ̂e+1 ≥ µe+1,0 and ρ̂e+1

> µe+1,0. If ρ̂e+1
> µe+1,0 and ρe+1,0

< µe+1,0, the solution
consists of two contact discontinuities.

Let us define in detail the Riemann Solver described in Figure 6. We introduce the notations:

f emax = f (ρemax,µ
e,0),

f e+1
max = f (ρe+1

max,µ
e+1,0).

Proposition 10 Fix a node ve. For every Riemann initial datum (ρe,0, µe,0, ρe+1,0, µe+1,0) at ve there
exists a unique vector (ρ̂e, µ̂e, ρ̂e+1, µ̂e+1) such that:

a) if f (ρe,0,µe,0) ≤ f e+1
max, then

µ̂e = µe,0, µ̂e+1 = µe+1,0,

ρ̂e = ρe,0,

ρ̂e+1 =

{
f (ρe,0,µe,0), if f (ρe,0,µe,0) ≤ µe+1,0,
f (ρe,0,µe,0)−µe+1,0

ε + µe+1,0, if µe+1,0 ≤ f (ρe,0,µe,0)≤ f e+1
max,
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Fig. 5. Left: Case α) : µe+1,0
< µ̄e. Right: Case β) : µ̄e ≤ µe+1,0.
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Fig. 6. An example of Riemann Solver: case β) (on the left) and α) (on the right).

b) if f (ρe,0,µe,0) > f e+1
max, then

ρ̂e = ρe,0, ρ̂e+1 = ρe+1
max,

µ̂e =
f e+1
max − ερe,0

1− ε
, µ̂e+1 = µe+1,0.

Theorem 11 The Riemann Solver described in Proposition 10 is in accordance to rule SC1.

Let us pass now to consider solvability of Riemann Problems according to the Riemann Solver
above.

Lemma 12 Consider a supply chain on which the initial datum verifies µe,0 = µe
max, i.e. the

production rate is at its maximum. A sufficient condition for the solvability of all Riemann Problems,
according to rule SC1, on the supply chain at every time is

ρe+2
max ≥ ρemax,∀e.

2.2.2 A Riemann Solver according to rule SC2.

Rule SC2 individuates a unique Riemann Solver as shown by next:

Theorem 13 Fix a node ve. For every Riemann initial datum (ρe,0, µe,0, ρe+1,0, µe+1,0) at ve there
exists a unique vector (ρ̂e, µ̂e, ρ̂e+1, µ̂e+1) solution of the Riemann Problem according to rule SC2.

Case α) µe+1,0
< µ̄e

Case α1) ρ∗ ≤ ρM(µe+1,0)

ρ̂e = ϕ(µ̂e), µ̂e =min{µe
max,ρ

∗},

ρ̂e+1 = ρ∗, µ̂e+1 = µe+1,0,

Case α2) ρ∗ > ρM(µe+1,0)
ρ̂e = ϕ(µ̂e), µ̂e = µ̃,

ρ̂e+1 = ρM(µe+1,0), µ̂e+1 = µe+1,0,

498 Supply Chain Management

www.intechopen.com



Continuum-Discrete Models for Supply Chains and Networks 13

ΡM
e�1

Μmax
e

Μ e�1,0

Μ
���e

A B

C D

Μ
� e

Ρ
� e�1

ΡM
e�1

Μmax
e

Μ e�1,0

Μ
���e

A B

C D

Ρ 	

Ρ 	

Μ
� e

Ρ
� e�1

Μ
�

Fig. 7. Case β) (on the left) and α) (on the right) for the Riemann solver SC2.

Case β) µe+1,0 ≥ µ̄e

ρ̂e = ϕ(µ̂e), µ̂e = µ̄e,

ρ̂e+1 = µ̄e, µ̂e+1 = µe+1,0,

where ρ∗ =
µ̄e−(1−ε)µe+1,0

ε , and µ̃ = 2ε
1−ε (µ

e
max − µ̄e) + µe+1,0.

This Riemann Solver is depicted in Figure 7. In case β) we can define a Riemann Solver
mapping every initial datum to the point (µ̄e, µ̄e), indicated by the arrow.
In case α), we can define a Riemann Solver mapping every initial datum to the circle or to the
square point if ρ∗ ≤ ρM and to the filled point if ρ∗ > ρM.

