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1. Introduction

The most apparent look of a discrete-time dynamical system is that an orbit is composed

of a collection of points in phase space, in contrast to a trajectory curve for a

continuous-time system. A basic and prominent theoretical difference between discrete-time

and continuous-time dynamical systems is that chaos occurs in one-dimensional discrete-time

dynamical systems, but not for one-dimensional deterministic continuous-time dynamical

systems; the logistic map and logistic equation are the most well-known example illustrating

this difference. On the one hand, fundamental theories for discrete-time systems have

also been developed in a parallel manner as for continuous-time dynamical systems,

such as stable manifold theorem, center manifold theorem and global attractor theory

etc. On the other hand, analytical theory on chaotic dynamics has been developed more

thoroughly for discrete-time systems (maps) than for continuous-time systems. Li-Yorke’s

period-three-implies-chaos and Sarkovskii’s ordering on periodic orbits for one-dimensional

maps are ones of the most celebrated theorems on chaotic dynamics.

Regarding chaos theory for multidimensional maps, there are renowned Smale-Birkhoff

homoclinic theorem and Moser theorem for diffeomorphisms. In addition, Marotto extended

Li-Yorke’s theorem from one-dimension to multi-dimension through introducing the notion

of snapback repeller in 1978. This theory applies to maps which are not one-to-one (not

diffeomorphism). But the existence of a repeller is a basic prerequisite for the theory. There

have been extensive applications of this theorem to various applied problems. However,

due to a technical flaw, Marotto fixed the definition of snapback repeller in 2005. While

Marotto’s theorem is valid under the new definition, its condition becomes more difficult

to examine for practical applications. Accessible and computable criteria for applying this

theorem hence remain to be developed. In Section 4, we shall introduce our recent works and

related developments in the application of Marotto’s theorem, which also provide an effective

numerical computation method for justifying the condition of this theorem.

Multidimensional systems may also exhibit simple dynamics; for example, every orbit

converges to a fixed point, as time tends to infinity. Such a scenario is referred to as

convergence of dynamics or complete stability. Typical mathematical tools for justifying such

dynamics include Lyapunov method and LaSalle invariant principle, a discrete-time version.
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However, it is not always possible to construct a Lyapunov function to apply this principle,

especially for multidimensional nonlinear systems. We shall illustrate other technique that

was recently formulated for certain systems in Section 3.

As neural network models are presented in both continuous-time and discrete-time forms,

and can exhibit both simple dynamics and complicated dynamics, we shall introduce some

representative neural network models in Section 2.

2. Neural network models

In the past few decades, neural networks have received considerable attention and were

successfully applied to many areas such as combinatorial optimization, signal processing

and pattern recognition (Arik, 2000, Chua 1998). Discrete-time neural networks have been

considered more important than their continuous-time counterparts in the implementations

(Liu, 2008). The research interests in discrete-time neural networks include chaotic behaviors

(Chen & Aihara, 1997; Chen & Shih, 2002), stability of fixed points (Forti & Tesi, 1995; Liang &

Cao, 2004; Mak et al., 2007), and their applications (Chen & Aihara, 1999; Chen & Shih, 2008).

We shall introduce some typical discrete-time neural networks in this section.

Cellular neural network (CNN) is a large aggregation of analogue circuits. It was first

proposed by Chua and Yang in 1988. The assembly consists of arrays of identical elementary

processing units called cells. The cells are only connected to their nearest neighbors. This

local connectivity makes CNNs very suitable for VLSI implementation. The equations for

two-dimension layout of CNNs are given by

C
dxij

dt
= − 1

R
xij(t) + ∑

(k,ℓ)∈Nij

[aij,kℓh(xkℓ(t)) + bij,kℓukℓ] + I, (1)

where ukℓ, xij, h(xij) are the controlling input, state and output voltage of the specified

CNN cell, respectively. CNNs are characterized by the bias I and the template set A and

B which consist of aij,kℓ and bij,kℓ, respectively. aij,kℓ represents the linear feedback, and bij,kℓ

the linear control. The standard output h is a piecewise-linear function defined by h(ξ) =
1
2 (|ξ + 1| − |ξ − 1|). C is the linear capacitor and R is the linear resistor. For completeness

of the model, boundary conditions need to be imposed for the cells on the boundary of the

assembly, cf. (Shih, 2000). The discrete-time cellular neural network (DT-CNN) counterpart

can be described by the following difference equation.

xij(t + 1) = μxij(t) + ∑
(k,ℓ)∈Nij

[ãij,kℓh(xkℓ(t)) + b̃ij,kℓukℓ] + zi, (2)

where t is an integer. System (2) can be derived from a delta operator based CNNs. If one

collects from a continuous-time signal x(t) a discrete-time sequence x[k] = x(kT), the delta

operator

δx[k] =
x[k + 1]− x[k]

T

is an approximation of the derivative of x(t). Indeed, limT→0 δx[k] = ẋ(t)|t=kT. In this case,

μ = 1 − T
τ , where T is the sampling period, and τ = RC. The parameters ãij,kℓ, b̃ij,kℓ in (2)

correspond to aij,kℓ, bij,kℓ in (1) under sampling, cf. (Hänggi et al., 1999). If (2) is considered in
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conjunction with (1), then T is required to satisfy τ ≥ T to avoid aliasing effects. Under this

situation, 0 ≤ μ ≤ 1. Thus CT-CNN is the limiting case of delta operator based CNNs with

T → 0. If the delta operator based CNNs is considered by itself, then there is no restriction

on T, and thus no restrictions on μ in (2). On the other hand, a sampled-data based CNN

has been introduced in (Harrer & Nossek, 1992). Such a network corresponds to the limiting

case of delta operator based CNNs as T → 1. For an account of unifying results on the

above-mentioned models, see (Hänggi et al., 1999) and the references therein. In addition,

Euler’s difference scheme for (1) takes the form

xij(t + 1) = (1 − ∆t

RC
)xij(t) +

∆t

C

⎛
⎝ ∑

k∈Nij

aij,kℓh(xkℓ(t)) + bij,kℓukℓ + I

⎞
⎠ . (3)

Note that CNN of any dimension can be reformulated into a one-dimensional setting, cf. (Shih

& Weng, 2002). We rewrite (2) into a one-dimensional form as

xi(t + 1) = μxi(t) +
n

∑
k=1

ωikh(xk(t)) + zi. (4)

The complete stability using LaSalle invariant principle has been studied in (Chen & Shih,

2004a). We shall review this result in Section 3.1.

