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1. Introduction

State estimation plays an important role in any application dealing with modeling of dynamic
systems. In fact, many fields of knowledge use a mathematical representation of a behavior
of interest, such as, but not limited to, engineering (mechanical, electrical, aerospace, civil and
chemical), physics, economics, mathematics and biology Simon (2006).
A typical system dynamics can be represented as a transfer function or using the space-state
approach. The state-space approach is based on the time-evolution of the "states" of the
system, which are considered all the necessary information to represent its dynamic at the
desired point of operation. That is why the knowledge about the states of a model is so
important. However, in real applications there can be two reasons where the states of a system
can not be measured: a) measuring a state implies in the need of a sensor. In order to measure
all the states of a system it will be required a large amount of sensors, making the project
more expensive and sometimes unfeasible. Usually the whole cost includes not only the price
of the sensors, but also modifies the project itself to fix all of them (engineering hours, more
material to buy, a heavier product). b) Some states are impossible to be physically measured
because they are a mathematically useful representation of the system, such as, the attitude
parameterization of an aircraft altitude.
Suppose we have access to all the states of a system. What can we do with them? As the states
contain all the information necessary about the system, one can use them to:
a) Implement a state-feedback controller Simon (2006). Almost in the same time the state
estimation theory was being developed, the optimal control was growing in popularity
mainly because its theory can guarantees closed loop stability margins. However, the
Linear-Quadratic-Gaussian (LQG) control problem (the most fundamental optimal control
problem) requires the knowledge of the states of the model, which motivated the development
of the state estimation for those states that could not be measured in the plant to be controlled.
b) Process monitoring. In this case, the knowledge of the state allows the monitoring of the
system. This is very useful for navigation systems where it is necessary to know the position
and the velocity of a vehicle, for instance, an aircraft or a submarine. In a radar system, this
is its very purpose: keep tracking the position and velocity of all targets of interest in a given
area. For an autonomous robot is very important to know its current position in relation to an
inertial reference in order to keep it moving to its destiny. For a doctor is important to monitor
the concentration of a given medicine in his patient.
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2 Discrete Time Systems

c) Process optimization. Once it is possible to monitor the system, the natural consequence
is to make it work better. An actual application is the next generation of smart planes.
Based on the current position and velocity of a set of aircraft, it is possible to a computer
to better schedule arrivals, departures and routes in order to minimize the flight time, which
also considers the waiting time for a slot in an airport to land the aircraft. Reducing the
flight time means less fuel consumed, reducing the operation costs for the company and the
environmental cost for the planet. Another application is based on the knowledge of the
position and velocities of cell phones in a network, allowing an improved handover process
(the process of transferring an ongoing call or data session from one channel connected to
the core network to another), implying in a better connection for the user and smart network
resource utilization.
d) Fault detection and prognostics. This is another immediate consequence of process
monitoring. For example, suppose we are monitoring the current of an electrical actuator.
In the case this current drops below a certain threshold we can conclude that the actuator
is not working properly anymore. We have just detected a failure and a warning message
can be sent automatically. In military application, this is essentially important when a system
can be damaged by exterior reasons. Based on the knowledge of a failure occurrence, it is
possible to switch the controller in order to try to overcome the failures. For instance, some
aircraft prototypes were still able to fly and land after losing 60% of its wing. Thinking about
the actuator system, but in a prognostics approach, we can monitor its current and note that
it is dropping along the time. Usually, this is not an abrupt process: it takes so time to the
current drop below its acceptable threshold. Based on the decreasing rate of the current, one
is able to estimate when the actuator will stop working, and then replace it before it fails.
This information is very important when we think about the safety of a system, preventing
accidents in cars, aircrafts and other critical systems.
e) Reduce noise effect. Even in cases where the states are measured directly, state estimation
schemes can be useful to reduce noise effect Anderson & Moore (1979). For example,
a telecommunication engineer wants to know the frequency and the amplitude of a sine
wave received at his antenna. The environment and the hardware used may introduce
some perturbations that disturb the sin wave, making the required measures imprecise. A
state-state model of a sine wave and the estimation of its state can improve precision of the
amplitude and frequency estimations.
When the states are not directly available, the above applications can still be performed
by using estimates of the states. The most famous algorithm for state estimation is the
Kalman filter Kalman (1960). It was initially developed in the 1960s and achieved a wide
success to aerospace applications. Due its generic formulation, the same estimation theory
could be applied to other practical fields, such as meteorology and economics, achieving
the same success as in the aerospace industry. At our present time, the Kalman filter is the
most popular algorithm to estimate the states of a system. Although its great success, there
are some situations where the Kalman filter does not achieve good performance Ghaoui &
Clafiore (2001). The advances of technology lead to smaller and more sensible components.
The degradation of these component became more often and remarkable. Also, the number
and complexity of these components kept growing in the systems, making more and more
difficult to model them all. Even if possible, it became unfeasible to simulate the system with
these amounts of details. For these reasons (lack of dynamics modeling and more remarkable
parameters changes), it became hard to provide the accurate models assumed by the Kalman.
Also, in a lot of applications, it is not easy to obtain the required statistic information about
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Kalman Filtering for Discrete Time Uncertain Systems 3

noises and perturbations affecting the system. A new theory capable to deal with plant
uncertainties was required, leading robust extensions of the Kalman filter. This new theory is
referred as robust estimationGhaoui & Clafiore (2001).
This chapter presents a robust prediction algorithm used to perform the state estimation of
discrete time systems. The first part of the chapter describes how to model an uncertain
system. In the following, the chapter presents the new robust technique used when dealing
with linear inaccurate models. A numerical example is given to illustrate the advantages of
using a robust estimator when dealing with an uncertain system.

