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1. Introduction 

It is well known that, for the design of tracking control systems, preview information of 
reference signals is very useful for improving performance of the systems, and recently 
much work has been done for preview control systems [Cohen & Shaked (1997); Gershon et 
al. (2004a); Gershon et al. (2004b); Nakura (2008a); Nakura (2008b); Nakura (2008c); Nakura 
(2008d); Nakura (2008e); Nakura (2009); Nakura (2010); Sawada (2008); Shaked & Souza 
(1995); Takaba (2000)]. Especially, in order to design tracking control systems for a class of 
systems with rapid or abrupt changes, it is effective in improving the tracking performance 
to construct tracking control systems considering future information of reference signals. 
Shaked et al. have constructed the H∞ tracking control theory with preview for continuous- 
and discrete-time linear time-varying systems by a game theoretic approach [Cohen & 
Shaked (1997); Shaked & Souza (1995)]. Recently the author has extended their theory to 
linear impulsive systems [Nakura (2008b); Nakura (2008c)]. It is also very important to 
consider the effects of stochastic noise or uncertainties for tracking control systems. By 
Gershon et al., the theory of stochastic H∞ tracking with preview has been presented for 
linear continuous- and discrete-time systems [Gershon et al. (2004a); Gershon et al. (2004b)]. 
The H∞ tracking theory by the game theoretic approach can be restricted to the optimal or 
stochastic optimal tracking theory and also extended to the stochastic H∞ tracking control 
theory. While some command generators of reference signals are needed in the papers 
[Sawada (2008); Takaba (2000)], a priori knowledge of any dynamic models for reference 
signals is not assumed on the game theoretic approach. Also notice that all these works have 
been studied for the systems with no mode transitions, i.e., the single mode systems. 
Tracking problems with preview for systems with some mode transitions are also very 
important issues to research. 
Markovian jump systems [Boukas (2006); Costa & Tuesta (2003); Costa et al. (2005); Dragan 
& Morozan (2004); Fragoso (1989); Fragoso (1995); Lee & Khargonekar (2008); Mariton 
(1990); Souza & Fragoso (1993); Sworder (1969); Sworder (1972)] have abrupt random mode 
changes in their dynamics. The mode changes follow Markov processes. Such systems may 
be found in the area of mechanical systems, power systems, manufacturing systems, 
communications, aerospace systems, financial engineering and so on. Such systems are 
classified into continuous-time [Boukas (2006); Dragan & Morozan (2004); Mariton (1990); 
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Souza & Fragoso (1993); Sworder (1969); Sworder (1972)] and discrete-time [Costa & Tuesta 
(2003); Costa et al. (2005); Lee & Khargonekar (2008); Fragoso (1989); Fragoso et al. (1995)] 
systems. The optimal, stochastic optimal and H∞ control theory has been presented for each 
of these systems respectively [Costa & Tuesta (2003); Fragoso (1989); Fragoso et al. (1995); 
Souza & Fragoso (1993); Sworder (1969); Sworder (1972)]. The stochastic LQ and H∞ control 
theory for Markovian jump systems are of high practice. For example, these theories are 
applied to the solar energy system, the underactuated manipulator system and so on [Costa 
et al. (2005)]. Although preview compensation for hybrid systems including the Markovian 
jump systems is very effective for improving the system performance, the preview tracking 
theory for the Markovian jump systems had not been yet constructed. Recently the author 
has presented the stochastic LQ and H∞ preview tracking theories by state feedback for 
linear continuous-time Markovian jump systems [Nakura (2008d) Nakura (2008e); Nakura 
(2009)], which are the first theories of the preview tracking control for the Markovian jump 
systems. For the discrete-time Markovian jump systems, he has presented the stochastic LQ 
preview tracking theory only by state feedback [Nakura (2010)]. The stochastic LQ preview 
tracking problem for them by output feedback has not been yet fully investigated. 
In this paper we study the stochastic optimal tracking problems with preview by state 
feedback and output feedback for linear discrete-time Markovian jump systems on the finite 
time interval and derive the forms of the preview compensator dynamics. In this paper it is 
assumed that the modes are fully observable in the whole time interval. We consider three 
different tracking problems according to the structures of preview information and give the 
control strategies for them respectively. The output feedback dynamic controller is given by 
using solutions of two types of coupled Riccati difference equations. Feedback controller 
gains are designed by using one type of coupled Riccati difference equations with terminal 
conditions, which give the necessary and sufficient conditions for the solvability of the 
stochastic optimal tracking problem with preview by state feedback, and filter gains are 
designed by using another type of coupled Riccati difference equations with initial 
conditions. Correspondingly compensators introducing future information are coupled with 
each other. This is our very important point in this paper. Finally we consider numerical 
examples and verify the effectiveness of the preview tracking theory presented in this paper. 
The organization of this paper is as follows: In section 2 we describe the systems and 
problem formulation. In section 3 we present the solution of the stochastic optimal preview 
tracking problems over the finite time interval by state feedback.  In section 4 we consider 
the output feedback problems. In section 5 we consider numerical examples and verify the 
effectiveness of the stochastic optimal preview tracking design theory. In the appendices we 
present the proof of the proposition, which gives the necessary and sufficient conditions of 
the solvability for the stochastic optimal preview tracking problems by state feedback, and 
the orthogonal property of the variable of the error system and that of the output feedback 
controller, which plays the important role to solve the output feedback problems. 