Transiently chaotic neural network (TCNN) has been shown powerful in solving

combinatorial optimization problems (Peterson & Söderberg, 1993; Chen & Aihara, 1995, 1997,

1999). The system is represented by

xi(t + 1) = μxi(t) + wii(t)[yi(t)− a0i] + Σn
k �=iwikyk(t) + ai (5)

yi(t) = (1 + e
−xi(t)

ε )−1 (6)

wii(t + 1) = (1 − γ)wii(t), (7)

where i = 1, · · · , n, t ∈ N (positive integers), ε, γ are fixed numbers with ε > 0, 0 <

γ < 1. The main feature of TCNN contains chaotic dynamics temporarily generated for

global searching and self-organizing. As certain variables (corresponding to temperature

in the annealing process) decrease, the network gradually approaches a dynamical structure

which is similar to classical neural networks. The system then settles at stationary states and

provides a solution to the optimization problem. Equations (5)-(6) with constant self-feedback

connection weights, that is, wii(t) = wii = constant, has been studied in (Chen & Aihara,

1995, 1997); therein, it was shown that snapback repellers exist if |wii| are large enough. The

result hence implicates certain chaotic dynamics for the system. More complete analytical

arguments by applying Marotto’s theorem through the formulation of upper and lower

dynamics to conclude the chaotic dynamics have been performed in (Chen & Shih, 2002, 2008,

2009). As the system evolves, wii decreases, and the chaotic behavior vanishes. In (Chen &

Shih, 2004), they derived sufficient conditions under which evolutions for the system converge

to fixed points of the system. Moreover, attracting sets and uniqueness of fixed point for the

system were also addressed.

Time delays are unavoidable in a neural network because of the finite signals switching and

transmission speeds. The implementation of artificial neural networks incorporating delays
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has been an important focus in neural systems studies (Buric & Todorovic, 2003; Campbell,

2006; Roska & Chua, 1992; Wu, 2001). Time delays can cause oscillations or alter the stability

of a stationary solution of a system. For certain discrete-time neural networks with delays,

the stability of stationary solution has been intensively studied in (Chen et al., 2006; Wu et al.,

2009; Yua et al., 2010), and the convergence of dynamics has been analyzed in (Wang, 2008;

Yuan, 2009). Among these studies, a typically investigated model is the one of Hopfield-type:

ui(t + 1) = ai(t)ui(t) +
m

∑
j=1

bij(t)gj(uj(t − rij(t))) + Ji , i = 1, 2, · · · , m. (8)

Notably, system (8) represents an autonomous system if ai(t) ≡ ai, and bij(t) ≡ bij (Chen et

al., 2006), otherwise, a non-autonomous system (Yuan, 2009).

The class of Z-matrices consists of those matrices whose off-diagonal entries are less than

or equal to zero. A M-matrix is a Z-matrix satisfying that all eigenvalues have positive real

parts. For instance, one characterization of a nonsingular square matrix P to be a M-matrix is

that P has non-positive off-diagonal entries, positive diagonal entries, and non-negative row

sums. There exist several equivalent conditions for a Z-matrix P to be M-matrix, such as the

one where there exists a positive diagonal matrix D such that PD is a diagonally dominant

matrix, or all principal minors of P are positive (Plemmons, 1977). A common approach

to conclude the stability of an equilibrium for a discrete-time neural network is through

constructing Lyapunov-Krasovskii function/functional for the system. In (Chen, 2006), based

on M-matrix theory, they constructed a Lyapunov function to derive the delay-independent

and delay-dependent exponential stability results.

Synchronization is a common and elementary phenomenon in many biological and physical

systems. Although the real network architecture can be extremely complicated, rich

dynamics arising from the interaction of simple network motifs are believed to provide

similar sources of activities as in real-life systems. Coupled map networks introduced by

Kaneko (Kaneko, 1984) have become one of the standard models in synchronization studies.

Synchronization in diffusively coupled map networks without delays is well understood,

and the synchronizability of the network depends on the underlying network topology

and the dynamical behaviour of the individual units (Jost & Joy, 2001; Lu & Chen, 2004).

The synchronization in discrete-time networks with non-diffusively and delayed coupling is

investigated in a series of works of Bauer and coworkers (Bauer et al., 2009; Bauer et al., 2010).

3. Simple dynamics

Orbits of discrete-time dynamical system can jump around wildly. However, there are

situations that the dynamics are organized in a simple manner; for example, every solution

converges to a fixed point as time tends to infinity. Such a notion is referred to as

convergence of dynamics or complete stability. Moreover, the simplest situation is that all orbits

converge to a unique fixed point. We shall review some theories and results addressing

such simple dynamics. In Subsection 3.1, we introduce LaSalle invariant principle and

illustrate its application in discrete-time neural networks. In Subsection 3.2, we review the

component-competing technique and its application in concluding global consensus for a

discrete-time competing system.
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3.1 Lyapunov method and LaSalle invariant principle

Let us recall LaSalle invariant principle for difference equations. We consider the difference

equation

x(t + 1) = F(x(t)), (9)

where F : R
n −→ R

n is a continuous function. Let U be a subset of R
n. For a function

V : U −→ R, define V̇(x) = V(F(x))− V(x). V is said to be a Lyapunov function of (9) on U if

(i) V is continuous, and (ii) V̇(x) ≤ 0 for all x ∈ U. Set

S0 := {x ∈ U|V̇(x) = 0}.

LaSalle Invariant Principle (LaSalle, 1976). Let F be a continuous mapping on R
n, and let V

be a Lyapunov function for F on a set U ⊆ R
n. If orbit γ := {Fn(x)|n ∈ N} is contained in a

compact set in U, then its ω-limit set ω(γ) ⊂ S0
⋂

V−1(c) for some c = c(x).

This principle has been applied to the discrete-time cellular neural network (4) in (Chen &

Shih, 2004a), where the Lyapunov function is constructed as

V(x) = − 1

2

n

∑
i=1

n

∑
k=1

ωikh(xi)h(xk)−
n

∑
i=1

zih(xi) +
1

2
(1 − μ)

n

∑
i=1

h(xi)
2,

and h(ξ) = 1
2 (|ξ + 1| − |ξ − 1|) and x = (x1, · · · , xn) ∈ R

n. Let us quote the main results

therein.

Proposition (Chen & Shih, 2004a). Let W be a positive-definite symmetric matrix and 0 ≤ μ ≤
1. Then V is a Lyapunov function for (4) on R

n.

Consider the condition

(H)
1

1 − μ

⎡

⎣ωii − ∑
k,jk=“m”

|ωik|+ ∑
jk �=“m”, k �=i

δ(ji, jk)ωik + z(i)

⎤

⎦ > −1.

Theorem (Chen & Shih, 2004a). Let W be a positive-definite symmetric matrix. If 0 < μ < 1

and condition (H) holds, then the DT-CNN with regular parameters is completely stabile.

Next, let us outline LaSalle invariant principle for non-autonomous difference equations. In

addition to the classical result by LaSalle there is a modified version for the theorem reported

in (Chen & Shih, 2004b). The alternative conditions derived therein is considered more

applicable and has been applied to study the convergence of the TCNN.

Let N be the set of positive integers. For a given continuous function F : N × R
n −→ R

n, we

consider the non-autonomous difference equation

x(t + 1) = F(t, x(t)). (10)

A sequence of points {x(t)}∞
1 in R

n is a solution of (10) if x(t + 1) = F(t, x(t)), for all t ∈ N.