2.2.3 A Riemann Solver according to rule SC3.

Also rule SC3 determines a unique Riemann Solver as shown by next:

Theorem 14 Fix a node ve. For every Riemann initial datum (ρe,0,µe,0,ρe+1,0,µe+1,0) at ve there
exists a unique vector (ρ̂e, µ̂e, ρ̂e+1, µ̂e+1) solution of the Riemann Problem according to rule SC3.

Case α) µe+1,0
< µ̄e

Case α1) ρ∗ ≤ ρM(µe+1,0)

Case α1.1) ρ∗ > µe
max

ρ̂e = ϕ(µ̂e), µ̂e = µe
max,

ρ̂e+1 = ρ∗, µ̂e+1 = µe+1,0,

Case α1.2) ρ∗ ≤ µe
max

ρ̂e = ϕ(µ̂e), µ̂e =max{ρ∗,µe,0},

ρ̂e+1 = ρ∗, µ̂e+1 = µe+1,0,
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Fig. 8. Case β) and α) (namely α1) and α2)) for the Riemann Solver SC3.

Case α2) ρ∗ > ρM(µe+1,0)
ρ̂e = ϕ(µ̂e), µ̂e = µ̃,

ρ̂e+1 = ρM(µe+1,0), µ̂e+1 = µe+1,0,

Case β) µe+1,0 ≥ µ̄e

ρ̂e = ϕ(µ̂e), µ̂e =

{
µ̄e, if µe,0

< µ̄e,
µe,0, if µe,0 ≥ µ̄e,

ρ̂e+1 = µ̄e, µ̂e+1 = µe+1,0,

where ρ∗ =
µ̄e−(1−ε)µe+1,0

ε , and µ̃ = 2ε
1−ε (µ

e
max − µ̄e) + µe+1,0.

The obtained Riemann Solver is depicted in Figure 8: all points of the white region aremapped
horizontally and all points of the dark regions are mapped to the point indicated by the
arrows.
Analogously to the case of rule SC1, we can give conditions for solvability of Riemann
Problems, more precisely:

Lemma 15 Consider a supply chain on which the initial datum verifies µe,0 = µe
max, i.e. the

production rate is at its maximum. A sufficient condition for the solvability of all Riemann Problems,
according to rule SC2 or SC3, on the supply chain at every time is

ρe+2
max ≥ ρemax,∀e.

2.3 Numerical tests

As an application of the supply chain dynamics we present some experiments on sample
cases. The problem (3) is discretized using Godunov and Upwind schemes. We set space

increment equal on each arc, namely Ne = Le

∆x , where Ne is the number of space discretization
points. The time steps ∆t are constants and are obtained imposing the CFL condition on each
arc.
In the following Tests 1 and 2we refer to numerical examples presented in Göttlich et al. (2005;
2006) in such a way to establish a comparison between their and our approach. To this aim
we consider the flux function with different slopes (5).
Test 1. As in Göttlich et al. (2005), we analyze a supply chain network consisting of N = 4 arcs
and we use the data in Table 1.
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Processor e µe me Le

1 25 1 1

2 15 0.2 0.2

3 10 0.2 0.6
4 15 0.2 0.2

Table 1. Parameters of the test problem 1.
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Fig. 9. Test 1: evolution on processors 2, 3, 4, of f (left), ρ (central) and µ (right) using SC1,
with data in Table 1 and ε = 0.1.

Let us assume the following initial and boundary data:

ρ1(0,x) = ρ2(0,x) = ρ3(0,x) = ρ4(0,x) = 0,

ρ1(t,0) =

⎧
⎨

⎩

18
35 t, 0≤ t≤ 35,

− 18
35 t+ 36, 35< t ≤ 70,

0, t> 70,

and the space and time intervals are, respectively, [0,2] and [0,140], with ∆x = 0.02 and
∆t = 0.01. On each processor e = 1,2,3,4 we assume as the initial datum µ(0,x) the value
µe, which is also imposed at the incoming and outgoing boundaries. Notice that the inflow
profile ρ1(t,0) is assigned on the first processor, which can be considered as an artificial arc,
and it exceeds the maximum capacity of the other processors. In Fig. 9 it is depicted the
evolution in time on processors 2, 3, 4, of flux, density and processing rate, obtained by the
Riemann Solver SC1 for ε = 0.1. From the analysis of graphics in Fig. 9, we can deduce that the
processing rate, according to SC1, is minimized and, consequently, the flux and the density
are considerably lowered and are almost plateau shaped on processors 3 and 4. On the other
hand, SC2 determines the behaviour showed in Fig. 10, where the flux and the density are
correctly developed on processors 2, 3, 4, due to the behaviour of the processing rate depicted
in the graphics, which assumes the minimum possible value in order to maximize the flux.
In the following Figg. 11, 12 and 13 it is depicted the evolution in time on processors 2, 3, 4, of
flux, density and processing rate, as obtained by the Riemann Solver SC3 with, respectively,
ε = 0.1, ε = 0.5 and ε = 0.01.
As showed by the graphics obtained, ε varying determines a different evolution. In particular,
for ε tending to zero, the maximum values assumed by the flux and the density decrease.
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Processor e µe Le

1 99 1

2 15 1

3 10 3
4 8 1

Table 2. Parameters of the test problem 2.

From the analysis of graphics in Figg. 11, 12 and 13, obtained by applying Riemann Solver
SC3, we can deduce that adjustments of processing rate determine the expected behaviour of
the density, also in accordance with results reported in Göttlich et al. (2005).
Test 2.

Referring to Göttlich et al. (2006), we consider again a supply chain of N = 4 arcs and impose
the following initial and boundary data:

ρ1(0,x) = ρ2(0,x) = ρ3(0,x) = ρ4(0,x) = 0,

ρ1(t,0) =
µ2

2
(1+ sin (3πt/Tmax)),

where the space interval is [0,6] and the observation time is Tmax = 20, with ∆x = 0.1 and
∆t = 0.05. On each processor e = 1,2,3,4 we assume µ(0,x) = µe and incoming and outgoing
boundary data are given by µe. Observe that even in this case the inflow profile ρ1(t,0) exceeds
the maximum capacity of the processors.
Referring to Göttlich et al. (2006) we make simulations setting parameters as in Table 2 and we
assume to have default processing velocities on each processor, namely me = 1, e = 1,2,3,4.
In the next Fig. 14 it is depicted the evolution in time of flux, density and processing rate
obtained by the Riemann Solver SC1 for ε = 0.1, while in Figg. 15 and 16 we show the
behaviour of flux, density and processing rate obtained, respectively, by the Riemann Solvers
SC2 and SC3.
Let us make a comparison between graphics in Figg. 14 and 15. We observe that with Solver
SC2 the productivity collapses, thus provoking a lowering in the values of the flux and the
density. On the other hand, SC1 maintains the level of productivity. Using Solver SC3, which
maximizes the flux and adjusts the processing rate if necessary, results are in accordance with
those obtained in Göttlich et al. (2006), see Fig. 16.
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Fig. 10. Test 1: evolution on processors 2, 3, 4, of f (left), ρ (central) and µ (right) using SC2,
with data in Table 1 and ε = 0.1.
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Fig. 11. Test 1: evolution on processors 2, 3, 4, of f (left), ρ (central) and µ (right) using SC3,
with data in Table 1 and ε = 0.1.
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Fig. 12. Test 1: evolution on processors 2, 3, 4, of f (left), ρ (central) and µ (right) using SC3,
with data in Table 1 and ε = 0.5.
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Fig. 13. Test 1: evolution on processors 2, 3, 4, of f (left), ρ (central) and µ (right) using SC3,
with data in Table 1 and ε = 0.01.
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3. A continuum-discrete model for supply networks

The aim of this Section is to extend the continuum-discrete model regarding sequential supply
chains to supply networks which consist of arcs and two types of nodes: nodes with one
incoming arc and more outgoing ones and nodes with more incoming arcs and one outgoing
arc (see Figure 17). In fact, these two types of nodes are the most common in real supply
networks.

3.1 Model description

Let us introduce briefly the model.

Definition 16 (Network definition) A supply network is a finite, connected directed graph consisting
of a finite set of arcs A= {1, ...,N+ 1} and a finite set of junctions V .

On each arc the load dynamic is given again by a continuum system of type (3). The Riemann
Problems at the nodes are solved fixing two “routing” algorithms:

RA1 We assume that

(A) the flow from incoming arcs is distributed on outgoing arcs according to fixed
coefficients;

(B) respecting (A) the processor chooses to process goods in order to maximize fluxes (i.e.,
the number of goods which are processed).