2. State Estimation

The Estimation Theory was developed to solve the following problem: given the values of
a observed signal though time, 1 also known as measured signal, we require to estimate
(smooth, correct or predict) the values of another signal that cannot be accessed directly or
it is corrupted by noise or external perturbation.
The first step is to establish a relationship (or a model) between the measured and the
estimated signal. Then we shall to define the criteria we will use to evaluate the model. In this
sense, it is important to choose a criteria that is compatible with the model. The estimation is
shown briefly at Figure 1.

Fig. 1. Block diagram representing the estimation problem.

At Figure 1, we wish to estimate signal x. The signal y are the measured values from the plant.
The signal w indicate an unknown input signal and it is usually represented by an stochastic
behavior with known statistical properties. The estimation problem is about designing an
algorithm that is able to provide x̂, using the measures y, that are close of x for several
realizations of y. This same problem can also be classically formulated as a minimization
of the estimation error variance. At the figure, the error is represented by e and can be defined
as x̂ minus x. When we are dealing with a robust approach, our concern is to minimize an
upper for the error variance as will be explained later on this chapter.
The following notation will be used along this chapter: R

n represents the n-dimensional
Euclidean space, ℜn×m is the set of real n×m matrices, E {•} denotes the expectation operator,
cov {•} stands for the covariance, Z† represents the pseudo-inverse of the matrix Z, diag {•}
stands for a block-diagonal matrix.

3. Uncertain system modeling

The following discrete-time model is a representation of a linear uncertain plant:

xk+1 = A∆,kxk + w̃k, (1)

yk = C∆,kxk + ṽk, (2)

1 Signal here is used to define a data vector or a data set.
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4 Discrete Time Systems

where xk ∈ R
nx is the state vector, yk ∈ R

ny stands for the output vector and w̃k ∈ R
nx

and ṽk ∈ R
ny are the output and measurement noises respectively. The uncertainties are

characterized as:

1. Additive uncertainties at the dynamic represented as A∆,k = Ak + ∆Ak, where Ak is the
known, or expected, dynamic matrix and ∆Ak is the associated uncertainty.

2. Additive uncertainties at the output equation represented as C∆,k = Ck + ∆Ck, where Ck is
the known output matrix and ∆Ck characterizes its uncertainty.

3. Uncertainties at the mean, covariance and cross-covariance of the noises w̃k and ṽk. We
assume that the initial conditions {x0} and the noises {w̃k, ṽk} are uncorrelated with the
statistical properties

E

⎧
⎨
⎩

⎡
⎣

w̃k

ṽk

x0

⎤
⎦
⎫
⎬
⎭ =

⎡
⎣

E {w̃k}
E {ṽk}

x0

⎤
⎦ , (3)

E

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎣

w̃k − E {w̃k}
ṽk − E {ṽk}

x0 − x0

⎤
⎦

⎡
⎢⎢⎣

w̃j − E
{

w̃j

}

ṽj − E
{

ṽj

}

x0 − x0

⎤
⎥⎥⎦

T⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎣

W̃kδkj S̃kδkj 0

S̃T
k δkj Ṽkδkj 0

0 0 X0

⎤
⎥⎦ , (4)

where W̃k, Ṽk and X0 denotes the noises and initial state covariance matrices, S̃k is the cross
covariance and δkj is the Kronecker delta function.
Although the exact values of the means and of the covariances are unknown, it is assumed
that they are within a known set. The notation at (5) will be used to represent the covariances
sets.

W̃k ∈ Wk, Ṽk ∈ Vk, S̃k ∈ Sk. (5)

In the next sub section, it will be presented how to characterize a system with uncertain
covariance as a system with known covariance, but with uncertain parameters.

3.1 The noises means and covariances spaces

In this sub section, we will analyze some features of the noises uncertainties. The approach
shown above considered correlated w̃k and ṽk with unknown mean, covariance and cross
covariance, but within a known set. As will be shown later on, these properties can be
achieved when we define the following noises structures:

w̃k := B∆w,kwk + B∆v,kvk, (6)

ṽk := D∆w,kwk + D∆v,kvk. (7)

Also here we assume that the initial conditions {x0} and the noises {wk} , {vk} are
uncorrelated with the statistical properties

E

⎧
⎨
⎩

⎡
⎣

wk

vk

x0

⎤
⎦
⎫
⎬
⎭ =

⎡
⎣

wk

vk

x0

⎤
⎦ , (8)