Let Ox = {x(t) | t ∈ N, x(1) = x}, be the orbit of x. We say that p is a ω-limit point of

Ox if there exists a sequence of positive integers {tk} with tk → ∞ as k → ∞, such that

p = limk→∞ x(tk). Denote by ω(x) the set of all ω-limit points of Ox.
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Let Ni represent the set of all positive integers larger than ni, for some positive integer ni. Let

G be any set in R
n and G be its closure. For a function V : N0 × G −→ R, define V̇(t, x) =

V(t + 1, F(t, x)) − V(t, x). If {x(t)} is a solution of (10), then V̇(t, x) = V(t + 1, x(t + 1)) −
V(t, x(t)). V is said to be a Lyapunov function for (10) if

(i) {V(t, ·) | t ∈ N0} is equi-continuous, and

(ii) for each p ∈ G, there exists a neighborhood U of p such that V(t, x) is bounded

below for x ∈ U ∩ G and t ∈ N1, n1 ≥ n0, and

(iii) there exists a continuous function Q0 : G → R such that V̇(t, x) ≤ −Q0(x) ≤ 0

for all x ∈ G and for all t ∈ N2, n2 ≥ n1,

or

(iii)′ there exist a continuous function Q0 : G → R and an equi-continuous family of

functions Q : N2 × G → R such that limt→∞ |Q(t, x)− Q0(x)| = 0 for all x ∈ G and

V̇(t, x) ≤ −Q(t, x) ≤ 0 for all (t, x) ∈ N2 × G, n2 ≥ n1.

Define

S0 = {x ∈ G : Q0(x) = 0}.

Theorem (Chen & Shih, 2004a). Let V : N0 × G → R be a Lyapunov function for (10) and let

Ox be an orbit of (10) lying in G for all t ∈ N0. Then limt→∞ Q(t, x(t)) = 0, and ω(x) ⊂ S0.

This theorem with conditions (i), (ii), and (iii) has been given in (LaSalle, 1976). We quote

the proof for the second case reported in (Chen & Shih, 2004b). Let p ∈ ω(x). That is,

there exists a sequence {tk}∞
1 , tk → ∞ as k → ∞ and x(tk) → p as k → ∞. Since

V(tk, x(tk)) is non-increasing and bounded below, V(tk, x(tk)) approaches a real number as

k → ∞. Moreover, V(tk+1, x(tk+1)) − V(t1, x(t1)) ≤ − ∑
tk+1−1
t=t1

Q(t, x(t)), by (iii)′. Thus,

∑
∞
t=t1

Q(t, x(t)) < ∞. Hence, Q(t, x(t)) → 0 as t → ∞, since Q(t, x(t)) ≥ 0. Notably,

Q(tk, x(tk)) → Q0(x(tk)) as k → ∞. This can be justified by observing that

|Q(tk, x(tk))− Q0(x(tk))|
≤ |Q(tk, x(tk)) + Q(tk, p)− Q(tk, p) + Q0(p)− Q0(p)− Q0(x(tk))|.

In addition, |Q0(x(t))| ≤ |Q(t, x(t))| + |Q(t, x(t)) − Q0(x(t))|. It follows from (iii)′ that

Q0(x(tk)) → 0 as k → ∞. Therefore, Q0(p) = 0, since Q0 is continuous. Thus, p ∈ S0.

If we further assume that V is bounded, then it is obvious that the proof can be much

simplified. In the investigations for the asymptotic behaviors of TCNN, condition (iii)′ is

more achievable.

We are interested in knowing whether if an orbit of the system (10) approaches an equilibrium

state or fixed point as time tends to infinity. The structure of ω-limit sets for the orbits provides

an important information toward this investigation. In discrete-time dynamical systems, the

ω-limit set of an orbit is not necessarily connected. However, the following proposition has

been proved by Hale and Raugel in 1992.

Proposition (Hale & Raugel, 1992). Let T be a continuous map on a Banach space X. Suppose

that the ω-limit set ω(x) is contained in the set of fixed points of T, and the closure of the orbit

Ox is compact. Then ω(x) is connected.

This proposition can be extended to non-autonomous systems for which there exist limiting

maps. Namely,
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(A) There exists a continuous map F : R
n → R

n such that limt→∞ ‖F(t, x)− F(x)‖ = 0, for all

x ∈ R
n.

Theorem (Chen & Shih, 2004b). Assume that (10) satisfies (A), the orbit Ox is bounded,

and ω(x), the ω-limit set of x, is contained in the set of fixed points of F. Then ω(x) is

connected. Under this circumstances, if F has only finitely many fixed points, then the orbit

Ox approaches some single fixed point of F, as t tends to infinity.

Let us represent the TCNN system (5)-(7) by the following time-dependent map

F(t, x) = (F1(t, x), · · · , Fn(t, x))

where

Fi(t, x) = αxi + (1 − γ)tωii(0)(yi − a0i) +
n

∑
j �=i

ωijyj + ai,

where yi = hi(xi), i = 1, · · · , n and hi is defined in (6). The orbits of TCNN are then given

by the iterations x(t + 1) = F(t, x(t)) with components xi(t + 1) = Fi(t, x(t)). Note that

y = H(x) = (h1(x1), · · · , hn(xn)) is a diffeomorphism on Rn. Let W0 denote the n × n matrix

obtained from the connection matrix W with its diagonal entries being replaced by zeros.

Restated, W0 = W − diag[W]. For given 0 < γ < 1, choose 0 < b < 1 such that | 1−γ
b | < 1. We

consider the following time-dependent energy-like function:

V(t, x) = − 1

2

n

∑
i=1

n

∑
j �=i

wijhi(xi)hj(xj)−
n

∑
i=1

aihi(xi)

+(1 − α)
n

∑
i=1

∫ hi(xi)

0
h−1

i (η)dη + bt. (11)

Theorem (Chen & Shih, 2004b). Assume that W0 is a cycle-symmetric matrix, and either one

of the following condition holds,

(i) 0 ≤ α ≤ 1
3 and W0 + 4(1 − α)εI is positive definite;

(ii) 1
3 ≤ α ≤ 1 and W0 + 8αεI is positive definite;

(iii) α ≥ 1 and W0 + 8εI is positive definite.

Then there exists an n0 ∈ N so that V(t, x) defined by (11) is a Lyapunov function for the

TCNN (5)-(7) on N0 × R
n.