RA2 We assume that the number of goods through the junction is maximized both over
incoming and outgoing arcs.

The two algorithmswere already used in D’Apice et al. (2006) for the analysis of packets flows
in telecommunication networks. Notice that the second algorithm allows the redirection of
goods, taking into account possible high loads of outgoing arcs. For both routing algorithms
the flux of goods is maximized considering one of the two additional rules, SC2 and SC3.

3.2 Solution of Riemann Problems at nodes

In this Section we discuss Riemann Solvers, which conserve the flux at nodes. We consider
two kinds of nodes:

- a node with more incoming arcs and one outgoing one;
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Fig. 14. Test 2: evolution of f (left), ρ (central), µ (right) for the default velocities using SC1,
with data in Table 2 and ε = 0.1.
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Fig. 15. Test 2: evolution of f (left), ρ (central), µ (right) using SC2, with data in Table 2 and
ε = 0.1.

- a node with one incoming arc and more outgoing ones.

We consider a node ve with n incoming arcs and m outgoing ones and a Riemann initial datum
(ρ1,0,µ1,0, ...,ρn,0,µn,0,ρn+1,0,µn+1,0, ...,ρn+m,0,µn+m,0).
The following Lemma holds:

Lemma 17 On the incoming arcs, only waves of the first family may be produced, while on the
outgoing arcs only waves of the second family may be produced.

From Lemma 17, given the initial datum, for every Riemann Solver it follows that

ρ̂e = ϕ(µ̂e), e ∈ δ−v ,

µ̂e = µe,0, e ∈ δ+v ,
(13)

where again ϕ(·) describes the first family curve through (ρe,0,µe,0) as function of µ̂e and for
a fixed vertex v, δ−v denotes the sets of ingoing arcs and δ+v the set of outgoing ones.
We define two different Riemann Solvers at a junction that represent the two different routing
algorithms RA1 and RA2. For both routing algorithms we can maximize the flux of goods
considering one of the two additional rules SC2 and SC3.
To define Riemann Problems according to rule RA1 and RA2 let us introduce the notation:

f e = f (ρe,µe).
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Fig. 16. Test 2: evolution of f (left), ρ (central), µ (right) using SC3, with data in Table 2 and
ε = 0.1.
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Fig. 17. One outgoing arc (left); one incoming arc (right).

Define the maximum flux that can be obtained by a wave solution on each production arc:

f emax =

{
µ̄e, e ∈ δ−v ,

µe,0 + ε(ρM(µe,0)− µe,0), e ∈ δ+v .

Since f̂ e ∈ [ f emin, f
e
max = µ̄e], e∈ δ−v and f̂ e ∈ [0, f emax = µe,0+ ε(ρM(µe,0)− µe,0)], e∈ δ+v it follows

that if

∑
e∈δ−v

f emin > ∑
e∈δ+v

f emax

the Riemann Problem does not admit solution. Thus we get the following condition for the
solvability of the supply network.

Lemma 18 A necessary and sufficient condition for the solvability of the Riemann Problems is that

∑
e∈δ−v

f emin ≤ ∑
e∈δ+v

µe,o + ε(ρM(µe,o)− µe,o).

Lemma 19 A sufficient condition for the solvability of the Riemann Problems, independent of the
initial data, is the following

∑
e∈δ−v

ρemax ≤ ∑
e∈δ+v

µe
max.

In what follows, first we consider a single junction ve ∈ V with n − 1 incoming arcs and 1
outgoing arc (shortly, a node of type (n− 1)× 1) and then a junction with 1 incoming arc and
m− 1 outgoing ones (shortly, a node of type 1× (m− 1)).