E

⎧
⎪⎨
⎪⎩

⎡
⎣

wk − wk

vk − vk

x0 − x0

⎤
⎦
⎡
⎣

wj − wj

vj − vj

x0 − x0

⎤
⎦

T
⎫
⎪⎬
⎪⎭

=

⎡
⎣

Wkδkj Skδkj 0

ST
k δkj Vkδkj 0

0 0 X0

⎤
⎦ , (9)
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Kalman Filtering for Discrete Time Uncertain Systems 5

where Wk, Vk and X0 denotes the noises and initial state covariance matrices and Sk stands for
the cross covariance matrix of the noises.
Therefore using the properties (8) and (9) and the noises definitions (6) and (7), we can note
that the noises w̃k and ṽk have uncertain mean given by

E {w̃k} = B∆w,kwk + B∆v,kvk, (10)

E {ṽk} = D∆w,kwk + D∆v,kvk. (11)

Their covariances are also uncertain and given by

E

⎧
⎪⎨
⎪⎩

[
w̃k − E {w̃k}
ṽk − E {ṽk}

] ⎡
⎣ w̃j − E

{
w̃j

}

ṽj − E
{

ṽj

}
⎤
⎦

T
⎫
⎪⎬
⎪⎭

=

[
W̃kδkj S̃kδkj

S̃T
k δkj Ṽkδkj

]
. (12)

Using the descriptions (6) and (7) for the noises, we obtain

[
W̃kδkj S̃kδkj

S̃T
k δkj Ṽkδkj

]
=

[
B∆w,k B∆v,k

D∆w,k D∆v,k

] [
Wkδkj Skδkj

ST
k δkj Vkδkj

] [
B∆w,k B∆v,k

D∆w,k D∆v,k

]T

. (13)

The notation at (13) is able to represent noises with the desired properties of uncertain
covariance and cross covariance. However we can consider some simplifications and achieve
the same properties. There are two possible ways to simplify equation (13):

1. Set
[

B∆w,k B∆v,k

D∆w,k D∆v,k

]
=

[
B∆w,k 0

0 D∆v,k

]
. (14)

In this case, the covariance matrices can be represented as

[
W̃kδkj S̃kδkj

S̃T
k δkj Ṽkδkj

]
=

[
B∆w,kWkBT

∆w,k B∆w,kSkDT
∆v,k

D∆v,kST
k BT

∆w,k D∆v,kVkDT
∆v,k

]
δkj. (15)

2. The other approach is to consider

[
Wkδkj Skδkj

ST
k δkj Vkδkj

]
=

[
Wkδkj 0

0 Vkδkj

]
. (16)

In this case, the covariance matrices are given by
[

W̃kδkj S̃kδkj

S̃T
k δkj Ṽkδkj

]
=

[
B∆w,kWkBT

∆w,k + B∆v,kVkBT
∆v,k B∆w,kWkDT

∆w,k + B∆v,kVkDT
∆v,k

D∆w,kWkBT
∆w,k + D∆v,kVkBT

∆v,k D∆w,kWkDT
∆w,k + D∆v,kVkDT

∆v,k

]
δkj.

(17)

So far we did not make any assumption about the structure of noises uncertainties at (6)
and (7). As we did for the dynamic and the output matrices, it will be assumed additive
uncertainties for the structure of the noises such as

B∆w,k := Bw,k + ∆Bw,k, B∆v,k := Bv,k + ∆Bv,k, (18)

D∆w,k := Dw,k + ∆Dw,k, D∆v,k := Dv,k + ∆Dv,k, (19)
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6 Discrete Time Systems

where Bw,k, Bv,k, Dw,k and Dv,k denote the nominal matrices. Their uncertainties are
represented by ∆Bw,k, ∆Bv,k, ∆Dw,k and ∆Dv,k respectively. Using the structures (18)-(19) for
the uncertainties, then we are able to obtain the following representation

w̃k =
(

Bw,k + ∆Bw,k

)
wk +

(
Bv,k + ∆Bv,k

)
vk, (20)

ṽk =
(

Dw,k + ∆Dw,k

)
wk +

(
Dv,k + ∆Dv,k

)
vk. (21)

In this case, we can note that the mean of the noises depend on the uncertain parameters of
the model. The same applies to the covariance matrix.

4. Linear robust estimation

4.1 Describing the model

Consider the following class of uncertain systems presented at (1)-(2):

xk+1 = (Ak + ∆Ak) xk + w̃k, (22)

yk = (Ck + ∆Ck) xk + ṽk, (23)

where xk ∈ R
nx is the state vector, yk ∈ R

ny is the output vector and w̃k ∈ R
nx and ṽk ∈

R
ny are noise signals. It is assumed that the noise signals w̃k and ṽk are correlated and their

time-variant mean, covariance and cross-covariance are uncertain but within known bounded
sets. We assume that these known sets are described as presented previously at (20)-(21) with
the same statistical properties as (8)-(9).
Using the noise modeling (20) and (21), the system (22)-(23) can be written as

xk+1 = (Ak + ∆Ak) xk +
(

Bw,k + ∆Bw,k

)
wk +

(
Bv,k + ∆Bv,k

)
vk, (24)

yk = (Ck + ∆Ck) xk +
(

Dw,k + ∆Dw,k

)
wk +

(
Dv,k + ∆Dv,k

)
vk. (25)

The dimensions are shown at Table (1).

