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1. Introduction

This article is focused on analyzing stability and L2 gain properties for switched systems

composed of a family of linear discrete-time descriptor subsystems. Concerning descriptor

systems, they are also known as singular systems or implicit systems and have high abilities

in representing dynamical systems [1, 2]. Since they can preserve physical parameters in the

coefficient matrices, and describe the dynamic part, static part, and even improper part of

the system in the same form, descriptor systems are much superior to systems represented

by state space models. There have been many works on descriptor systems, which studied

feedback stabilization [1, 2], Lyapunov stability theory [2, 3], the matrix inequality approach

for stabilization, H2 and/or H∞ control [4–6].

On the other hand, there has been increasing interest recently in stability analysis and design

for switched systems; see the survey papers [7, 8], the recent books [9, 10] and the references

cited therein. One motivation for studying switched systems is that many practical systems

are inherently multi-modal in the sense that several dynamical subsystems are required

to describe their behavior which may depend on various environmental factors. Another

important motivation is that switching among a set of controllers for a specified system can be

regarded as a switched system, and that switching has been used in adaptive control to assure

stability in situations where stability can not be proved otherwise, or to improve transient

response of adaptive control systems. Also, the methods of intelligent control design are based

on the idea of switching among different controllers.

We observe from the above that switched descriptor systems belong to an important class of

systems that are interesting in both theoretic and practical sense. However, to the authors’

best knowledge, there has not been much works dealing with such systems. The difficulty

falls into two aspects. First, descriptor systems are not easy to tackle and there are not rich

results available up to now. Secondly, switching between several descriptor systems makes

the problem more complicated and even not easy to make clear the well-posedness of the

solutions in some cases.

Next, let us review the classification of problems in switched systems. It is commonly

recognized [9] that there are three basic problems in stability analysis and design of switched

systems: (i) find conditions for stability under arbitrary switching; (ii) identify the limited

but useful class of stabilizing switching laws; and (iii) construct a stabilizing switching law.
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Specifically, Problem (i) deals with the case that all subsystems are stable. This problem

seems trivial, but it is important since we can find many examples where all subsystems are

stable but improper switchings can make the whole system unstable [11]. Furthermore, if

we know that a switched system is stable under arbitrary switching, then we can consider

higher control specifications for the system. There have been several works for Problem (i)

with state space systems. For example, Ref. [12] showed that when all subsystems are stable

and commutative pairwise, the switched linear system is stable under arbitrary switching.

Ref. [13] extended this result from the commutation condition to a Lie-algebraic condition.

Ref. [14, 15] and [16] extended the consideration to the case of L2 gain analysis and the case

where both continuous-time and discrete-time subsystems exist, respectively. In the previous

papers [17, 18], we extended the existing result of [12] to switched linear descriptor systems.

In that context, we showed that in the case where all descriptor subsystems are stable, if the

descriptor matrix and all subsystem matrices are commutative pairwise, then the switched

system is stable under impulse-free arbitrary switching. However, since the commutation

condition is quite restrictive in real systems, alternative conditions are desired for stability of

switched descriptor systems under impulse-free arbitrary switching.

In this article, we propose a unified approach for both stability and L2 gain analysis of

switched linear descriptor systems in discrete-time domain. Since the existing results for

stability of switched state space systems suggest that the common Lyapunov functions

condition should be less conservative than the commutation condition, we establish our

approach based on common quadratic Lyapunov functions incorporated with linear matrix

inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for

stability of all descriptor subsystems, then the switched system is stable under impulse-free

arbitrary switching. This is a reasonable extension of the results in [17, 18], in the sense that if

all descriptor subsystems are stable, and furthermore the descriptor matrix and all subsystem

matrices are commutative pairwise, then there exists a common quadratic Lyapunov function

for all subsystems, and thus the switched system is stable under impulse-free arbitrary

switching. Furthermore, we show that if there is a common quadratic Lyapunov function

for stability and certain L2 gain of all descriptor subsystems, then the switched system is

stable and has the same L2 gain under impulse-free arbitrary switching. Since the results are

consistent with those for switched state space systems when the descriptor matrix shrinks to

an identity matrix, the results are natural but important extensions of the existing results.