Notations: Throughout this paper the superscript ' stands for the matrix transposition, |·| 

denotes the Euclidean vector norm and |v 2|R  also denotes the weighted norm v'Rv. O 

denotes the matrix with all zero components. 

2. Problem formulation 

Let (Ω, F, P) be a probability space and, on this space, consider the following linear discrete-
time time-varying system with reference signal and Markovian mode transitions. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

d,m(k) d,m(k) d 2d,m(k) d 3d,m(k) d

d 1d,m(k) 12d,m(k) d 13d,m(k) d

2d,m(k) d,m(k) d

x k 1 A k x k G k k  B k u k B k r k

z k C k x k D k u k D k r k

y k C k x k H k k

ω

ω

+ = + + +

= + +

= +

 (1) 

                                                                                                                      ( ) ( )0, 0x 0 x  m 0 i= =  

where x∈ nR is the state, ωd∈ pd
R  is the exogenous random noise, u d∈ mR  is the control 

input, zd∈ kdR is the controlled output, rd(·)∈ rdR is known or measurable reference signal 

and y∈ kR is the measured output. x0 is an unknown initial state and i0 is a given initial 

mode. 
Let M be an integer and {m(k)} is a Markov process taking values on the finite set  
φ={1,2, ···,M} with the following transition probabilities: 

P{m(k+1)=j|m(k)=i}:= pd,ij(k) 

where pd,ij(k)≥0 is also the transition rate at the jump instant from the mode i to j, i ≠ j, and 

,1
( ) 1

M
d ijj

p k
=

=∑ . Let Pd(k) =[ pd,ij(k)] be the transition probability matrix. We assume that all 

these matrices are of compatible dimensions. Throughout this paper the dependence of the 
matrices on k will be omitted for the sake of notational simplicity. 
For this system (1), we assume the following conditions: 
A1: D12d,m(k)(k) is of full column rank. 
A2: D12d,m(k)'(k)C1d,m(k)(k)=O, D12d,m(k)'(k)D13d,m(k)(k)=O 
A3: E{x(0)}=Ǎ0, E{ωd(k)}=0, 

E{ωd(k)ωd'(k)1{m(k)=i}}=Χi, 

E{x(0)x'(0) 1{m(0)= 0i } }=
0i

Q (0), 
E{ωd(0)x'(0)1{m(0)= 0i } }=O, 
E{ωd(k)x'(k)1{m(k)=i}}=O, 
E{ωd(k)ud'(k)1{m(k)=i}}=O, 
E{ωd(k)rd'(k)1{m(k)=i}}=O 

where E is the expectation with respect to m(k), and the indicator function 1{m(k)=i}:=1 if 
m(k)=i, and 1{m(k)=i}:=0 if m(k)≠i. 

The stochastic optimal tracking problems we address in this section for the system (1) are to 
design control laws ud(·)∈ l2[0,N-1] over the finite horizon [0,N], using the information 
available on the known part of the reference signal rd(·) and minimizing the sum of the 
energy of zd(k), for the given initial mode i0 and the given distribution of x0. Considering the 
stochastic mode transitions and the average of the performance indices over the statistical 
information of the unknown part of rd, we define the following performance index. 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
dN 0, d, d 1d,m(k) 13d,m(k) d

0

1
2

12d,m(k) d
0

J x u r : E {|C k x k D k r k | }

                                 + {|D k u k | }

k

k

N

R
k

N

R
k

E

E

=

−

=

⎧⎪= +⎨
⎪⎩

⎫⎪
⎬
⎪⎭

∑

∑
 (2) 

kR
E means the expectation over k hR + , h is the preview length of rd(k), and kR  denotes the 

future information on rd at the current time k, i.e., kR :={rd(l); k<l≤N}. This introduction of 
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kR
E  means that the unknown part of the reference signal follows a stochastic process, 

whose distribution is allowed to be unknown. 
Now we formulate the following optimal fixed-preview tracking problems for the system (1) 
and the performance index (2). In these problems, it is assumed that, at the current time k, 
rd(l) is known for l ≤ min(N, k+h), where h is the preview length. 
The Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback: 