Matrix or vector Set

xk R
nx

yk R
ny

wk R
nw

vk R
nv

Ak R
nx×nx

Bw,k R
nx×nw

Bv,k R
nx×nv

Ck R
ny×nx

Dw,k R
ny×nw

Dv,k R
ny×nv

Table 1. Matrices and vectors dimensions.

The model (24)-(25) with direct feedthrough is equivalent to one with only one noise vector at
the state and output equations and that wk and vk could have cross-covariance Anderson &
Moore (1979). However, we have preferred to use the redundant noise representation (20)-(21)
with wk and vk uncorrelated in order to get a more accurate upper bound for the predictor
covariance error. The nominal matrices Ak, Bw,k, Bv,k, Ck, Dw,k and Dv,k are known and the
matrices ∆Ak, ∆Bw,k, ∆Bv,k, ∆Ck, ∆Dw,k and ∆Dv,k represent the associated uncertainties.
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The only assumptions we made on the uncertainties is that they are additive and are within
a known set. In order to proceed the analysis it is necessary more information about the
uncertainties. Usually the uncertainties are assumed norm bounded or within a polytope. The
second approach requires more complex analysis, although the norm bounded set is within
the set represented by a polytope.
In this chapter, it will be considered norm bounded uncertainties. For the general case, each
uncertainty of the system can be represented as

∆Ak := HA,kFA,kGA,k, (26)

∆Bw,k := HBw,kFBw,kGBw,k, (27)

∆Bv,k := HBv,kFBv,kGBv,k, (28)

∆Ck := HC,kFC,kGC,k, (29)

∆Dw,k := HDw,kFDw,kGDw,k, (30)

∆Dv,k := HDv,kFDv,kGDv,k. (31)

where HA,k, HBw,k, HBv,k, HC,k, HDw,k, HDv,k, Gx,k, Gw,k and Gv,k are known. The matrices
FA,k, FBw,k, FBv,k, FC,k, FDw,k and FDv,k are unknown, time varying and norm-bounded, i.e.,

FT
A,kFA,k ≤ I, FT

Bw,kFBw,k ≤ I, FT
Bv,kFBv,k ≤ I, FT

C,kFC,k ≤ I, FT
Dw,kFDw,k ≤ I, FT

Dv,kFDv,k ≤ I.

(32)

These uncertainties can also be represented at a matrix format as

[
∆Ak ∆Bw,k ∆Bv,k

∆Ck ∆Dw,k ∆Dv,k

]

=

[
HA,kFA,kGA,k HBw,kFBw,kGBw,k HBv,kFBv,kGBv,k

HC,kFC,kGC,k HDw,kFDw,kGDw,k HDv,kFDv,kGDv,k

]

=

[
HA,k HBw,k HBv,k 0 0 0

0 0 0 HC,k HDw,k HDv,k

]

× diag
{

FA,k, FBw,k, FBv,k, FC,k, FDw,k, FDv,k

}

⎡
⎢⎢⎢⎢⎢⎢⎣

GA,k 0 0
0 GBw,k 0
0 0 GBv,k

GC,k 0 0
0 GDw,k 0
0 0 GDv,k

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

However, there is another way to represent distinct uncertainties for each matrix by the
appropriate choice of the matrices H as follows

[
∆Ak

∆Ck

]
:=

[
HA,k

HC,k

]
Fx,kGx,k (34)

[
∆Bw,k

∆Dw,k

]
:=

[
HBw,k

HDw,k

]
Fw,kGw,k (35)

[
∆Bv,k

∆Dv,k

]
:=

[
HBv,k

HDv,k

]
Fv,kGv,k, (36)
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8 Discrete Time Systems

where the matrices Fx,k, Fw,k and Fv,k of dimensions rx,k × sx,k, rw,k × sw,k, rv,k × sv,k are
unknown and norm-bounded, ∀k ∈ [0, N], i.e.,

FT
x,kFx,k ≤ I, FT

w,kFw,k ≤ I, FT
v,kFv,k ≤ I. (37)

Rewriting the uncertainties into a matrix structure, we obtain

[
∆Ak ∆Bw,k ∆Bv,k

∆Ck ∆Dw,k ∆Dv,k

]
=

[
HA,kFx,kGx,k HBw,kFw,kGw,k HBv,kFv,kGv,k

HC,kFx,kGx,k HDw,kFw,kGw,k HDv,kFv,kGv,k

]

=

[
HA,k HBw,k HBv,k

HC,k HDw,k HDv,k

] ⎡
⎣

Fx,k 0 0
0 Fw,k 0
0 0 Fv,k

⎤
⎦
⎡
⎣

Gx,k 0 0
0 Gw,k 0
0 0 Gv,k

⎤
⎦ . (38)

Our goal is to design a finite horizon robust predictor for state estimation of the uncertain
system described by (24)-(37). We consider predictors with the following structure

x̂0|−1 = x0, (39)

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ck x̂k|k−1 − Dw,kwk − Dv,kvk

)
. (40)

The predictor is intended to ensure an upper limit in the error estimation variance. In other

words, we seek a sequence of non-negative definite matrices
{

Pk+1|k

}
that, for all allowed

uncertainties, satisfy for each k

cov
{

ek+1|k

}
≤ Pk+1|k, (41)

where ek+1|k = xk+1 − x̂k+1|k. The matrices Φk and Kk are time-varying and shall be

determined in such way that the upper bound Pk+1|k is minimized.