3.2 Global consensus through a competing-component approach

Grossberg (1978) considered a class of competitive systems of the form

ẋi = ai(x)[bi(xi)− C(x1, x2, · · · , xn)], i = 1, 2, · · · , n, (12)

where ai ≥ 0, ∂C/∂xi ≥ 0, x = (x1, x2, · · · , xn) ∈ R
n. In such a system, n is the number of

competing populations, ai(x) refers to competitive balance, bi(xi) represents interpopulation

signal functions, and C(x) stands for mean competition function, or adaptation level. System

(12) was proposed as a mathematical model for the resolution to a dilemma in science

for hundred of years: How do arbitrarily many individuals, populations, or states, each

obey unique and personal laws, succeed in harmoniously interacting with each other to
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form some sort of stable society, or collective mode of behavior. Systems of the form (12)

include the generalized Volterra-Lotka systems and an inhibitory network (Hirsch, 1989). A

suitable Lyapunov function for system (12) is not known, hence the Lyapunov method and

LaSalle invariant principle are invalid. The work in (Grossberg, 1978) employed a skillful

competing-component analysis to prove that for system (12), any initial value x(0) ≥ 0 (i.e.

xi(0) ≥ 0, for any i) evolves to a limiting pattern x(∞) = (x1(∞), x2(∞), · · · , xn(∞)) with

0 ≤ xi(∞) := limt→∞ xi(t) < ∞, under some conditions on ai, bi, C.

System (12) can be approximated, via Euler’s difference scheme or delta-operator circuit

implementation (Harrer & Nossek,1992), by

xi((k + 1)δ) = xi(kδ) + δai(x(kδ))[bi(xi(kδ))− C(x(kδ))],

where one takes xi(kδ) as the k-th iteration of xi. In this subsection, let us review the

competing-component analysis for convergent dynamics reported in (Shih & Tseng, 2009).

Consider the following discrete-time model,

xi(k + 1) = xi(k) + βai(x(k))[bi(xi(k))− C(x(k))], (13)

where i = 1, 2, · · · , n, k ∈ N0 := {0}⋃
N. We first consider the theory for (13) with β = 1, i.e.

xi(k + 1) = xi(k) + ai(x(k))[bi(xi(k))− C(x(k))]. (14)

The results can then be extended to (13). First, let us introduce the following definition for the

convergent property of discrete-time systems.

Definition. A discrete-time competitive system x(k + 1) = F(x(k)) is said to achieve global

consensus (or global pattern formation, global convergence) if, given any initial value x(0) ∈ R
n,

the limit xi(∞) := limk→∞ xi(k) exists, for all i = 1, 2, · · · , n.

The following conditions are needed for the main results.

Condition (A1): Each ai(x) is continuous, and

0 < ai(x) ≤ 1, for all x ∈ R
n, i = 1, 2, · · · , n.

Condition (A2): C(x) is bounded and continuously differentiable with bounded derivatives;

namely, there exist constants M1, M2, rj such that for all x ∈ R
n,

M1 ≤ C(x) ≤ M2,

0 ≤ ∂C

∂xj
(x) ≤ rj, j = 1, 2, · · · , n.

Condition (A3): bi(ξ) is continuously differentiable, strictly decreasing and there exist di > 0,

li, ui ∈ R such that for all i = 1, 2, · · · n,

−di ≤ b′i(ξ) < 0, for all ξ ∈ R,

bi(ξ) > M2, for ξ ≤ li, and bi(ξ) < M1, for ξ ≥ ui.
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Condition (A4): For i = 1, 2, · · · , n,

0 < di ≤ 1 −
n

∑
j=1

rj < 1.

Theorem (Shih & Tseng, 2009). System (14) with ai, bi, and C satisfying conditions (A1)-(A4)

achieves global consensus.

The proof of this theorem consists of three lemmas which depict the properties for the

following terms:

gi(k) = bi(xi(k))− C(x(k)), ∆gi(k) = gi(k + 1)− gi(k),

ĝ(k) = max{gi(k) : i = 1, 2, · · · , n}, ǧ(k) = min{gi(k) : i = 1, 2, · · · , n},

I(k) = min{i : gi(k) = ĝ(k)}, J(k) = min{i : gi(k) = ǧ(k)},

x̂(k) = xI(k)(k), x̌(k) = xJ(k)(k),

b̂(k) = bI(k)(x̂(k)), b̌(k) = bJ(k)(x̌(k)),

∆b̂(k) = b̂(k + 1)− b̂(k), ∆b̌(k) = b̌(k + 1)− b̌(k),

∆bi(xi(k)) = bi(xi(k + 1))− bi(xi(k)).

Let us recall some of the key lemmas to get a flavor of this approach.

Lemma. Consider system (14) with ai, bi, and C satisfying conditions (A1)-(A4). Then

(i) for function ĝ, either case (ĝ-(i)) or case (ĝ-(ii)) holds, where

(ĝ-(i)): ĝ(k) < 0, for all k ∈ N0,

(ĝ-(ii)): ĝ(k) ≥ 0, for all k ≥ K1, for some K1 ∈ N0;

(ii) for function ǧ, either case (ǧ-(i)) or case (ǧ-(ii)) holds, where

(ǧ-(i)): ǧ(k) > 0, for all k ∈ N0,

(ǧ-(ii)): ǧ(k) ≤ 0, for all k ≥ K2, for some K2 ∈ N0.

Lemma. Consider system (14) with ai, bi, and C satisfying conditions (A1)-(A4). Then

limk→∞ b̂(k) = limk→∞ C(x(k)) = limk→∞ b̌(k).

4. Complicated dynamics

In this section, we summarize some analytic theories on chaotic dynamics for

multi-dimensional maps. There are several definitions for chaos. Let us introduce the

representative one by Devaney (1989):

Definition. Let (X, d) be a metric space. A map F : Ω ⊂ X → Ω is said to be chaotic on Ω if

(i) F is topologically transitive in Ω,

(ii) the periodic points of F in Ω are dense in Ω,

(iii) F has sensitive dependence on initial conditions in Ω.

It was shown in (Banks, et al., 1992) that condition (iii) holds under conditions (i) and (ii), if F

is continuous in Ω. Let us recall Li-Yorke’s theorem.
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Theorem (Li & Yorke, 1975). Let J be an interval and let f : J → J be continuous. Assume

there is a point a ∈ J for which the points b = f (a), c = f 2(a) and d = f 3(a), satisfy

d ≤ a < b < c ( or d ≥ a > b > c).

Then for every k = 1, 2, · · · , there is a periodic point in J having period k. Furthermore, there

is an uncountable set S ⊂ J (containing no periodic points), which satisfies:

(i) lim supn→∞ | f n(p) − f n(q)| > 0, and lim infn→∞ | f n(p) − f n(q)| = 0, for every p, q ∈ S

with p �= q; (ii) lim supn→∞ | f n(p)− f n(q)| > 0, for every p ∈ S and periodic point q ∈ J.

Indeed, if there is a periodic point of period 3, then the hypothesis of the theorem will be

satisfied. The notion of scrambled set can be generalized to metric space (X, d).

Definition. Let (X, d) be a metric space and F : X → X be a continuous map. A subset S of X

is called a scrambled set of F, if for any two different points x, y ∈ S,

lim inf
n→∞

d(Fn(x), Fn(y)) = 0, lim sup
n→∞

d(Fn(x), Fn(y)) > 0.