The rest of this article is organized as follows. Section 2 gives some preliminaries

on discrete-time descriptor systems, and then Section 3 formulates the problem under

consideration. Section 4 states and proves the stability condition for the switched linear

discrete-time descriptor systems under impulse-free arbitrary switching. The condition

requires in fact a common quadratic Lyapunov function for stability of all the subsystems,

and includes the existing commutation condition [17, 18] as a special case. Section 5 extends

the results to L2 gain analysis of the switched system under impulse-free arbitrary switching,

and the condition to achieve the same stability and L2 gain properties requires a common

quadratic Lyapunov function for all the subsystems. Finally, Section 6 concludes the article.

2. Preliminaries

Let us first give some preliminaries on linear discrete-time descriptor systems. Consider the

descriptor system
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{

Ex(k + 1) = Ax(k) + Bw(k)

z(k) = Cx(k) ,
(2.1)

where the nonnegative integer k denotes the discrete time, x(k) ∈ Rn is the descriptor

variable, w(k) ∈ Rp is the disturbance input, z(k) ∈ Rq is the controlled output, E ∈ Rn×n,

A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices. The matrix E may be singular and

we denote its rank by r = rank E ≤ n.

Definition 1: Consider the linear descriptor system (2.1) with w = 0. The system has a unique

solution for any initial condition and is called regular, if |zE − A| �≡ 0. The finite eigenvalues

of the matrix pair (E, A), that is, the solutions of |zE − A| = 0, and the corresponding

(generalized) eigenvectors define exponential modes of the system. If the finite eigenvalues lie

in the open unit disc of z, the solution decays exponentially. The infinite eigenvalues of (E, A)
with the eigenvectors satisfying the relations Ex1 = 0 determine static modes. The infinite

eigenvalues of (E, A) with generalized eigenvectors xk satisfying the relations Ex1 = 0 and

Exk = xk−1 (k ≥ 2) create impulsive modes. The system has no impulsive mode if and only if

rank E = deg |sE − A| (deg |zE − A|). The system is said to be stable if it is regular and has

only decaying exponential modes and static modes (without impulsive modes).

Lemma 1 (Weiertrass Form)[1, 2] If the descriptor system (2.1) is regular, then there exist two

nonsingular matrices M and N such that

MEN =

[

Id 0

0 J

]

, MAN =

[

Λ 0

0 In−d

]

(2.2)

where d = deg |zE − A|, J is composed of Jordan blocks for the finite eigenvalues. If the

system (2.1) is regular and there is no impulsive mode, then (2.2) holds with d = r and J = 0.

If the system (2.1) is stable, then (2.2) holds with d = r, J = 0 and furthermore Λ is Schur

stable.

Let the singular value decomposition (SVD) of E be

E = U

[

E11 0

0 0

]

VT , E11 = diag{σ1, · · · , σr} (2.3)

where σi’s are the singular values, U and V are orthonormal matrices (UTU = VTV = I).

With the definitions

x̄ = VTx
△
=

[

x̄1

x̄2

]

, UT AV =

[

A11 A12

A21 A22

]

, (2.4)

the difference equation in (2.1) (with w = 0) takes the form of

E11 x̄1(k + 1) = A11 x̄1(k) + A12x̄2(k)

0 = A21 x̄1(k) + A22x̄2(k) .
(2.5)

It is easy to obtain from the above that the descriptor system is regular and has not impulsive

modes if and only if A22 is nonsingular. Moreover, the system is stable if and only if A22 is
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nonsingular and furthermore E−1
11

(

A11 − A12 A−1
22 A21

)

is Schur stable. This discussion will

be used again in the next sections.

Definition 2: Given a positive scalar γ, if the linear descriptor system (2.1) is stable and satisfies

k

∑
j=0

zT(j)z(j) ≤ φ(x(0)) + γ2
k

∑
j=0

wT(j)w(j) (2.6)

for any integer k > 0 and any l2-bounded disturbance input w, with some nonnegative definite

function φ(·), then the descriptor system is said to be stable and have L2 gain less than γ.

The above definition is a general one for nonlinear systems, and will be used later for switched

descriptor systems.

3. Problem formulation

In this article, we consider the switched system composed of N linear discrete-time descriptor

subsystems described by
{

Ex(k + 1) = Aix(k) + Biw(k)

z(k) = Cix(k) ,
(3.1)

where the vectors x, w, z and the descriptor matrix E are the same as in (2.1), the index i

denotes the i-th subsystem and takes value in the discrete set I = {1, 2, · · · ,N}, and thus the

matrices Ai, Bi, Ci together with E represent the dynamics of the i-th subsystem.