4.2 A robust estimation solution

At this part, we shall choose an augmented state vector. There are normally found two options
are found in the literature:

x̃k :=

[
xk

x̂k|k−1

]
, x̃k :=

[
xk − x̂k|k−1

x̂k|k−1

]
. (42)

One can note that there is a similarity transformation between both vectors. This
transformation matrix and its inverse are given by

T =

[
I I
0 I

]
, T−1 =

[
I −I
0 I

]
. (43)

Using the system definition (24)-(25) and the structure of the estimator in (40) then we define
an augmented system as

x̃k+1 =
(

Ãk + H̃x,kFx,kG̃x,k

)
x̃k +

(
B̃k + H̃w,kFw,kGw,k

)
wk + B̃kwk

+
(

D̃k + H̃v,kFv,kGv,k

)
vk + D̃kvk, (44)
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where

D̃k =

[
Bv,k

KkDv,k

]
, H̃v,k =

[
HBv,k

Kk HDv,k

]
, G̃x,k =

[
Gx,k 0

]
,

B̃k =

[
Bw,k

KkDw,k

]
, H̃w,k =

[
HBw,k

Kk HDw,k

]
, x̃k =

[
xk

x̂k|k−1

]
,

Ãk =

[
Ak 0

KkCk Φk − KkCk

]
, H̃x,k =

[
HA,k

Kk HC,k

]
,

B̃k =

[
0

Bw,k − KkDw,k

]
, D̃k =

[
0

Bv,k − KkDv,k

]
. (45)

Consider P̃k+1|k = cov {x̃k+1}. The next lemma give us an upper bound for the covariance
matrix of the augmented system (44).
Lemma 1. An upper limit for the covariance matrix of the augmented system (44) is given by
P0|−1 = diag {X0, 0} and

Pk+1|k = ÃkPk|k−1 ÃT
k + B̃kWc,k B̃T

k + D̃kVc,kD̃T
k

+ ÃkPk|k−1G̃T
x,k

(
α
−1
x,k I − G̃x,kPk|k−1G̃T

x,k

)−1
G̃x,kPk|k−1 ÃT

k

+ α
−1
x,k H̃x,k H̃T

x,k + α
−1
w,k H̃w,k H̃T

w,k + α
−1
v,k H̃v,k H̃T

v,k, (46)

where α
−1
x,k , α

−1
w,k and α

−1
v,k satisfy

α
−1
x,k I − G̃x,kPk|k−1G̃T

x,k > 0, (47)

α
−1
w,k I − Gw,kWkGT

w,k > 0, (48)

α
−1
v,k I − Gv,kVkGT

v,k > 0. (49)

Proof : Since x̃k, wk and vk are uncorrelated signals, and using (8), (9), (39) and (44), it is

straightforward that P̃0|−1 = diag {X0, 0} and

P̃k+1|k =
(

Ãk + H̃x,kFx,kG̃x,k

)
P̃k|k−1

(
Ãk + H̃x,kFx,kG̃x,k

)T

+
(

B̃k + H̃w,kFw,kGw,k

)
Wk

(
B̃k + H̃w,kFw,kGw,k

)T

+
(

D̃k + H̃v,kFv,kGv,k

)
Vk

(
D̃k + H̃v,kFv,kGv,k

)T
.

Choose scaling parameters α
−1
x,k , α

−1
w,k and α

−1
v,k satisfying (47)-(49). Using Lemma 2 of Wang

et al. (1999) and Lemma 3.2 of Theodor & Shaked (1996), we have that the sequence
{

Pk+1|k

}

given by (46) is such that P̃k+1|k ≤ Pk+1|k for all instants k. QED.
Replacing the augmented matrices (45) into (46), the upper bound Pk+1|k can be partitioned as

Pk+1|k =

[
P11,k+1|k P12,k+1|k

PT
12,k+1|k

P22,k+1|k

]
, (50)
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where, using the definitions presented in Step 1 of Table 2, we obtain

P11,k+1|k = AkP11c,k AT
k + BkUc,kBT

k + ∆3,k, (51)

P12,k+1|k = AkP12c,kΦT
k + AkS1,kCT

k KT
k +

(
BkUc,kDT

k + ∆1,k

)
KT

k , (52)

P22,k+1|k = ΦkP22c,kΦT
k + KkCkS2,kΦT

k + ΦkST
2,kCT

k KT
k

+ Kk

(
CkS3,kCT

k + DkUc,kDT
k + ∆2,k

)
KT

k (53)

with

Uc,k :=

[
Wc,k 0

0 Vc,k

]
, (54)

∆1,k := α
−1
x,k HA,k HT

C,k + α
−1
w,k HBw,k HT

Dw,k + α
−1
v,k HBv,k HT

Dv,k, (55)