Consider the system (1) and the performance index (2), and assume the conditions A1, A2 

and A3. Then, find *
du  minimizing the performance index (2) where the control strategy *

du  

(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 

state information Xk:={x(l); 0 ≤ l ≤ k}. 
The Stochastic Optimal Fixed-Preview Tracking Problem by Output Feedback: 

Consider the system (1) and the performance index (2), and assume the conditions A1, A2 

and A3. Then, find *
du  minimizing the performance index (2) where the control strategy *

du  

(k), 0 ≤ k ≤ N-1, is based on the information Rk+h:={rd(l); 0 ≤ l ≤ k+h} with 0 ≤ h ≤ N and the 

observed information Yk:={y(l); 0 ≤ l ≤ k}. 
Notice that, on these problems, at the current time k to decide the control strategies, Rk+h can 
include any noncausal information in the meaning of that it is allowed that the future 
information of the reference signals {rd(l); k ≤ l ≤ k+h} is inputted to the feedback controllers. 

3. Design of tracking controllers by state feedback 

In this section we consider the state feedback problems. 
Now we consider the coupled Riccati difference equations [Costa et al. (2005); Fragoso 
(1989)] 

 Xi(k)=Ad,i’(k)Ei(X(k+1),k)Ad,i(k)+C1d,i‘C1d,i–F2,i‘T2,iF2,i(k), k=0, 1, ··· (3) 
 

where Ei(X(k+1),k)= ,1
( )

M
d ijj

p k
=∑ Xj+1(k+1), X(k)=(X1(k), ···, XM (k)), 

( ) ( )( )
( ) ( )( )
( ) ( )

2,i 12d,i 12d,i 2d,i i 2d,i

2,i 2d,i i d,i

1
2,i 2, 2,

T k D ‘D B ‘E X k 1 ,k B ,

R k B ‘E X k 1 ,k A ,

F k ki iT R−

= + +

= +

= −

 

and the following scalar coupled difference equations. 

 iα (k)=Ei(α (k+1),k)+tr{Gd,iΧiGd,i ‘Ei(X(k+1),k)} (4) 

 

where Ei(α (k+1),k)=
,1

( ),
M

d ijj
p k

=∑ jα (k+1) and α (k)=( 1α (k), ... , Mα (k)). 

Remark 3.1 Note that these coupled Riccati difference equations (3) are the same as those for 
the standard stochastic linear quadratic (LQ) optimization problem of linear discrete-time 
Markovian jump systems without considering any exogeneous reference signals nor any 
preview information [Costa et al. (2005); Fragoso (1989)]. Also notice that the form of the 
equation (4) is different from [Costa et al. (2005); Fragoso (1989)] in the points that the 
solution α (·) does not depend on any modes in [Costa et al. (2005)] and the noise matrix Gd 

does not depend on any modes in [Fragoso (1989)]. 
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We obtain the following necessary and sufficient conditions for the solvability of the 
stochastic optimal fixed-preview tracking problem by state feedback and an optimal control 
strategy for it. 
Theorem 3.1 Consider the system (1) and the performance index (2). Suppose A1, A2 and 
A3. Then the Stochastic Optimal Fixed-Preview Tracking Problem by State Feedback for (1) 
and (2) is solvable if and only if there exist matrices Xi(k)≥O and scalar functions iα (k), i=1, 
···,M, satisfying the conditions Xi(N)=C1d,i'(N)C1d,i(N) and iα (N)=0 such that the coupled 
Riccati equations (3) and the coupled scalar equations (4) hold over [0,N]. Moreover an 
optimal control strategy for the tracking problem (1) and (2) is given by 

*
du (k)=F2,i(k)x(k)+Du,i(k)rd(k)+Dθu,i(k)Ei( cθ (k+1),k) for i=1, ···,M 

where Du,i(k)=- 1
2,iT − (k)B2d,i‘Ei(X(k+1),k)B3d,i and Dθu,i(k)=- 1

2,iT − (k)B2d,i‘. iθ (k), i=1, ···,M, 
k∈ [0,N] satisfies 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

, ,i d

1d,i 13d,i d

k ’ k E ( k 1 ,k) k r k ,

N C ‘D r N

d i d ii

i

A Bθ θ

θ

= + +

=
 (5) 

where Ei(θ (k+1),k)=
,1

( )
M

d ijj
p k

=∑ jθ (k+1) and θ (k)=( 1θ (k), ···, Mθ (k)), 

( ) ( )
( ) ( )( ) ( )