For the above switched system, we consider the stability and L2 gain properties under the

assumption that all subsystems in (3.1) are stable and have L2 gain less than γ. As in the case

of stability analysis for switched linear systems in state space representation, such an analysis

problem is well posed (or practical) since a switched descriptor system can be unstable even if

all the descriptor subsystems are stable and there is no variable (state) jump at the switching

instants. Additionally, switchings between two subsystems can even result in impulse signals,

even if the subsystems do not have impulsive modes themselves. This happens when the

variable vector x(kr), where kr is a switching instant, does not satisfy the algebraic equation

required in the subsequent subsystem. In order to exclude this possibility, Ref. [19] proposed

an additional condition involving consistency projectors. Here, as in most of the literature,

we assume for simplicity that there is no impulse occurring with the variable (state) vector at

every switching instant, and call such kind of switching impulse-free.

Definition 3: Given a switching sequence, the switched system (3.1) with w = 0 is said to

be stable if starting from any initial value the system’s trajectories converge to the origin

exponentially, and the switched system is said to have L2 gain less than γ if the condition

(2.6) is satisfied for any integer k > 0.

In the end of this section, we state two analysis problems, which will be dealt with in Section

4 and 5, respectively.

Stability Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable.

Establish the condition under which the switched system is stable under impulse-free

arbitrary switching.

L2 Gain Analysis Problem: Assume that all the descriptor subsystems in (3.1) are stable and

have L2 gain less than γ. Establish the condition under which the switched system is also

stable and has L2 gain less than γ under impulse-free arbitrary switching.
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Remark 1: There is a tacit assumption in the switched system (3.1) that the descriptor matrix

E is the same in all the subsystems. Theoretically, this assumption is restrictive at present.

However, as also discussed in [17, 18], the above problem settings and the results later can

be applied to switching control problems for linear descriptor systems. This is the main

motivation that we consider the same descriptor matrix E in the switched system. For

example, if for a single descriptor system Ex(k+ 1) = Ax(k) + Bu(k) where u(k) is the control

input, we have designed two stabilizing descriptor variable feedbacks u = K1x, u = K2x, and

furthermore the switched system composed of the descriptor subsystems characterized by

(E, A + BK1) and (E, A + BK2) are stable (and have L2 gain less than γ) under impulse-free

arbitrary switching, then we can switch arbitrarily between the two controllers and thus can

consider higher control specifications. This kind of requirement is very important when we

want more flexibility for multiple control specifications in real applications.

4. Stability analysis

In this section, we first state and prove the common quadratic Lyapunov function (CQLF)

based stability condition for the switched descriptor system (3.1) (with w = 0), and then

discuss the relation with the existing commutation condition.

4.1 CQLF based stability condition

Theorem 1: The switched system (3.1) (with w = 0) is stable under impulse-free arbitrary

switching if there are nonsingular symmetric matrices Pi ∈ Rn×n satisfying for ∀i ∈ I that

ETPiE ≥ 0 (4.1)

AT
i Pi Ai − ETPiE < 0 (4.2)

and furthermore

ETPiE = ETPjE , ∀i, j ∈ I , i �= j. (4.3)

Proof: The necessary condition for stability under arbitrary switching is that each subsystem

should be stable. This is guaranteed by the two matrix inequalities (4.1) and (4.2) [20].

Since the rank of E is r, we first find nonsingular matrices M and N such that

MEN =

[

Ir 0

0 0

]

. (4.4)

Then, we obtain from (4.1) that

(NT ET MT)(M−TPiM
−1)(MEN) =

[

Pi
11 0

0 0

]

≥ 0 , (4.5)

where

M−TPiM
−1 △

=

[

Pi
11 Pi

12

(Pi
12)

T Pi
22

]

. (4.6)

Since Pi (and thus M−TPiM
−1) is symmetric and nonsingular, we obtain Pi

11 > 0.
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Again, we obtain from (4.3) that

(NTET MT)(M−TPi M
−1)(MEN) = (NTET MT)(M−TPjM

−1)(MEN) , (4.7)

and thus
[

Pi
11 0

0 0

]

=

[

P
j
11 0

0 0

]

(4.8)

which leads to Pi
11 = P

j
11, ∀i, j ∈ I . From now on, we let Pi

11 = P11 for notation simplicity.