∆2,k := α
−1
x,k HC,k HT

C,k + α
−1
w,k HDw,k HT

Dw,k + α
−1
v,k HDv,k HT

Dv,k, (56)

∆3,k := α
−1
x,k HA,k HT

A,k + α
−1
w,k HBw,k HT

Bw,k + α
−1
v,k HBv,k HT

Bv,k, (57)

Mk := GT
x,k

(
α
−1
x,k I − Gx,kP11,k|k−1GT

x,k

)−1
Gx,k, (58)

P11c,k := P11,k|k−1 + P11,k|k−1 MkP11,k|k−1, (59)

P12c,k := P12,k|k−1 + P11,k|k−1 MkP12,k|k−1, (60)

P22c,k := P22,k|k−1 + PT
12,k|k−1 MkP12,k|k−1, (61)

S1,k := P11c,k − P12c,k, (62)

S2,k := P12c,k − P22c,k, (63)

S3,k := S1,k − ST
2,k. (64)

Since Pk+1|k ≥ P̃k+1|k ≥ 0, ∀k, it is clear that if we define

Pk+1|k =
[

I −I
]

Pk+1|k

[
I −I

]T
, (65)

then we have that Pk+1|k is an upper bound of the error variance on the state estimation.

Using the definitions (50) and (65), the initial condition for Pk+1|k is P0|−1 = X0 and Pk+1|k
can be written as

Pk+1|k = (Ak − KkCk) P11,c (Ak − KkCk)
T − (Ak − KkCk) P12,c (Φk − KkCk)

T

− (Φk − KkCk) PT
12,c (Ak − KkCk)

T + (Φk − KkCk) P22,c1 (Φk − KkCk)
T

+
(

Bw,k − KkDw,k

)
Wc,k

(
Bw,k − KkDw,k

)T

+
(

Bv,k − KkDv,k

)
Vc,k

(
Bv,k − KkDv,k

)T

+ α
−1
x,k

(
HA,k − Kk HC,k

) (
HA,k −k HC,k

)T

+ α
−1
w,k

(
HBw,k − Kk HDw,k

) (
HBw,k − Kk HDw,k

)T

+ α
−1
v,k

(
HBv,k − Kk HDv,k

) (
HBv,k − Kk HDv,k

)T
. (66)
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Note that Pk+1|k given by (66) satisfies (41) for any Φk and Kk. In this sense, we can choose

them to minimize the covariance of the estimation error given by Pk+1|k. We calculate the first
order partial derivatives of (66) with respect to Φk and Kk and making them equal to zero, i.e.,

∂

∂Φk
Pk+1|k = 0 (67)

∂

∂Kk
Pk+1|k = 0. (68)

Then the optimal values Φk = Φ∗
k and Kk = K∗

k are given by

K∗
k =

(
AkSkCT

k + Ψ1,k

) (
CkSkCT

k + Ψ2,k

)†
, (69)

Φ∗
k = Ak + (Ak − K∗

k Ck)
(

P12c,kP†
22c,k − I

)
, (70)

where

Sk := P11c,k − P12c,kP†
22c,kPT

12c,k, (71)

Ψ1,k := Bw,kWc,kDT
w,k + Bv,kVc,kDT

v,k + ∆1,k, (72)

Ψ2,k := Dw,kWc,kDT
w,k + Dv,kVc,kDT

v,k + ∆2,k. (73)

Actually Φ∗
k and K∗

k provide the global minimum of Pk+1|k. This can be proved though the

convexity of Pk+1|k at (66). We first have that P̃k+1|k > 0, Wk > 0 and Vk > 0, ∀k. Then we
calculate the Hessian matrix to conclude that we have the global minimum:

He
(

Pk+1|k

)
:=

⎡
⎣

∂2

∂2Φk
Pk+1|k

∂2

∂2[Φk ,Kk ]
Pk+1|k

∂2

∂2[Kk ,Φk ]
Pk+1|k

∂2

∂2Kk
Pk+1|k

⎤
⎦ =

[
2P22,k|k−1 2CkS2,k

2ST
2,kCT

k CkSkCT
k + Ψ3,k

]
> 0.

At the previous equations we used the pseudo-inverse instead of the simple matrix inverse.
Taking a look at the initial conditions P12,0|−1 = PT

12,0|−1
= P22,0|−1 = 0, one can note that

P22,0 = 0 and, as consequence, the inverse does not exist for all instant k. However, it can be
proved that the pseudo-inverse does exist.
Replacing (70) and (69) in (52) and (53), we obtain

P12,k+1|k = PT
12,k+1|k = P22,k+1|k =

= AkP12c,kP−1
22c,kPT

12c,k AT
k +

(
AkSkCT

k + Ψ1,k

) (
CkSkCT

k + Ψ2,k

)† (
AkSkCT

k + Ψ1,k

)T
. (74)

Since (74) holds for any symmetric Pk+1|k, if we start with a matrix Pn+1|n satisfying P12,n+1|n =

PT
12,n+1|n

= P22,n+1|n for some n ≥ 0, then we can conclude that (74) is valid for any k ≥ n.