A map F is said to be chaotic in the sense of Li-Yorke if it has an uncountable scrambled set. It

was shown in (Huang & Ye, 2002) that for a compact matric space (X, d), if a map F is chaotic

in the sense of Devaney then F is also chaotic in the sense of Li-Yorke.

Let us consider a differentiable map

F : R
n → R

n; (15)

we denote xk = Fk(x0) for k ∈ N and x0 ∈ R
n, and by Br(x) and B∗

r (x) the closed balls in

R
n with center at x and radius r > 0 under Euclidean norm ‖ · ‖ and certain norm ‖ · ‖∗,

respectively.

Definition. Suppose z is a hyperbolic fixed point of a diffeomorphism map F : R
n → R

n, and

some eigenvalues of DF(z) are greater than one in magnitude and the others smaller than one

in magnitude. If the stable manifold and the unstable manifold of F at z intersect transversally

at some point x0, the orbit {xk}∞
k=−∞

of F is called a transversal homoclinic orbit.

For a diffeomorphism F, Smale discovered an elegant and significant result:

Theorem (Smale, 1967). If the diffeomorphism map F has a transversal homoclinic orbit, then

there exists a Cantor set Λ ⊂ R
n on which Fm is topologically conjugate to a full shift of a

symbolic dynamical system with N symbols, for some positive integer m.

Remark. The above theorem can be generalized to maps which are not diffeomorphisms

under some extended definition of transversal homoclinic orbits, see Theorem 5.2 and Section

7 in (Hale & Lin, 1986) and Theorem 5.1 in (Steinlein & Walther, 1990).

4.1 On Marotto’s theorem

Analytical theory on chaotic dynamics for multi-dimensional systems is quite limited; yet

some important progresses have been made. In 1978, Marotto introduced the notion of

snapback repeller and extended Li-Yorke’s theorem to multi-dimensional maps. This result

plays an important role in the study of chaos for higher but finite-dimensional noninvertible

maps.
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The point z ∈ Rn is called an expanding fixed point of F in Br(z), if F is differentiable in Br(z),
F(z) = z and

|λ(x)| > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ Br(z). (16)

If F is not a one-to-one function in R
n and z is an expanding fixed point of F in Br(z), then

there may exist a point x0 ∈ Br(z) with x0 �= z such that Fℓ(x0) = z for some positive integer

ℓ. The original definition of snapback repeller is as follows.

Definition (Marotto, 1978). Assume that z is an expanding fixed point of F in Br(z) for some

r > 0. Then z is said to be a snapback repeller of F if there exists a point x0 ∈ Br(z) with x0 �= z,

Fℓ(x0) = z and det(DFℓ(x0)) �= 0 for some positive integer ℓ; see Fig. 1.

z

0x

10 )( xxF

21)( xxF

12)(
ll
xxF

Fig. 1

It is straightforward to see that a snapback repeller gives rise to an orbit {xk}∞
k=−∞

of F with

xk = z, for k ≥ ℓ, and xk → z as k → −∞. Roughly speaking, the property of this orbit

is analogous to the one for homoclinic orbit. In addition, the map F is locally one-to-one at

each point xk, since x0 ∈ Br(z) and det(DFℓ(x0)) �= 0. This leads to the trivial transversality,

i.e., the unstable manifold R
n of full dimension intersects transversally the zero- dimensional

stable manifold of z. Therefore, snapback repeller may be regarded as a special case of a fixed

point with a transversal homoclinic orbit if the latter is generalized to mappings which are not

one-to-one.

Theorem (Marotto, 1978). If F possesses a snapback repeller, then F is chaotic in the following

sense: There exist (i) a positive integer N, such that F has a point of period p, for each integer

p ≥ N, (ii) a scrambled set of F, i.e., an uncountable set S containing no periodic points of F,

such that

(a) F(S) ⊂ S,

(b) lim supk→∞ ‖Fk(x)− Fk(y)‖ > 0, for all x, y ∈ S, with x �= y,

(c) lim supk→∞ ‖Fk(x)− Fk(y)‖ > 0, for all x ∈ S and periodic point y of F,

(iii) an uncountable subset S0 of S, such that lim infk→∞ ‖Fk(x)− Fk(y)‖ = 0, for every x, y ∈
S0.
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Remark. As the implication of this theorem yields the existence of uncountable scrambled set,

we may say that existence of snapback repeller implies chaos in the sense of Li-Yorke.

However, there is a technical flaw in the original derivation. Consider the following two

statements:

(A): All eigenvalues of the Jacobian DF(z) are greater than one in norm.

(B): There exist some s > 1 and r > 0 such that

‖F(x)− F(y)‖ > s‖x − y‖, for all x, y ∈ Br(z). (17)

That (A) implies (B) may not be true for the Euclidean norm in multi-dimension. In addition,

if z is a fixed point and there exists a norm ‖ · ‖∗, such that

|λ(x)| > 1, for all eigenvalues λ(x) of DF(x), for all x ∈ B∗
r (z),

then

‖F(x)− F(y)‖∗ > s · ‖x − y‖∗, for all x, y ∈ B∗
r (z), (18)

still may not be satisfied. This is due to that the norm constructed for such a property depends

on the matrix DF(x) which varies at different points x, as the mean-value inequality is applied.

Several researchers have made efforts in modifying the definition of snapback repeller to

validate the theorem. In 2005, Marotto gave a revised definition of snapback repeller. Note

that a fixed point z of F is repelling if all eigenvalues of DF(z) exceed one in norm. For a

repelling fixed point z, if there exist a norm ‖ · ‖∗ on R
n and s > 1 such that (18) holds, then

B∗
r (z) is called a repelling neighborhood of z. Note that if z is a repelling fixed point of F, then one

can find a norm ‖ · ‖∗ and r > 0 so that B∗
r (z) is a repelling neighborhood of z, see (Robinson,

1999).

Definition (Marotto, 2005). Let z be a repelling fixed point of F. Suppose that there exist a

point x0 �= z in a repelling neighborhood of z and an integer ℓ > 1, such that xℓ = z and

det(DF(xk)) �= 0 for 1 ≤ k ≤ ℓ. Then z is called a snapback repeller of F.

The point x0 in the definition is called a snapback point of F. While Marotto’s theorem holds

under the modified definition, its application becomes more inaccessible; indeed, it is a

nontrivial task to confirm that some preimage of a repelling fixed point lies in the repelling

neighborhood of this fixed point. From practical view point, condition (16) which was

adopted in his original version, is obviously easier to examine than finding the repelling

neighborhood for a fixed point. In (Liao & Shih, 2011), two directions have been proposed

to confirm that a repelling fixed point is a snapback repeller for multi-dimensional maps.