Next, let

MAiN =

[

Āi
11 Āi

12

Āi
21 Āi

22

]

(4.9)

and substitute it into the equivalent inequality of (4.2) as

(NT AT
i MT)(M−TPi M

−1)(MAiN)− (NT ET MT)(M−TPiM
−1)(MEN) < 0 (4.10)

to reach
[

Λ11 Λ12

ΛT
12 Λ22

]

< 0 , (4.11)

where

Λ11 = (Āi
11)

TP11 Āi
11 − P11 + (Āi

21)
T(Pi

12)
T Āi

11 + (Āi
11)

TPi
12 Āi

21 + (Āi
21)

TPi
22 Āi

21

Λ12 = (Āi
11)

TP11 Āi
12 + (Āi

11)
TPi

12 Āi
22 + (Āi

21)
T(Pi

12)
T Āi

12 + (Āi
21)

TPi
22 Āi

22

Λ22 = (Āi
12)

TP11 Āi
12 + (Āi

22)
T(Pi

12)
T Āi

12 + (Āi
12)

TPi
12 Āi

22 + (Āi
22)

TPi
22 Āi

22 .

(4.12)

At this point, we declare Āi
22 is nonsingular from Λ22 < 0. Otherwise, there is a nonzero

vector v such that Āi
22v = 0. Then, vTΛ22v < 0. However, by simple calculation,

vTΛ22v = vT(Āi
12)

T P11Āi
12v ≥ 0 (4.13)

since P11 is positive definite. This results in a contradiction.

Multiplying the left side of (4.11) by the nonsingular matrix

[

I −(Āi
21)

T(Āi
22)

−T

0 I

]

and the

right side by its transpose, we obtain

[

(Ãi
11)

TP11 Ãi
11 − P11 ∗

(∗)T Λ22

]

< 0 , (4.14)

where Ãi
11 = Āi

11 − Āi
12(Āi

22)
−1 Āi

21.

With the same nonsingular transformation x̄(k) = N−1x(k) = [x̄T
1 (k) x̄T

2 (k)]
T, x̄1(k) ∈ Rr, all

the descriptor subsystems in (3.1) take the form of

x̄1(k + 1) = Āi
11x̄1(k) + Āi

12 x̄2(k)

0 = Āi
21x̄1(k) + Āi

22 x̄2(k) ,
(4.15)
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which is equivalent to

x̄1(k + 1) = Ãi
11 x̄1(k) (4.16)

with x̄2(k) = −(Āi
22)

−1 Āi
21 x̄1(k). It is seen from (4.14) that

(Ãi
11)

TP11 Ãi
11 − P11 < 0 , (4.17)

which means that all Ãi
11’s are Schur stable, and a common positive definite matrix P11 exists

for stability of all the subsystems in (4.16). Therefore, x̄1(k) converges to zero exponentially

under impulse-free arbitrary switching. The x̄2(k) part is dominated by x̄1(k) and thus also

converges to zero exponentially. This completes the proof.

Remark 2: When E = I and all the subsystems are Schur stable, the condition of Theorem

1 actually requires a common positive definite matrix P satisfying AT
i PAi − P < 0 for ∀i ∈

I , which is exactly the existing stability condition for switched linear systems composed of

x(k + 1) = Aix(k) under arbitrary switching [12]. Thus, Theorem 1 is an extension of the

existing result for switched linear state space subsystems in discrete-time domain.

Remark 3: It can be seen from the proof of Theorem 1 that x̄T
1 P11x̄1 is a common quadratic

Lyapunov function for all the subsystems (4.16). Since the exponential convergence of x̄1

results in that of x̄2, we can regard x̄T
1 P11 x̄1 as a common quadratic Lyapunov function for the

whole switched system. In fact, this is rationalized by the following equation.

xT ETPiEx = (N−1x)T(MEN)T(M−TPi M
−1)(MEN)(N−1x)

=

[

x̄1

x̄2

]T [

Ir 0

0 0

] [

P11 Pi
12

(Pi
12)

T Pi
22

] [

Ir 0

0 0

] [

x̄1

x̄2

]

= x̄T
1 P11x̄1 (4.18)

Therefore, although ETPiE is not positive definite and neither is V(x) = xT ETPiEx, we can

regard this V(x) as a common quadratic Lyapunov function for all the descriptor subsystems

in discrete-time domain.