The equality allows us some simplifications. The first one is

Sk = Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

(
α
−1
x,k I − Gx,kPk|k−1GT

x,k

)−1
Gx,kPk|k−1. (75)

In fact, the covariance matrix of the estimation error presents a modified notation to deal with
the uncertain system. At this point, we can conclude that αx,k shall now satisfy

α
−1
x,k I − Gx,kPk|k−1GT

x,k > 0. (76)
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Using (74), we can simplify the expressions for Φ∗
k , K∗

k and Pk+1|k. We can define Φk given in
Step 4 of Table 2 as Φk = Φ∗

k . The simplified expression for the predictor gain is given by

K∗
k =

(
AkPc,k|k−1CT

k + Ψ1,k

) (
CkPc,k|k−1CT

k + Ψ2,k

)†
,

which can be rewritten as presented in Step 4 of Table 2. The expression for the Riccati
equation can be written as

Pk+1|k = (Ak − K∗
k Ck) Pc,k|k−1 (Ak − K∗

k Ck)
T

+
(

Bw,k − K∗
k Dw,k

)
Wc,k

(
Bw,k − K∗

k Dw,k

)T

+
(

Bv,k − K∗
k Dv,k

)
Vc,k

(
Bv,k − K∗

k Dv,k

)T

+ α
−1
x,k

(
HA,k − K∗

k HC,k

) (
HA,k − K∗

k HC,k

)T

+ α
−1
w,k

(
HBw,k − K∗

k HDw,k

) (
HBw,k − K∗

k HDw,k

)T

+ α
−1
v,k

(
HBv,k − K∗

k HDv,k

) (
HBv,k − K∗

k HDv,k

)T
.

Replacing the expression for K∗
k in Pk+1|k, we obtain the Riccati equation given in Step 5 of

Table 2.
Using an alternative representation, remember the predictor structure:

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ck x̂k|k−1 − Dw,kwk − Dv,kvk

)
. (77)

Replace Φ∗
k into (77) to obtain

x̂k+1|k = Ac,k x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Cc,k x̂k|k−1 − Dw,kwk − Dv,kvk

)
, (78)

where

Ac,k := Ak + AkPk|k−1GT
x,k

(
α
−1
x,k I − Gx,kPk|k−1GT

x,k

)−1
Gx,k, (79)

Cc,k := Ck + CkPk|k−1GT
x,k

(
α
−1
x,k I − Gx,kPk|k−1GT

x,k

)−1
Gx,k. (80)

Once again, it is possible to obtain the classic estimator from the structure (79)-(80) for a system
without uncertainties.

5. Numerical example

At this section we perform a simulation to illustrate to importance to consider the
uncertainties at your predictor design.
One good way to quantify the performance of the estimator would be using its real variance
to the error estimation. However, this is difficult to obtain from the response of the
model. For this reason, we approximate the real variance of the estimation error using the
ensemble-average (see Ishihara et al. (2006) and Sayed (2001)) given by:

var
{

ei,k

}
≈

1

N

N

∑
j=1

(
e
(j)
i,k − E

{
e
(j)
i,k

})2
, (81)

E
{

e
(j)
i,k

}
≈

1

N

N

∑
j=1

e
(j)
i,k , (82)
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Step 0 (Initial conditions): x̂0|−1 = x0 and P0|−1 = X0.

Step 1: Obtain scalar parameters αx,k, αw,k and αv,k that satisfy (76),
(48) and (49), respectively. Then define

∆1,k := α
−1
x,k HA,k HT

C,k + α
−1
w,k HBw,k HT

Dw,k + α
−1
v,k HBv,k HT

Dv,k,

∆2,k := α
−1
x,k HC,k HT

C,k + α
−1
w,k HDw,k HT

Dw,k + α
−1
v,k HDv,k HT

Dv,k,

∆3,k := α
−1
x,k HA,k HT

A,k + α
−1
w,k HBw,k HT

Bw,k + α
−1
v,k HBv,k HT

Bv,k.

Step 2: Calculate the corrections due to the presence of uncertainties

Pc,k|k−1 := Pk|k−1 + Pk|k−1GT
x,k

(
α
−1
x,k I − Gx,kPk|k−1GT

x,k

)−1
Gx,kPk|k−1,

Wc,k := Wk + WkGT
w,k

(
α
−1
w,k I − Gw,kWkGT

w,k

)−1
Gw,kWk.

Vc,k := Vk + VkGT
v,k

(
α
−1
v,k I − Gv,kVkGT

v,k

)−1
Gv,kVk,

Step 3: Define the augmented matrices

Bk :=
[

Bw,k Bv,k

]
, Dk :=

[
Dw,k Dv,k

]
, Uc,k := diag

{
Wc,k, Vc,k

}
.

Step 4: Calculate the parameters of the predictor as

Kk =
(

AkPc,k|k−1CT
k + BkUc,kDT

k + ∆1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + ∆2,k

)†
,

Φk = Ak + (Ak − KkCk) Pk|k−1GT
x,k

(
α
−1
x,k I − Gx,kPk|k−1GT

x,k

)−1
Gx,k.