The first one is to find the repelling neighborhood U of the repeller z which is based on a

computable norm. This is the key part in applying Marotto’s theorem for practical application,

as one can then attempt to find a snapback point x0 of z in U , i.e., Fℓ(x0) = z, x0 ∈ U and

x0 �= z, for some ℓ > 1. The second direction is applying a sequential graphic-iteration

scheme to construct the preimages {z−k}∞
k=1 of z, such that F(z−k) = z−k+1, k ≥ 2, F(z−1) =

z, limk→∞ F(z−k) = z. Such an orbit {z−k}∞
k=1 is a homoclinic orbit for the repeller z, in

the generalized sense, as mentioned above. The existence of such a homoclinic orbit leads

to the existence of a snapback point in the repelling neighborhood of repeller z. Therefore,

without finding the repelling region of the fixed point, Marotto’s theorem still holds by using
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the second method. More precisely, two methodologies were derived to establish the existence

of snapback repellers:

(i) estimate the radius of repelling neighborhood for a repelling fixed point, under Euclidean

norm,

(ii) construct the homoclinic orbit for a repelling fixed point by using a sequential

graphic-iteration scheme.

In some practical applications, one can combine (i) and (ii) to achieve the application

of Marotto’s theorem. These two methodologies can then be combined with numerical

computations and the technique of interval computing which provides rigorous computation

precision, to conclude chaotic dynamics for the systems, such as the transiently chaotic neural

network (TCNN) and the predator-prey system (Liao & Shih, 2011). Let us recall the results

therein.

Repelling neighborhood:

Proposition (Liao & Shih, 2011). Consider a continuously differentiable map F : R
n → R

n

with fixed point z. Let

s1 :=
√

minimal eigenvalue of (DF(z))TDF(z) ,

ηr := max
w∈Br(z)

‖B(w, z)‖2

= max
w∈Br(z)

√
maximal eigenvalue of (B(w, z))T B(w, z),

where B(w, z) := DF(w)− DF(z). If there exists a r > 0 such that

s1 − ηr > 1, (19)

then Br(z) is a repelling neighborhood for z, under the Euclidean norm.

There is a second approach which is based on the estimate of the first and second derivatives

of F. This estimate is advantageous for quadratic maps since their second derivatives are

constants. Let σi(x) and βij(x) be defined as

σi(x) :=
√

eigenvalues of (DF(x))T DF(x),

βij(x) := eigenvalues of Hessian matrix HFi
(x) = [∂k∂l Fi(x)]k×l,

where i, j = 1, 2, · · · , n. Let αr and βr be defined as

αr := min
x∈Br(z)

min
1≤i≤n

{σi(x)} (20)

βr := max
1≤i≤n

max
x∈Br(z)

max
1≤j≤n

|βij(x)|. (21)

Proposition (Liao & Shih, 2011). Consider a C2 map F = (F1, · · · , Fn) : R
n → R

n with fixed

point z. Let αr and βr be defined in (20) and (21). If there exists r > 0, such that

αr − r
√

nβr > 1, (22)
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then Br(z) is a repelling neighborhood of z, under the Euclidean norm.

The conditions (19) and (22) are computable numerically and the value r can be found from

numerical computation. Furthermore, if there exists a snapback point x0 in Br(z), i.e., x0 ∈
Br(z), and Fℓ(x0) = z for some integer ℓ > 1, then z is a snapback repeller. Hence, the map F

is chaotic in the sense of Marotto.

Sequential graphic-iteration scheme:

We recall an approach which is developed to exploit the existence of snapback

repeller, without estimating the repelling neighborhood. In particular, it is a scheme

to construct homoclinic orbits for repelling fixed point x of F: {x−j : j ∈ N} with

F(x−1) = x, F(x−j) = x−j+1, for j ≥ 2, and limj→∞ F(x−j) = x.

Theorem (Liao & Shih, 2011). Assume that there exists a compact, connected, convex region

Ω = Πn
i=1Ωi ⊂ R

n, so that the C1 map F = (F1, F2, · · · , Fn) : R
n → R

n satisfies

| ∂Fi

∂xi
(x)| > 1 +

n

∑
j=1,j �=i

| ∂Fi

∂xj
(x)|, for all i = 1, · · · , n, x ∈ Ω,

and has a repelling fixed point x in Ω ⊂ R
n. For i = 1, · · · , n, set

f̂i,(1)(ξ) := sup{Fi(x
′
1, · · · , x′i−1, ξ, x′i+1, · · · , x′n) : x′j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

f̌i,(1)(ξ) := inf{Fi(x
′
1, · · · , x′i−1, ξ, x′i+1, · · · , x′n) : x′j ∈ Ωj, j ∈ {1, · · · , n}/{i}},

for ξ ∈ R
1. Also assume that f̂i,(1) and f̌i,(1) both have fixed points in Ωi, for all i = 1, · · · , n,

and

x−ℓ+1 ∈ R
n \ Ω, x−ℓ ∈ int(Ω)

hold, for some ℓ ≥ 2. Then there exist a sequence of nested regions {Ω(k)}∞
k=1 with Ω(k+1) ⊆

Ω(k) ⊂ Ω, and preimages x−k−1 ∈ Ω(k) of x under F, k ∈ N. If furthermore, ‖Ωi,(k)‖ → 0, as

k → ∞, for all i = 1, · · · , n, then {x−k}∞
k=1 is a homoclinic orbit for x. Moreover, if

det (DF(x−k)) �= 0, for 1 ≤ k ≤ ℓ− 1

holds, then x is a snapback repeller and F is chaotic in the sense of Marotto’s theorem.

Remark. (i) The existence of this homoclinic orbit guarantees the existence of the snapback

point without finding the repelling neighborhood. (ii) The conditions in the above theorem

are formulated for DF and the one-dimensional maps f̂i,(1)(ξ) and f̌i,(1)(ξ) (the upper and

lower maps), hence they are easy to examine in applications. For example, for TCNN map,

we can find explicit and computable conditions such that all conditions in the theorem are

satisfied.

4.2 Applications and extensions

We review some applications of snapback repeller and chaotic dynamics in (Marotto, 1979a,

1979b). Consider a two-dimensional mapping F : R
2 → R

2 of the form F(x, y) = ( f (x), x),
with f : R → R being differentiable.
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Lemma (Marotto, 1979a). (i) If f has a stable periodic point z of period p, then F(x, y) =
( f (x), x) has a stable periodic point (z, y0) of period p where y0 = f p−1(z). (ii) If f has a

snapback repeller, then F(x, y) = ( f (x), x) has a transversal homoclinic orbit.

Using these results, one can investigate the dynamics of the following difference equation:

xk+1 = f (xk, bxk−1), (23)

where b, xk ∈ R and f : R
2 → R is differentiable. We rewrite (23) into the following

two-dimensional system:

xk+1 = f (xk, byk)

yk+1 = xk.
(24)

Moreover, when b = 0, (23) is the following scalar problem

xk+1 = f (xk, 0). (25)

It was shown that the dynamics of (23) or (24) are determined by those of (25), if b is close to

0:

Theorem (Marotto, 1979a). (i) If (25) has a stable periodic point x0 of period p, then there

exists ǫ > 0 such that (24) has a stable periodic point (x(b), y(b)) of period p for all |b| < ǫ. In

this case (x(b), y(b)) is a uniquely defined, continuous function of b with x(0) = x0. (ii) If (25)

has a snapback repeller, then (24) has a transversal homoclinic orbit for all |b| < ǫ, for some

ǫ > 0.