Remark 4: The LMI conditions (4.1)-(4.3) include a nonstrict matrix inequality, which may not

be easy to solve using the existing LMI Control Toolbox in Matlab. As a matter of fact, the

proof of Theorem 1 suggested an alternative method for solving it in the framework of strict

LMIs: (a) decompose E as in (4.4) using nonsingular matrices M and N; (b) compute MAiN

for ∀i ∈ I as in (4.9); (c) solve the strict LMIs (4.11) for ∀i ∈ I simultaneously with respect to

P11 > 0, Pi
12 and Pi

22; (d) compute the original Pi with Pi = MT

[

P11 Pi
12

(Pi
12)

T Pi
22

]

M.

Although we assumed in the above that the descriptor matrix is the same for all the

subsystems (as mentioned in Remark 1), it can be seen from the proof of Theorem 1 that what

we really need is the equation (4.4). Therefore, Theorem 1 can be extended to the case where

the subsystem descriptor matrices are different as in the following corollary.

Corollary 1: Consider the switched system composed of N linear descriptor subsystems

Eix(k + 1) = Aix(k) , (4.19)
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where Ei is the descriptor matrix of the ith subsystem and all the other notations are the same

as before. Assume that all the descriptor matrices have the same rank r and there are common

nonsingular matrices M and N such that

MEi N =

[

Ir 0

0 0

]

, ∀i ∈ I . (4.20)

Then, the switched system (4.19) is stable under impulse-free arbitrary switching if there are

symmetric nonsingular matrices Pi ∈ Rn×n (i = 1, · · · ,N ) satisfying for ∀i ∈ I

ET
i PiEi ≥ 0 , AT

i Pi Ai − ET
i PiEi < 0 (4.21)

and furthermore

ET
i PiEi = ET

j PjEj , ∀i, j ∈ I , i �= j . (4.22)

4.2 Relation with existing commutation condition

In this subsection, we consider the relation of Theorem 1 with the existing commutation

condition proposed in [17].

Lemma 2:([17]) If all the descriptor subsystems are stable, and furthermore the matrices E,

A1, · · · , AN are commutative pairwise, then the switched system is stable under impulse-free

arbitrary switching.

The above lemma establishes another sufficient condition for stability of switched linear

descriptor systems in the name of pairwise commutation. It is well known [12] that in the

case of switched linear systems composed of the state space subsystems

x(k + 1) = Aix(k) , i ∈ I , (4.23)

where all subsystems are Schur stable and the subsystem matrices commute pairwise (Ai Aj =
Aj Ai, ∀i, j ∈ I), there exists a common positive definite matrix P satisfying

AT
i PAi − P < 0 . (4.24)

One then tends to expect that if the commutation condition of Lemma 2 holds, then a common

quadratic Lyapunov function V(x) = xT ETPiEx should exist satisfying the condition of

Theorem 1. This is exactly established in the following theorem.

Theorem 2: If all the descriptor subsystems in (3.1) are stable, and furthermore the matrices

E, A1, · · · , AN are commutative pairwise, then there are nonsingular symmetric matrices Pi’s

(i = 1, · · · ,N ) satisfying (4.1)-(4.3), and thus the switched system is stable under impulse-free

arbitrary switching.

Proof: For notation simplicity, we only prove the case of N = 2. Since (E, A1) is stable,

according to Lemma 1, there exist two nonsingular matrices M, N such that

MEN =

[

Ir 0

0 0

]

, MA1N =

[

Λ1 0

0 In−r

]

(4.25)
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where Λ1 is a Schur stable matrix. Here, without causing confusion, we use the same notations

M, N as before. Defining

N−1M−1 =

[

W1 W2

W3 W4

]

(4.26)

and substituting it into the commutation condition EA1 = A1E with

(MEN)(N−1M−1)(MA1N) = (MA1N)(N−1M−1)(MEN) , (4.27)

we obtain
[

W1Λ1 W2

0 0

]

=

[

Λ1W1 0

W3 0

]

. (4.28)

Thus, W1Λ1 = Λ1W1, W2 = 0, W3 = 0.