, d,i u,i 2 ,i 2,i

, d,i i 3d,i 2,i 2,i u,i 1d,i 13d,i

’ k A D ’T F k ,

k A ’ E X k 1 ,k B F ’T D k C ‘D

d i

d i

A

B

θ= −

= + − +
 

and ,c iθ (k) is the 'causal' part of iθ (·) at time k. This ,c iθ  is the expected value of iθ  over kR  
and given by 

 

( ) ( ) ( ) ( ) ( )
( )
( ) ( )

, ,, i d

,

, 1d,i 13d,i d

l ’ l E ( l 1 ,l) l r l ,  k 1 l k h,

k h 1 0 if k h N 1

k h 1 C ‘D r N ,  k h N

d i d ic i c

c i

c i

A Bθ θ

θ

θ

= + + + ≤ ≤ +

+ + = + ≤ −

+ + = + =

 (6) 

where Ei( cθ (k+1),k)=
,1

( )
M

d ijj
p k

=∑ ,c jθ (k+1) and cθ (k)=( ,1cθ (k) , ···, ,c Mθ (k)).  

Moreover, the optimal value of the performance index is 

 

( )

( ) ( ) ( ) ( )

0 0 0 00

*
dN d 0

1
1/2 2

m(k) d2, ( ) u,m k
0

J (x0,  ,r ) tr{ } 0 E{ {2 ‘x }} 

              E{ {| D k E ( k 1 ,k)| }} r
k

d i i i iR

N

c dm kR
k

u Q E

E T Jθ

α θ

θ
−

−

=

= Χ + +

+ + +∑
 (7) 

where , ( )c m kθ − (k)= ( )m kθ (k)- , ( )c m kθ (k), k∈ [0,N],  

 Ei( cθ
− (k+1),k)=

,1
( )

M
d ijj

p k
=∑ ,c jθ − (k+1), cθ

− (k)=( ,1cθ
−  (k), ···, ,c Mθ − (k)) and 

( ) ( ) ( ){ } ( ) ( ) ( )( )

( ) ( ) ( ) ( )

1
2 1/2 2

d 13d,m(N) d m(k)2, ( ) u,m k
0

m(k) 2, ( ) u,m(k) du,m k

r E {|D N r N | } E { | D k E k 1 ,k |

                                                                                 -2E ( ‘ k+1 ,k)D ‘ D k r k

N k

N

d m kR R
k

m k

J E E T

T

θ

θ

θ

θ

−

=

⎧⎪= + − +⎨
⎪⎩
∑

( ) ( ) ( ) ( ) }m(k) 3d,m(k) d d,k ,m(k) d                                                                               2E ( ‘ k+1 ,k)B k r k +J r } ,θ+

 

www.intechopen.com



 Discrete Time Systems 

 

116 

( ) ( ) ( ) ( )( )
( )

d,k ,m(k) d d u,m(k) 2, ( ) u,m(k) 3d,m(k) m(k) 3d,m(k)

13d,m(k) 13d,m(k) d

J r r ‘ k D ‘ D k B ‘E X k 1 ,k B

                                  +D ‘D r k .

m kT⎡= − + +⎣
⎤⎦

 

(Proof) See the appendix 1. 

Remark 3.2 Note that each dynamics (6) of ,c iθ , which composes the compensator 
introducing the preview information, is coupled with the others. It corresponds to the 
characteristic that the Riccati difference equations (3) are coupled with each other, which 
give the necessary and sufficient conditions for the solvability of the stochastic optimal 
tracking problem by state feedback. 
Next we consider the following two extreme cases according to the information structures 
(preview lengths) of rd: 
i. Stochastic Optimal Tracking of Causal {rd(·)}: 
In this case, {rd(k)} is measured on-line, i.e., at time k, rd(l) is known only for l≤k. 
ii. Stochastic Optimal Tracking of Noncausal {rd(·)}: 

In this case, the signal {rd(k)} is assumed to be known a priori for the whole time interval 
k∈ [0,N]. 
Utilizing the optimal control strategy for the stochastic optimal tracking problem in 
Theorem 3.1, we present the solutions to these two extreme cases. 