Next, let us consider another class of two-dimensional map G : R
2 → R

2 which is determined

by two scalar equations f (x) and g(y) where f , g : R → R are differentiable and G(x, y) is

defined by G(x, y) = ( f (x), g(y)).

Lemma (Marotto, 1979a). (i) If one of the mappings f and g has a snapback repeller and the

other has an unstable fixed point, then G(x, y) = ( f (x), g(y)) has a snapback repeller. (ii) If

one of the mappings f and g has a snapback repeller and the other has a stable fixed point,

then G(x, y) = ( f (x), g(y)) has a transversal homoclinic orbit.

Now, we consider the dynamics for systems of the form:

xk+1 = f (xk, byk)

yk+1 = g(cxk, yk),
(26)

where f , g : R
2 → R are differentiable, and b, c ∈ R are close to 0. If b = c = 0, then (26) can

be simplified to the uncoupled system:

xk+1 = f (xk, 0) (27)

yk+1 = g(0, yk). (28)

Theorem (Marotto,1979a). (i) If one of the (27) and (28) has a snapback repeller and the other

has an unstable fixed point, then (26) has a snapback repeller for all |b|, |c| < ǫ, for some ǫ > 0.
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(ii) If one of the (27) and (28) has a snapback repeller and the other has a stable fixed point,

then (26) has a transversal homoclinic orbit for all |b|, |c| < ǫ, for some ǫ > 0.

Remark. By examining the simplified systems, the above results exhibit the dynamics of

system (24) or (26) under some small perturbations of certain parameters. However, these

theorems do not provide any indication about the estimate of ǫ.

Next, let us recall the Hénon map

xk+1 = yk + 1 − ax2
k

yk+1 = bxk,

which can be equivalently written as

uk+1 = bvk + 1 − au2
k =: f (uk, bvk)

vk+1 = uk,
(29)

where f (u, v) = v + 1 − au2. It was shown in (Marotto, 1979b) that uk+1 = f (uk, 0) has a

snapback repeller, when a > 1.55. Hence (29) has a transversal homolinic orbit for all a > 1.55

and |b| < ǫ, for some ǫ > 0.

In (Li, et al., 2008), they considered a one-parameter family of maps Hλ on R
n × R

m with

H0(x, y) = (F(x), G(x)) and continuous F : R
n → R

n and G : R
n → R

m or H0(x, y) =
(F(x), G(x, y)) with continuous maps F : R

n → R
n and G : R

n × R
m → R

m. They used

the covering relations method proposed by Zgliczyński in (Zgliczyński, 1996, 1997) to prove

that if n = 1 and F has a positive topological entropy, or if n > 1 and F has a snapback

repeller, then any small perturbation Hλ of H0 has a positive topological entropy. Without

using hyperbolicity, the covering relations method still provides a way to verify the existence

of periodic points, the symbolic dynamics and the positive topological entropy. Moreover,

they also applied this method to obtain a new proof for García’s result (García, 1986) that if a

map has a snapback repeller then it has a positive topological entropy. One can obtain similar

results by using this method with other structure, such as a hyperbolic horseshoe.

Since the definition of snapback repeller proposed by Marotto relies on the norm, the

following definition independent of norm was proposed.

Definition (Li, et al., 2008). Let F : R
n → R

n be a C1 function. A fixed point z for F is called a

snapback repeller if (i) all eigenvalues of the derivative DF(z) are greater than one in absolute

value and (ii) there exists a sequence {x−i}i∈N such that x−1 �= z, limi→∞ x−i = z, and for all

i ∈ N, F(x−i) = x−i+1, F(x−1) = z and det(DF(x−i)) �= 0.

Remark. Although the above definition is independent of norm on the phase space, it requires

the existence of the pre-images for the repeller. The sequential graphic-iteration scheme

outlined above provides a methodology for such a construction.

Note that item (i) implies that there exist a norm ‖ · ‖∗ on R
n, r > 0 and s > 1, such that

‖F(x) − F(y)‖∗ > s‖x − y‖∗ for all x, y ∈ B∗
r (z). Hence F is one-to-one on B∗

r (z) and

F(B∗
r (z)) ⊃ B∗

r (z). Therefore, if there exists a point x0 ∈ B∗
r (z) such that Fℓ(x0) = z and

det(DFℓ(x0)) �= 0 for some positive integer ℓ, then item (ii) of the above definition is satisfied.

In addition, in (Li & Chen, 2003), they showed that this norm can be chosen to be the Euclidean
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norm on R
n, under the condition that all eigenvalues of (DF(z))TDF(z) are greater than one.

However, this condition is more restrictive, due to that a repelling fixed point has the potential

to be a snapback repeller, without satisfying this condition.

Theorem (Li, et al., 2008). Let Hλ be a one-parameter family of continuous maps on R
n × R

m

such that Hλ(x, y) is continuous as a function of λ ∈ R
l and (x, y) ∈ R

n × R
m. Assume

that H0(x, y) = (F(x), G(x)), where F : R
n → R

n is C1 and has a snapback repeller and

G : R
n → R

m. Then Hλ has a positive topological entropy for all λ sufficiently close to 0.

Theorem (Li, et al.,2008). Let Hλ be a one-parameter family of continuous maps on R
n × R

m

such that Hλ(z) is continuous as a function of λ ∈ R
l and (x, y) ∈ R

n × R
m. Assume that

H0(x, y) = (F(x), G(x, y)), where F : R
n → R

n is C1 and has a snapback repeller, G : R
n ×

R
m → R

m, and G(Rn × S) ⊂ int(S) for some compact set S ⊂ R
m homeomorphic to the

closed unit ball in R
m. Then Hλ has a positive topological entropy for all λ sufficiently close

to 0.

Moreover, it was shown in (Li & Lyu,2009) that if F has a snapback repeller and G is a small C1

perturbation of F, then G has a snapback repeller, positive topological entropy, as the implicit

function theorem is applied. Moreover, G is chaotic in the sense of Li-Yorke. More precisely,

Theorem (Li & Lyu, 2009). Let F be a C1 map on R
n with a snapback repeller. If G is a C1

map on R
n such that ‖F − G‖+ ‖DF − DG‖⋆ is small enough, where ‖ · ‖⋆ is the operator

norm on the space of linear maps on R
n induced by the Euclidean norm ‖ · ‖, then G has a

snapback repeller, exhibits Li-Yorke chaos, and has positive topological entropy.