Now, we use the same nonsingular matrices M, N for the transformation of A2 and write

MA2N =

[

Λ2 X1

X2 X

]

. (4.29)

According to another commutation condition EA2 = A2E,

[

W1Λ2 W1X1

0 0

]

=

[

Λ2W1 0

X2W1 0

]

(4.30)

holds, and thus W1Λ2 = Λ2W1, W1X1 = 0, X2W1 = 0. Since NM is nonsingular and W2 =
0, W3 = 0, W1 has to be nonsingular. We obtain then X1 = 0, X2 = 0. Furthermore, since

(E, A2) is stable, Λ2 is Schur stable and X has to be nonsingular.

The third commutation condition A1 A2 = A2 A1 results in

[

Λ1W1Λ2 0

0 W4X

]

=

[

Λ2W1Λ1 0

0 XW4

]

. (4.31)

We have Λ1W1Λ2 = Λ2W1Λ1. Combining with W1Λ1 = Λ1W1, W1Λ2 = Λ2W1, we obtain

that

W1Λ1Λ2 = Λ1W1Λ2 = Λ2W1Λ1 = W1Λ2Λ1 (4.32)

which implies Λ1 and Λ2 are commutative (Λ1Λ2 = Λ2Λ1) since W1 is nonsingular.

To summarize the above discussion, we get to

MA2N =

[

Λ2 0

0 X

]

, (4.33)

where Λ2 is Schur stable, X is nonsingular, and Λ1Λ2 = Λ2Λ1. According to the existing result

[12], there is a common positive definite matrix P11 satisfying ΛT
i P11Λi − P11 < 0, i = 1, 2.

Then, with the definition

P1 = P2 = MT

[

P11 0

0 −I

]

M , (4.34)

345Stability and L2 Gain Analysis of Switched Linear Discrete-Time Descriptor Systems

www.intechopen.com



it is easy to confirm that

(MEN)T(M−TPi M
−1)(MEN) =

[

P11 0

0 0

]

≥ 0 (4.35)

and
(MA1N)T(M−TP1M−1)(MA1N)− (MEN)T(M−TP1M−1)(MEN)

=

[

ΛT
1 P11Λ1 − P11 0

0 −I

]

< 0 ,

(MA2N)T(M−TP2M−1)(MA2N)− (MEN)T(M−TP2M−1)(MEN)

=

[

ΛT
2 P11Λ2 − P11 0

0 −XTX

]

< 0 .

(4.36)

Since P11 is common for i = 1, 2 and N is nonsingular, (4.35) and (4.36) imply that the matrices

in (4.34) satisfy the conditions (4.1)-(4.3).

It is observed from (4.34) that when the conditions of Theorem 2 hold, we can further choose

P1 = P2, which certainly satisfies (4.3). Since the actual Lyapunov function for the stable

descriptor system Ex[k + 1] = Aix[k] takes the form of V(x) = xTETPiEx (as mentioned

in Remark 3), the commutation condition is more conservative than the LMI condition in

Theorem 1. However, we state for integrity the above observation as a corollary of Theorem

2.

Corollary 2: If all the descriptor subsystems in (3.1) are stable, and furthermore the matrices

E, A1, · · · , AN are commutative pairwise, then there is a nonsingular symmetric matrix P

satisfying

ETPE ≥ 0 (4.37)

AT
i PAi − ETPE < 0 , (4.38)

and thus the switched system is stable under impulse-free arbitrary switching.

5.L2 gain analysis

In this section, we extend the discussion of stability to L2 gain analysis fro the switched linear

descriptor system under consideration.

Theorem 3: The switched system (3.1) is stable and the L2 gain is less than γ under impulse-free

arbitrary switching if there are nonsingular symmetric matrices Pi ∈ Rn×n satisfying for ∀i ∈
I that

ETPiE ≥ 0 (5.1)
[

AT
i Pi Ai − ETPiE + CT

i Ci AT
i PiBi

BT
i Pi Ai BT

i PiBi − γ2 I

]

< 0 (5.2)

together with (4.3).
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Proof: Since (5.1) is the same as (4.1) and (5.2) includes (4.2), we conclude from Theorem 1 that

the switched descriptor system is exponentially stable under impulse-free arbitrary switching.