Corollary 3.1 Consider the system (1) and the performance index (2). Suppose A1, A2 and 
A3. Then each of the stochastic optimal tracking problems for (1) and (2) is solvable by state 
feedback if and only if there exist matrices Xi(k) ≥O and scalar functions iα (k), i=1, ···,M, 
satisfying the conditions Xi(N)=C1d,i'(N)C1d,i(N) and iα (N)=0 such that the coupled Riccati 
difference equations (3) and the coupled scalar equations (4) hold over [0,N]. Moreover, the 
following results hold using the three types of gains 

Kd,x,i(k)=F2,i(k), Krd,i(k)=Du,i(k) and Kd,θ,i(k)=Dθu,i(k) for i=1, ···,M. 

i. The control law for the Stochastic Optimal Tracking of Causal {rd(·)} is 

ud,s1(k)=Kd,x,i(k)x(k)+Krd,i(k)rd(k) for i=1, ···,M 

and the value of the performance index is 

JdN(x0, ud,s1, rd)=tr{
0i

Q
0i

Χ }+
0i

α (0)+E{
0R

E {2
0i

θ ‘x0}} 

               +E{
1

0

N

k

−

=
∑

kR
E {| 1/2

2, ( )m kT Dθu,m(k)(k)Em(k)(θ (k +1),k) 2| }}+ dJ ( rd). 

ii. The control law for the Stochastic Optimal Tracking of Noncausal {rd(·)} is 

ud,s2(k)=Kd,x,i(k)x(k)+Krd,i(k)rd(k)+Kd,θ,i(k)Ei(θ (k +1),k) for i=1, ···,M 

with iθ (·) given by (5) and the value of the performance index is 

JdN(x0, ud,s2, rd)=tr{
0i

Q
0i

Χ }+
0i

α (0)+2
0i

θ ‘Ǎ0+ dJ (rd). 

(Proof) 

i. In this causal case, the control law is not affected by the effects of any preview 
information and so cθ (k)=0 for all k∈ [0,N] since the each dynamics of ,c iθ  becomes 

www.intechopen.com



Stochastic Optimal Tracking with Preview for Linear Discrete Time Markovian Jump Systems   

 

117 

autonomous. As a result we obtain θ (k)= cθ
− (k) for all k∈ [0,N]. Therefore we obtain 

the value of the performance index JdN(x0, ud,s1, rd). 
ii. In this noncausal case, h=N-k and (5) and (6) becomes identical. As a result we obtain 

θ (k)= cθ (k) for all k∈ [0,N]. Therefore we obtain cθ
− (k)=0 for all k∈ [0,N] and the value 

of the performance index JdN(x0, ud,s2, rd). Notice that, in this case, we can obtain the 
deterministic value of 

0i
θ (0) using the information of {rd(·)} until the final time N and so 

the term E{
0R

E {2
0i

θ ‘x0}} in the right hand side of (7) reduces to 2
0i

θ ‘Ǎ0. (Q.E.D.) 

4. Output feedback case 

In this section, we consider the output feedback problems. 
We first assume the following conditions: 

A4: Gd,m(k)(k)Hd,m(k)'(k)=O, Hd,m(k)(k)Hd,m(k)'(k)>O 

By the transformation 

,d cu (k):=u d(k)-Du,i(k)rd(k)-Dθu,i(k)Ei( cθ (k+1),k) 

and the coupled difference equations (3) and (4), we can rewrite the performance index as 
follows: 

( )

{ }
( ) ( ) ( ) ( ) ( ) ( )

( )

0 0 0

00

2 , ( )

, ,dN 0, d

0

1
2

, 2,m(k) m(k)u,m k
0

d

J (x r ) tr{ } 0

E {2‘ x }

E {| k F k x k -D k E ( k 1 ,k)| }

 r

m kk

d c i i i

iR

N

d c c TR
k

d

u Q

E

E u

J

θ

α

θ

θ
−

−

=

= Χ +

+

⎧ ⎫⎪ ⎪+ − +⎨ ⎬
⎪ ⎪⎩ ⎭

+

∑
 

 and the dynamics can be written as follows: 

x(k+1)=Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k) ,d cu (k)+ ,d cr (k) 

where 

,d cr (k)=B2d,m(k){Du,m(k)(k)rd(k)+Dθu,m(k)(k)Em(k)( cθ (k+1),k)}+B3d,m(k)(k)rd(k). 

For this plant dynamics, consider the controller 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
, *d,m(k) 2d,m(k)

,3d,m(k) m(k) 2d,m(k)

ˆ ˆk 1 A k k B k k

ˆB k k M k [y k C k ]

d ce e

d c e

x x u

r x

+ = +

+ − −
 (8) 

                ( ) { }{ } ( ) ( ) ( )
0

, *0 0 2,m(k)ˆ ˆ0 E x ,   k F k kd ce eR
x E u xμ= = =  

where Mm(k) are the controller gains to decide later, using the solutions of another coupled 
Riccati equations introduced below. 
Define the error variable 

e(k):=x(k)- ˆ
ex (k) 
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and the error dynamics is as follows: 

e(k+1)=Ad,m(k)(k)e(k)+Gd,m(k)(k)ωd(k)+Mm(k)(k)[y(k)-C2d,m(k) ˆ
ex (k)] 