3.2.1 One outgoing arc

In this case the two algorithms RA1 and RA2 coincide since there is only one outgoing arc.
We fix a node ve with n − 1 incoming arcs and 1 outgoing one and a Riemann
initial datum (ρ0,µ0) = (ρ1,0,µ1,0, ...,ρn−1,0,µn−1,0,ρn,0,µn,0). Let us denote with (ρ̂, µ̂) =
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(ρ̂1, µ̂1, ..., ρ̂n−1, µ̂n−1, ρ̂n, µ̂n) the solution of the Riemann Problem. In order to solve the
dynamics we have to introduce the priority parameters (q1,q2, ...,qn−1) which determine a
level of priority at the junction of incoming arcs.
Let us define

Γinc =
n−1

∑
i=1

f imax,

Γout = f nmax,

and Γ =min{Γinc,Γout}.
We analyze for simplicity the case in which n = 3, in this case we need only one priority
parameter q ∈]0,1[. Think, for example, of a filling station for soda cans. The arc 3 fills the
cans, whereas arcs 1 and 2 produce plastic and aluminium cans, respectively.
First, we compute f̂ e e = 1,2,3 and then ρ̂e and µ̂e, e= 1,2,3.
We have to distinguish two cases:

Case 1) Γ = Γinc,

Case 2) Γ < Γinc.

In the first case we set f̂ i = f imax, i = 1,2. Let us analyze the second case in which we use the
priority parameter q.
Not all objects can enter the junction, so let C be the amount of objects that can go through.
Then qC objects come from first arc and (1− q)C objects from the second. Consider the space(
f 1, f 2

)
and define the following lines:

rq : f
2 =

1− q

q
f 1,

rΓ : f 1 + f 2 = Γ.

Define P to be the point of intersection of the lines rq and rΓ. Recall that the final fluxes should
belong to the region (see Fig. 18):

Ω =
{(

f 1, f 2
)
: 0≤ f i ≤ f imax, i = 1,2

}
.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we set
(
f̂ 1, f̂ 2

)
= P, while in the second case we set

(
f̂ 1, f̂ 2

)
= Q, with Q =

projΩ∩rΓ
(P) where proj is the usual projection on a convex set, see Fig. 18.

Notice that f̂ 3 = Γ.

Remark 20 The reasoning can be repeated also in the case of n− 1 incoming arcs. In R
n−1 the line

rq is given by rq = thq, t ∈ R, with hq ∈ ∆n−2 where

∆n−2 =

{
( f 1, ..., f n−1) : f i ≥ 0, i = 1, ...,n− 1,

n−1

∑
i=1

f i = 1

}

507Continuum-Discrete Models for Supply Chains and Networks

www.intechopen.com



22 Supply Chain Coordination and Management

is the (n− 2) dimensional simplex and

HΓ =

{
( f 1, ..., f n−1) :

n−1

∑
i=1

f i = Γ

}

is a hyperplane. Since hq ∈ ∆n−2, there exists a unique point P = rq ∩ HΓ. If P ∈ Ω, then we set

( f̂ 1, ..., f̂ n−1) = P. If P /∈ Ω , then we set ( f̂ 1, ..., f̂ n−1) = Q = projΩ∩HΓ
(P), the projection over the

subset Ω ∩ HΓ. Observe that the projection is unique since Ω ∩ HΓ is a closed convex subset of HΓ.

Let us compute ρ̂e and µ̂e, e = 1,2,3.
On the incoming arcs we have to distinguish two subcases:

Case 2.1) f̂ i = f imax. We set according to rules SC2 and SC3,

SC2 :
ρ̂i = µ̄i,

µ̂i = µ̄i,
i = 1,2,

SC3 :
ρ̂i = µ̄i,

µ̂i =max{µ̄i,µi,0},
i = 1,2.

Case 2.2) f̂ i < f imax. In this case there exists a unique µ̂i such that µ̂i + ε(ϕ(µ̂i) − µ̂i) = f̂ i.
According to (13), we set ρ̂i = ϕ(µ̂i), i = 1,2.

Observe that in case 2.1) ρ̂i = ϕ(µ̂i) = µ̄i, i = 1,2.
On the outgoing arc we have:

µ̂3 = µ3,0,

while ρ̂3 is the unique value such that fε(µ3,0, ρ̂3) = f̂ 3.

3.2.2 One incoming arc

We fix a node ve with 1 incoming arc and m− 1 outgoing ones and a Riemann initial datum
(ρ0,µ0) = (ρ1,0,µ1,0,ρ2,0,µ2,0, ...,ρm,0,µm,0). Let us denote with (ρ̂, µ̂) = (ρ̂1, µ̂1, ρ̂2, µ̂2, ..., ρ̂m, µ̂m)
the solution of the Riemann Problem. Since we have more than one outgoing arc, we need to
define the distribution of goods from the incoming arc.

f1

f2

rq

P

fmax
2

fmax
1

rq

P

Q

fmax
2

fmax
1

r


Fig. 18. P belongs to Ω and P is outside Ω.
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Introduce the flux distribution parameters αj, j = 2, ...,m, where

0< αj < 1,
m

∑
j=2

αj = 1.