What remains is to prove the L2 gain property.

Consider the Lyapunov function candidate V(x) = xT ETPiEx, which is always nonnegative

due to (5.1) and always continuous due to (4.3). Then, on any discrete-time interval where the

i-th subsystem is activated, the difference of V(x) along the system’s trajectories satisfies

V(x(k + 1))− V(x(k)) = xT(k + 1)ETPiEx(k + 1)− xT(k)ETPiEx(k)

= (Ex(k + 1))T Pi(Ex(k + 1))− xT(k)ETPT
i Ex(k)

= (Aix(k) + Biw(k))T Pi(Aix(k) + Biw(k))− xT(k)ETPT
i Ex(k)

=

[

x(k)

w(k)

]T [

AT
i Pi Ai − ETPiE AT

i PiBi

BT
i Pi Ai BT

i PiBi

] [

x(k)

w(k)

]

≤

[

x(k)

w(k)

]T [

−CT
i Ci 0

0 γ2 I

] [

x(k)

w(k)

]

= −zT(k)z(k) + γ2wT(k)w(k) , (5.3)

where the condition (5.2) was used in the inequality.

Now, for an impulse-free arbitrary piecewise constant switching signal and any given k > 0,

suppose k1 < k2 < · · · < kr (r ≥ 1) be the switching points of the switching signal on the

discrete-time interval [0, k). Then, according to (5.3), we obtain

V(x(k + 1))− V(x(k+r )) ≤
k

∑
j=kr

{

−zT(j)z(j) + γ2wT(j)w(j)
}

V(x(k−r ))− V(x(k+r−1)) ≤
kr−1

∑
j=kr−1

{

−zT(j)z(j) + γ2wT(j)w(j)
}

· · ·· · ·· · ·

V(x(k−2 ))− V(x(k+1 )) ≤
k2−1

∑
j=k1

{

−zT(j)z(j) + γ2wT(j)w(j)
}

V(x(k−1 ))− V(x(0)) ≤
k1−1

∑
j=0

{

−zT(j)z(j) + γ2wT(j)w(j)
}

,

(5.4)

where

V(x(k+j )) = lim
k→k j+0

V(x(k)) , V(x(k−j )) = lim
k→k j−0

V(x(k)) . (5.5)

However, due to the condition (4.3), we obtain V(x(k+j )) = V(x(k−j )) at all switching instants.

Therefore, summing up all the inequalities of (5.4) results in

V(x(k + 1))− V(x(0)) ≤
k

∑
j=0

{

−zT(j)z(j) + γ2wT(j)w(j)
}

. (5.6)
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Since V(x(k + 1)) ≥ 0, we obtain that

k

∑
j=0

zT(j)z(j) ≤ V(x(0)) + γ2
k

∑
j=0

wT(j)w(j) , (5.7)

which implies the L2 gain of the switched system is less than γ.

Remark 5: When E = I, the conditions (5.1)-(5.2) and (4.3) require a common positive definite

matrix P satisfying

[

AT
i Pi Ai − Pi + CT

i Ci AT
i PiBi

BT
i Pi Ai BT

i PiBi − γ2 I

]

< 0 (5.8)

for all ∀i ∈ I , which is the same as in [15]. Thus, Theorem 3 extended the L2 gain analysis

result from switched time space systems to switched descriptor systems in discrete-time

domain. In addition, it can be seen from the proof that V(x) = xT ETPiEx plays the important

role of a common quadratic Lyapunov function for stability and L2 gain γ of all the descriptor

subsystems.

6. Concluding remarks

We have established a unified approach to stabilility and L2 gain analysis for switched linear

discrete-time descriptor systems under impulse-free arbitrary switching. More precisely,

we have shown that if there is a common quadratic Lyapunov function for stability of

all subsystems, then the switched system is stable under impulse-free arbitrary switching.

Furthermore, we have extended the results to L2 gain analysis of the switched descriptor

systems, also in the name of common quadratic Lyapunov function approach. As also

mentioned in the remarks, the common quadratic Lyapunov functions proposed are not

positive definite with respect to all states, but they actually play the role of a Lyapunov

function as in classical Lyapunov stability theory. The approach in this article is unified in

the sense that it is valid for both continuous-time [21] and discrete-time systems, and it takes

almost the same form in both stability and L2 gain analysis.
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