              =[Ad,m(k)+Mm(k)C2d,m(k)](k)e(k)+[Gd,m(k)+Mm(k)Hd,m(k)](k)ωd(k) 

Note that this error dynamics does not depend on the exogenous inputs ud nor rd. Our 
objective is to design the controller gain Mm(k) which minimizes 

JdN(x0, , *d cu , rd)=tr{
0i

Q
0i

Χ }+
0i

α (0)+E{
0R

E {2
0i

θ ‘x0}} 

+E{
1

0

N

k

−

=
∑

kR
E {|F2,m(k)(k)e(k) 

                                                -Dθu,m(k)(k)Em(k)( cθ
− (k +1),k)

2 , ( )

2|
m kT }}+ dJ ( rd) 

Notice that e(k) and Em(k)( cθ
− (k +1),k) are mutually independent.  

We decide the gain matrices Mi(k), i=1, ···,M by designing the LMMSE filter such that 
1

0

N

k

−
=∑ E{

kR
E {|e(k) 2| }} is minimized. Now we consider the following coupled Riccati 

difference equations and the initial conditions. 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

j , d,i i d,i d,i i 2d,i d,i d,i i
( )

1
2d,i i 2d,i 2d,i i d,i i d,i d,i

Y k 1 A ’Y k A  A Y k C ’(H H ’ k

                                C Y k C ’) C Y k A ’ k G G ’ ,

d ij
i J k

p Π

Π

∈

−

⎡+ = −⎣

⎤+ + ⎦

∑
 (9) 

                                                                              ( ) ( )
0i i 0 0Y 0 0 ( ’)iQ μ μΠ= −  

 where 

πi(k):=P{m(k)=i}, ,1
( )

M
d ijj

p k
=∑ πi=πj, ( )i1

k 1
M

i
Π

=
=∑ , J(k):={i∈N; πi(k)>0}. 

These equations are also called the filtering coupled Riccati difference equations [Costa & 
Tuesta (2003)]. 
Now since 

E{
0R

E {e(0)}}=E{
0R

E {x0}-E{
0R

E {x0}}}=E{
0R

E x0}}-Ǎ0=0 

and ,d cr (0) is deterministic if rd(l) is known at all l∈ [0,k+h], 

E{
0R

E {e(0) ,d cr '(0)1{m(0)=i}}}=πi(0)E{
0R

E {e(0)}} ,d cr '(0)=O 

and so we obtain, for each k∈ [0,N], 

E{
kR

E {e(k) ,d cr '(k)1{m(k)=i}}}=πi(k)E{
kR

E {e(k)}} ,d cr '(k)=O. 

Namely there exist no couplings between e(·) and ,d cr (·). The development of e(·) on time k 

is independent of the development of ,d cr (·) on time k. Then we can show the following 

orthogonal property as [Theorem 5.3 in (Costa et al. (2005)) or Theorem 2 in (Costa & Tuesta 

(2003))] by induction on k (See the appendix 2). 
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 E{
kR

E {e(k) ˆ
ex '(k) 1{m(k)=i}}}=O. (10) 

Moreover define 

iY (k):=E{
kR

E e(k)e'(k) 1{m(k)=i}}} 

and then we can show 

Yi(k)= iY (k). 

From all these results (orthogonal properties), as the case of rd(·)≡0, using the solutions of 
the coupled difference Riccati equations, it can be shown that the gains Mm(k) minimizing JdN 
are decided as follows (cf. [Costa & Tuesta (2003); Costa et al. (2005)]): 

 ( )
( ) ( ) ( )( ) ( )

( )

1

d,i i 2d,i d,i d,i i 2d,i i 2d,i

i

A Y k C ’ H H ’ k C Y k C ’ for i J k

M k

0 for i J k

−
Π⎧− + ∈⎪⎪= ⎨

⎪
∈⎪⎩

 (11)  

Finally the following theorem, which gives the solution of the output feedback problem, 
holds. 

Theorem 4.1 Consider the system (1) and the performance index (2). Suppose A1, A2, A3 
and A4. Then an optimal control strategy which, gives the solution of the Stochastic Optimal 
Fixed-Preview Tracking Problem by Output Feedback for (1) and (2) is given by the 
dynamic controller (8) with the gains (11) using the solutions of the two types of the coupled 
Riccati difference equations (3) with Xi(N)=C1d,i'(N)C1d,i(N) and (9) with Yi(0)= πi(0)(

0i
Q -

Ǎ0Ǎ0’). 
Remark 4.1 Notice that 

E{
kR

E {| zd(k) 2| }}= 
1

M

i
tr

=∑ {C1d,iC1d,i’ E{
kR

E {x(k)x'(k)1{m(k)=i}}}} 

                                                +E{
kR

E {|D12d,m(k)(k)u d(k) 2| +2x'(k)C1d,i’D13d,ird(k)}}. 