The coefficient αj denotes the percentage of objects addressed from the arc 1 to the arc j. The
flux on the arc j is thus given by

f j = αj f
1, j= 2, ...,m,

where f 1 is the incoming flux on the arc 1.
Let us define

Γinc = f 1max,

Γout =
m

∑
j=2

f
j
max,

and Γ =min{Γinc,Γout}.
We have to determine µ̂e and ρ̂e, e= 1, ...,m for both algorithms RA1 and RA2.

3.2.3 Riemann Solver according to RA1.

Analyze the general case with m arcs. Consider, for example, the filling station for fruit
juice bottle of Introduction. The arcs e3 and e4 fill bottles with pear and apple fruit juices,
respectively, according to the bottle shapes. The dynamics at node v2 is solved using the

algorithm we are going to describe. Since f̂ j ≤ f
j
max it follows that

f̂ 1 ≤
f
j
max

αj
, j = 2, ...,m.

We set

f̂ 1 =min{ f 1max,
f
j
max

αj
},

f̂ j = αj f̂
1,

j = 2, ...,m.

On the incoming arc we have to distinguish two subcases:

Case 1) f̂ 1 = f 1max. According to rules SC2 and SC3, respectively, we set

SC2 :
ρ̂1 = µ̄1,

µ̂1 = µ̄1,

SC3 :
ρ̂1 = µ̄1,

µ̂1 =max{µ̄1,µ1,0}.

Case 2) f̂ 1 < f 1max. In this case there exists a unique µ̂1 such that µ̂1 + ε(ϕ(µ̂1) − µ̂1) = f̂ 1.
According to (13), we set ρ̂1 = ϕ(µ̂1).

On the outgoing arc we have:

µ̂j = µj,0, j= 2,3,

while ρ̂j is the unique value such that fε(µ
j,0, ρ̂j) = f̂ j, j= 2,3.
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3.2.4 Riemann Solver according to RA2.

Let us analyze for simplicity the case in whichm= 3, in this casewe need only one distribution
parameter α ∈]0,1[. Think, for example, the supply network of cup production described
in the Introduction. The dynamics at the node is solved according to the algorithm RA2.
Compute f̂ e, e= 1,2,3.
We have to distinguish two cases:

Case 1) Γ = Γout,

Case 2) Γ < Γout.

In the first case we set f̂ j = f
j
max, j = 2,3. Let us analyze the second case in which we use the

priority parameter α.
Not all objects can enter the junction, so let C be the amount of objects that can go through.
Then αC objects come from the first arc and (1− α)C objects from the second. Consider the
space

(
f 2, f 3

)
and define the following lines:

rα : f 3 =
1− α

α
f 2,

rΓ : f 2 + f 3 = Γ.

Define P to be the point of intersection of the lines rα and rΓ. Recall that the final fluxes should
belong to the region:

Ω =
{(

f 2, f 3
)
: 0≤ f j ≤ f

j
max, j= 2,3

}
.

We distinguish two cases:

a) P belongs to Ω,

b) P is outside Ω.

In the first case we set
(
f̂ 2, f̂ 3

)
= P , while in the second case we set

(
f̂ 2, f̂ 3

)
= Q, with

Q = projΩ∩rΓ
(P) where proj is the usual projection on a convex set. Observe that f̂ 1 = Γ.

Again, we can extend the reasoning to the case ofm− 1 outgoing arcs as for the incoming arcs
defining the hyperplane

HΓ =

⎧
⎨

⎩( f 2, ..., fm) :
m

∑
j=2

f j = Γ

⎫
⎬



and choosing a vector hα ∈ ∆m−2. Moreover, we compute ρ̂e and µ̂e in the same way described
for the Riemann Solver RA1.