Step 5: Update
{

x̂k+1|k

}
and

{
Pk+1|k

}
as

x̂k+1|k = Φk x̂k|k−1 + Bw,kwk + Bv,kvk + Kk

(
yk − Ck x̂k|k−1 − Dw,kwk − Dv,kvk

)
,

Pk+1|k = AkPc,k|k−1 AT
k + BkUc,kBT

k + ∆3,k

−
(

AkPc,k|k−1CT
k + ∆1,k

) (
CkPc,k|k−1CT

k + DkUc,kDT
k + ∆2,k

)† (
AkPc,k|k−1CT

k + ∆1,k

)T

Table 2. The Enhanced Robust Predictor.

where e
(j)
i,k is the i-th component of the estimation error vector e

(j)
k of the realization j defined

as

e
(j)
k := x

(j)
k − x̂

(j)
k|k−1

. (83)

Another way to quantify the performance of the estimation is though covariance ellipses. The
use of covariance ellipses allows us to visualize the variance and the cross covariance of a
system with two states.
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Consider the benchmark model, used for instance in Fu et al. (2001) and Theodor & Shaked
(1996), where we added uncertainties in order to affect every matrix of the system,

xk+1 =

[
0 −0.5

1 + δx,k 1 + 0.3δx,k

]
xk +

[
−6

1 + 0.1δw,k

]
wk,

yk =
[
−100 + 5δx,k 10 + 1.5δx,k

]
xk + 100δv,kvk,

where δn,k varies uniformly at each step on the unit interval for n = x, w, v. We also use

wk = 0.1, vk = 0.9, Wk = 0.1 and Vk = 2 with initial conditions x0 = [2 1]T and X0 = 0.1I.
The matrices associated to the uncertainties are given by

HA,k =

[
0

10

]
, HBw,k =

[
0

10

]
, HBv,k =

[
0
0

]
,

HC,k = 50, HDw,k = 0, HDv,k = 100,

Gx,k =
[

0.1 0.03
]

, Gw,k = 0.01, Gv,k = 1. (84)

The scalar parameters are calculated at each step as

α
−1
x,k = σmax

{
Gx,kPk|k−1GT

x,k

}
+ ǫx, (85)

α
−1
w,k = σmax

{
Gw,kWkGT

w,k

}
+ ǫw, (86)

α
−1
v,k = σmax

{
Gv,kVkGT

v,k

}
+ ǫv, (87)

where σmax {•} indicates the maximum singular value of a matrix. Numerical simulations
show that, in general, smaller values of ǫx, ǫw and ǫv result in better bounds. However, this
can lead to bad inverses calculation. In this example, we have chosen ǫx = ǫw = ǫv = 0.1.
The mean value of the covariance matrices obtained over 500 experiments at k = 1500 for the
robust predictor and the classic predictor are

Probust =

[
14.4 −22.7
−22.7 76.4

]
, Pclassic =

[
3.6 −0.6
−0.6 0.1

]
.

Fig. 2 shows the time evolution of the mean value (over 500 experiments) of both states and
of their estimated values using the classic and the robust predictors.. It can be verified that
the estimates of the classic predictor keep oscillating while the robust predictor reaches an
approximate stationary value. The dynamics of the actual model also presents approximate
stationary values for both state. It means that the robust predictor were able to better estimate
the dynamics of the model.
The covariance ellipses obtained from both predictors and the actually obtained states at
k = 1500 are shown at Fig. 3. Although the size of the ellipse is smaller for the classic
Kalman predictor, some states of the actual model are outside this bound. Fig. 4 presents
the time evolution of the error variances for both states of the system. The error variances
were approximated using the ensemble-average, defined in Sayed (2001).
The proposed filter reaches their approximate stationary states after a few steps while the
Kalman filter did not. Fig. 4 also shows that the actual error variance of the proposed filter
is always below its upper bound. Although the error variance of the Kalman filter is lower
than the upper bound of the robust estimator, the actual error variance of the Kalman filter is
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above its error variance prediction, i.e., the Kalman filter does not guarantee the containment
of the true signal yk. This is a known result and it is presented in Ghaoui & Clafiore (2001).

Fig. 2. Evolution of state 2 and its robust estimates.

Fig. 3. Mean covariance ellipses after 1500 experiments.

A comparison with using the robust predictor presented here and another predictor found
in the literature is shown at ?????. The results presented therein show that the enhanced
predictor presented here provides a less conservative design, with lower upper bound and
lower experimental value of the error variance.

6. Conclusions

This chapter presented how to design robust predictor for linear systems with norm-bounded
and time-varying uncertainties in their matrices. The design is based on a guaranteed cost
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Fig. 4. Error variances for uncorrelated noise simulation.

approach using the Riccati equation. The obtained estimator is is capable of dealing with
systems that present correlated dynamical and measurement noises with unknown mean and
variance. In most of real life applications this is a common situation. It is also remarkable that
the separated structure for the noises allows the estimator to have a less conservative upper
bound for the covariance of the estimation error.
Further studies may include the use of approach of this chapter to design estimators for
infinite time horizon discrete systems. Future studies may also investigate the feasibility to
design a estimator for a more general description of systems: the descriptor systems.
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