Then, with regard to the performance index, the following result holds. 

E{
kR

E {| zd(k) 2| }}=E{
kR

E {| ˆ
ez (k) 2| }}+ 

1

M

i
tr

=∑ { C1d,iYi(k)C1d,i’} 

+E{
1 k

M

Ri
E

=∑ {2e'(k)C1d,i’D13d,ird(k)1{m(k)=i}}} 

where 

 ˆ
ez (k)=C1d,m(k) ˆ

ex (k)+D12d,m(k)(k)u d(k)+D13d,m(k)(k)rd(k) 

and we have used the property 

E{
kR

E {x(k)x'(k)1{m(k)=i}}}=E{
kR

E {e(k)e'(k)1{m(k)=i}}}+E{
kR

E { ˆ
ex (k) ˆ

ex  '(k)1{m(k)=i}}} 

= Yi(k)+ E{
kR

E { ˆ
ex (k) ˆ

ex  '(k)1{m(k)=i}}} 

by the orthogonal property (10). 
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Note that the second and third terms in the right hand side do not depend on the input ud. 
Then we obtain 

 

( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( )

2
dN 0, d, d 1d,i i 1d,i1

0

1d,i 13d,i d {m k i}1

2
1d,m(N) 13d,m(N) d

ˆJ x u r E{ [ {| k | }  C Y k C ’

                            {2e' k C ’D r k  1 }}]

                             |C x N D r N | }

k

k

N
M

eR i
k

M

Ri

E z tr

E

=
=

==

= +

+

+ +

∑ ∑

∑  (12) 

Therefore minimizing (12) is equivalent to minimizing E{
0

N

k=
∑ kR

E {| ˆ
ez (k) 2| } subject to the 

dynamics 

ˆ
ex (k+1)=Ad,m(k)(k) ˆ

ex (k)+B2d,m(k)(k) , *d cu (k)+ ,d cr (k) -Mm(k)(k)ǎ(k), ˆ
ex (0)= 

0R
E {x0}=Ǎ0 

where 

ǎ(k)=y(k)-C2d,m(k) ˆ
ex (k) 

and , *d cu (k) is the state feedback controller with the form 
Kd,x,i(k) ˆ

ex (k)+Krd,i(k)rd(k)+Kd,θ,i(k)Ei(θ (k +1),k) for some gains Kd,x,i, Krd,i and Kd,θ,i. Note 
that the term Mm(k)(k)ǎ(k) plays the same role as the "noise" term Gd,m(k)(k)ωd(k) of the plant 
dynamics in the state feedback case. 
Remark 4.2 As the case of rd(·)≡0, the separation principle holds in the case of rd(·)≢0. 
Namely we can design the state feedback gains F2,m(k)(k) and the filter gains Mm(k) separately.  
Utilizing the optimal control strategy for the stochastic optimal tracking problem in 
Theorem 4.1, we present the solutions to the two extreme cases. 

Corollary 4.1 Consider the system (1) and the performance index (2). Suppose A1, A2, A3 
and A4. Then optimal control strategies by output feedback for the two extreme cases are as 
follows using the solutions of the two types of the coupled Riccati difference equations (3) 
with Xi(N)=C1d,i'(N)C1d,i(N) and (9) with Yi(0)= πi(0)(

0i
Q -Ǎ0Ǎ0’): 

i. The control law by output feedback for the Stochastic Optimal Tracking of Causal {rd(·)} is 

  ˆ
ex (k+1)=Ad,m(k)(k) ˆ

ex (k)+B2d,m(k)(k) ,1*du (k)+ ,1dr (k) -Mm(k)(k)ǎ(k) 

   ˆ
ex (0)=Ǎ0 

  ,1du (k):=u d(k)-Du,i(k)rd(k) 

  ,1*du (k)=F2,m(k)(k) ˆ
ex (k) 

  ,1dr (k)=B2d,m(k)Du,m(k)(k)rd(k)+B3d,m(k)(k)rd(k) 

and the value of the performance index is 

JdN(x0, ,1*du , rd)=tr{
0i

Q
0i

Χ }+
0i

α (0)+E{
0R

E {2
0i

θ ‘x0}} 

                        +E{
1

0

N

k

−

=
∑ kR

E {|F2,m(k)(k)e(k) 