3.3 Numerical experiments

In what follows we report the densities and production rates at the instant t = 0 and after
some times (at t = 1) for different initial data using different routing algorithms. Since a
constant state is an equilibrium for the single line model, a modification of the state may
only appear initially at the junction. In Table 3 and in Fig. 19-20 we report the Riemann
Solver for a node of type 1× 2 and assume ε = 0.2,µe

max = 1, e= 1,2,3,α = 0.8, (ρ1,0,ρ2,0,ρ3,0) =
(0.7,0.1,0), (µ1,0,µ2,0,µ3,0) = (1,0.2,1). Observe that the algorithm RA2 redirects the goods, in
fact taking into account the initial loads of the outgoing sub-chains, the number of goods
processed by the sub-chain with density ρ3,0 = 0 increases.
In Table 4 and in Figg. 21-22 we report numerical results for a node of type 2 × 1, and
assume ε = 0.2,µe

max = 1, e = 1,2,3,q = 0.6, (ρ1,0,ρ2,0,ρ3,0) = (0.3,0.7,0.8), (µ1,0,µ2,0,µ3,0) =
(0.8,0.7,0.4).
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RA1 RA2
SC2 SC3 SC2 SC3

f̂ e (0.58,0.47,0.12) (0.58,0.47,0.12) (0.7,0.47,0.23) (0.7,0.47,0.23)
ρ̂e (0.82,1.53,0.12) (0.82,1.53,0.12) (0.7,1.53,0.23) (0.7,1.53,0.23)
µ̂e (0.52,0.2,1) (0.52,0.2,1) (0.7,0.2,1) (1,0.2,1)

Table 3. A node of type 1× 2.

Ρt � 0

x

x

Ρ1,0

Ρ2,0

Ρ3,0

�

Ρt � 0

x

x

Ρ
� 1

Ρ1,0

Ρ
� 2

Μ2,0

Ρ2,0

Ρ
� 3

Ρ3,0

Fig. 19. A RP for the RA2-SC3 algorithm: the initial density and the density after some times.
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Fig. 20. A RP for the RA2-SC3 algorithm: the initial production rate and the production rate
after some times.
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RA1=RA2
SC2 SC3

f̂ e (0.3,0.3,0.6) (0.3,0.3,0.6)
ρ̂e (0.3,1.1,1.4) (0.3,1.1,1.4)
µ̂e (0.3,0.1,0.4) (0.8,0.1,0.4)

Table 4. A node of type 2× 1.
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Fig. 21. A RP for the SC2 algorithm: the initial density and the density after some times.
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Fig. 22. A RP for the SC2 algorithm: the initial production rate and the production rate after
some times.
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4. Conclusions

In this Chapter we have proposed a mixed continuum-discrete model, i.e. the supply chain
is described by continuous arcs and discrete nodes, it means that the load dynamics is solved
in a continuous way on the arcs, and at the nodes imposing conservation of goods density,
but not of the processing rate. In fact, each arc is modelled by a system of two equations:
a conservation law for the goods density, and an evolution equation for the processing rate.
The mixed continuum-discrete model is useful when there is the possibility to reorganize the
supply chain: in particular, the productive capacity can be readapted for some contingent
necessity. Possible choices of solutions at nodes guaranteeing the conservation of fluxes
are analyzed. In particular Riemann Solvers are defined fixing the rules SC1, SC2, SC3.
The numerical experiments show that SC1 appears to be very conservative (as expected),
while SC2 and SC3 are more elastic, thus allowing more rich dynamics. Then, the main
difference between SC2 and SC3 is the following. SC2 tends to make adjustments of the
processing ratemore than SC3, evenwhen it is not necessary for purpose of fluxmaximization.
Thus, when oscillating waves reach an arc, then SC2 reacts by cutting such oscillations. In
conclusion, SC3 is more appropriate to reproduce also the well known “bull-whip” effect.
The continuum-discrete model, regarding sequential supply chains, has been extended to
supply networks with nodes of type 1 × n and m × 1. The Riemann Problems are solved
fixing two “routing” algorithms RA1 and RA2, already used for the analysis of packets flows
in telecommunication networks. For both routing algorithms the flux of goods is maximized
considering one of the two additional rules, SC2 and SC3.
In future we aim to develop efficient numerics for the optimal configuration of a supply chain,
in particular of the processing rates, facing the problem to adjust the production according to
the supply demand in order to obtain an expected pre-assigned outflow.
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