Corollary (Li & Lyu, 2009). Let Fμ(x) be a one-parameter family of C1 maps with x ∈ R
n

and μ ∈ R
l . Assume that Fμ(x) is C1 as a function jointly of x and μ and that Fμ0 has a

snapback repeller. Then map Fμ has a snapback repeller, exhibits Li-Yorke chaos, and has

positive topological entropy, for all μ sufficiently close to μ0.

In (Shi & Chen, 2004, 2008), they generalized the definitions of expanding fixed point,

snapback repeller, homoclinic orbit, and heteroclinic orbit for a continuously differentiable

map from R
n to general metric spaces as follows. Herein, Bd

r (x) denotes the closed balls of

radius r centered at x ∈ X under metric d, i.e.

Bd
r (z) := {x ∈ R

n : d(x, z) ≤ r}.

In the following, we introduce the coupled-expanding map.

Definition (Shi & Chen, 2008). Let F : D ⊂ X → X be a map where (X, d) is a metric space. If

there exists ℓ ≥ 2 subsets Vi , 1 ≤ i ≤ ℓ, of D with Vi ∩ Vj = ∂DVi ∩ ∂DVj for each pair of (i, j),
1 ≤ i �= j ≤ ℓ, such that

F(Vi) ⊃ ∪ℓ
j=1Vj, 1 ≤ i ≤ ℓ,

where ∂DVi is the relative boundary of Vi with respect to D, then F is said to be

coupled-expanding in Vi , 1 ≤ i ≤ ℓ. Moreover, the map F is said to be strictly coupled-expanding

in Vi , 1 ≤ i ≤ ℓ, if d(Vi, Vj) > 0, for all 1 ≤ i �= j ≤ ℓ.

Definition (Shi & Chen, 2004). Let F : X → X be a map on metric space (X, d). (i) A point

z ∈ X is called an expanding fixed point (or a repeller) of F in Bd
r0
(z) for some constant r0 > 0, if
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F(z) = z and

d(F(x), F(y)) ≥ λd(x, y), for all x, y ∈ Bd
r0
(z)

for some constant λ > 1. Moreover, z is called a regular expanding fixed point of F in Bd
r0
(z) if z

is an interior point of F(int(Bd
r0
(z))).

(ii) Let z be an expanding fixed point of F in Bd
r0
(z) for some r0 > 0. Then z is said to be a

snapback repeller of F if there exists a point x0 ∈ int(Bd
r0
(z)) with x0 �= z and Fℓ(x0) = z for

some positive integer ℓ ≥ 2. Moreover, z is said to be a nondegenerate snapback repeller of F if

there exist positive constants μ and δ0 such that int(Bd
δ0
(x0)) ⊂ int(Bd

r0
(z)) and

d(Fℓ(x), Fℓ(y)) ≥ μd(x, y), for all x, y ∈ Bd
δ0
(x0);

z is called a regular snapback repeller of F if F(int(Bd
r0
(z))) is open and there exists a positive

constant δ∗0 such that int(Bd
δ∗0
(x0)) ⊂ int(Bd

r0
(z)) and z is an interior point of Fℓ(int(Bd

δ (x0)))

for any positive constant δ ≤ δ∗0 .

(iii) Assume that z ∈ X is a regular expanding fixed point of F. Let U be the maximal open

neighborhood of z in the sense that for any x ∈ U with x �= z, there exists k0 ≥ 1 with

Fk0(x) /∈ U, F−k(x) is uniquely defined in U for all k ≥ 1, and F−k(x) → z as k → ∞. U is

called the local unstable set of F at z and is denoted by Wu
loc(z).

(iv) Let z ∈ X be a regular expanding fixed point of F. A point x ∈ X is called homoclinic to z if

x ∈ Wu
loc(z), x �= z, and there exists an integer m ≥ 1 such that Fm(x) = z. A homoclinic orbit

to z, consisting of a homoclinic point x with Fm(x) = z, its backward orbit {F−j(x)}∞
j=1, and

its finite forward orbit {F j(x)}m−1
j=1 , is called nondegenerate if for each point xj on the homoclinic

orbit there exist positive constants rj and μj such that

d(F(x), F(y)) ≥ μjd(x, y), for all x, y ∈ Bd
rj
(xj).

A homoclinic orbit is called regular if for each point xj on the orbit, there exists a positive

constant r̃j such that for any positive constant r ≤ r̃j, F(xj) is an interior point of

F(int(Bd
r (xj))). Otherwise, it is called singular. A point x is called heteroclinic to z, if x ∈ Wu

loc(z)
and there exists a m ≥ 1 such that Fm(x) lies on a different periodic orbit from z.

Notice that if a map F on R
n has a snapback repeller, and is continuously differentiable in

some neighborhood of xj = F j(x0), for 0 ≤ j ≤ ℓ− 1, then the snapback repeller is regular

and nondegenerate. For continuously differentiable finite-dimensional maps, the definition

of snapback repeller has been extended in (Shi & Chen, 2004, 2008) to the maps in the general

metric space, through introducing the two classifications: regular and singular, nondegenerate

and degenerate. It was proved that a map F is a strict coupled-expansion and chaotic in the

sense of both Devaney and Li-Yorke if F has a nondegenerate and regular snapback repeller

or a nondegenerate and regular homoclinic orbit to an expanding fixed point. Moreover, if F

is C1 in R
n and has a snapback repeller under Marotto’s definition, then the snapback repeller

is nondegenerate and regular. Therefore, F is chaotic in the sense of Marotto, Devaney, and

Li-Yorke. In addition, more general scenario for degenerate and regular snapback repeller,

was studied in (Shi & Yu, 2008).
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4.3 Some remarks

We summarize some results concerning the above-mentioned notions.

(i) For a compact metric space (X, d), chaos in the sense of Devaney implies chaos in the sense

of Li-Yorke.

(ii) If a map F has a snapback repeller z, then F is chaotic in the sense of Marotto and Li-Yorke.

(iii) If a map F : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+
2 →

Σ+
2 , for some Cantor set Λ, then F is chaotic on Λ in the sense of Devaney and Li-Yorke.

(iv) For a complete metric space (X, d) and a map F : X → X, if F has a regular nondegenerate

snapback repeller z ∈ X, then there exists a Cantor set Λ so that Fm : Λ → Λ is topologically

conjugate to the symbolic dynamical system σ : Σ+
2 → Σ+

2 , for some integer m. Consequently,

Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.

(v) For a complete metric space (X, d) and a C1 map F : X → X, if F has a Marotto’s snapback

repeller z, then z is also a regular nondegenerate snapback repeller. Hence, Fm is chaotic in

the sense of Devaney and Li-Yorke, for some integer m.

(vi) If a map F has a transversal homoclinic orbit, then there exists a Cantor set Λ so that

Fm : Λ → Λ is topologically conjugate to the symbolic dynamical system σ : Σ+
2 → Σ+

2 , for

some integer m. Consequently, Fm is chaotic on Λ in the sense of Devaney and Li-Yorke.
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