                                                -Dθu,m(k)(k)Em(k)(θ (k +1),k)
2 , ( )

2|
m kT }}+ dJ ( rd). 
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ii. The control law by output feedback for the Stochastic Optimal Tracking of Noncausal 
{rd(·)} is 

  ˆ
ex (k+1)=Ad,m(k)(k) ˆ

ex (k)+B2d,m(k)(k) ,2*du (k)+ ,2dr (k)-Mm(k)(k)ǎ(k) 

   ˆ
ex (0)=Ǎ0 

  ,2du (k):= u d(k)-Du,i(k)rd(k)-Dθu,i(k)Ei(θ (k+1),k) 

  ,2*du (k)= F2,m(k)(k) ˆ
ex (k) 

  ,2dr (k)=B2d,m(k){Du,m(k)(k)rd(k)+Dθu,m(k)(k)Em(k)(θ (k+1),k)}+B3d,m(k)(k) rd(k) 

and the value of the performance index is 

JdN(x0, ,2*du , rd)=tr{
0i

Q
0i

Χ }+
0i

α (0)+ 2
0i

θ ‘Ǎ0+E{
1

0

N

k

−

=
∑

kR
E {|F2,m(k)(k)e(k)

2 , ( )

2|
m kT }}+ dJ ( rd). 

(Proof) As the state feedback cases, cθ (k)=0, i.e., θ (k)= cθ
− (k) for all k∈ [0,N] in the case i), 

and θ (k)= cθ (k), i.e., cθ
− (k)=0 for all k∈ [0,N] in the case ii). 

5. Numerical examples 

In this section, we study numerical examples to demonstrate the effectiveness of the 
presented stochastic LQ preview tracking design theory. 
We consider the following two mode systems and assume that the system parameters are as 
follows. (cf. [Cohen & Shaked (1997); Shaked & Souza (1995)].): 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

d,m(k) d d 2d d 3d,m(k) d

0, 0,

d 1d,m(k) 12d,m(k) d 13d,m(k) d

2d,m(k) d,m(k) d

x k 1 A k x k G k k B k u k B k r k

x 0 x  m 0 i m k 1,2

z k C k x k D k u k D k r k

y k C k x k H k k

ω

ω

+ = + + +

= = =

= + +

= +

 (13) 

where 
 

Mode 1:                   Mode 2: 

Ad,1=
0 1

0.8 1.6

⎡ ⎤
⎢ ⎥−⎣ ⎦

, Ad,2=
0 1

1.6 1.6

⎡ ⎤
⎢ ⎥
⎣ ⎦

, Gd=
0

0.1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, B2d=
0

1

⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

B3d,1=
1.5

0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, B3d,2=
1.8

0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

C1d,1=
0.5 0.2

0 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

, C1d,2=
0.5 0.1

0 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

, D12d=
0

0.1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, D13d=
1.0

0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
Let 

Pd=
0.3 0.7

0.6 0.4

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

be a stationary transition matrix of {m(k)}. We set x0=col(0,0) and i0=1. 
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Then we introduce the following objective function. 

JdN(x 0, ud, rd):=E{
0

N

k=
∑

kR
E {|C1d,m(k)(k)x(k)+D13d,m(k)(k)rd(k) 2| }} 

                           +0.01E{
1

0

N

k

−

=
∑

kR
E {|u d(k) 2| }} 

By the term B3d,i(k)rd(k), i=1,2, the tracking performance can be expected to be improved as 
[Cohen & Shaked (1997); Shaked & Souza (1995)] and so on. The paths of m(k) are generated 
randomly, and the performances are compared under the same condition, that is, the same 
set of the paths so that the performances can be easily compared. 
We consider the whole system (13) with mode transition rate Pd over the time interval 
k∈ [0,100]. For this system (13) with the rate matrix Pd , we apply the results of the optimal 
tracking design theory by output feedback for rd(k)=0.5sin(πk/20) and rd(k)=0.5sin(πk/100) 
with various step lengths of preview, and show the simulation results for sample paths. 
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Fig. 1(a). rd(k)=0.5sin(πk/20) 
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Fig. 1(b). rd(k)=0.5sin(πk/100) 

Fig. 1. The whole system consisting of mode 1 and mode 2: The errors of tracking for various 
preview lengths 
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It is shown in Fig. 1(a) for rd(k)= 0.5sin(πk/20) and Fig. 1(b) rd(k)=0.5sin(πk/100) that 

increasing the preview steps from h=0 to h=1,2,3,4 improves the tracking performance. In 

fact, the square values |C1d,i(k)x(k) + D13d(k)rd(k) 2|  of the tracking errors are shown in  

Fig. 1(a) and (b) and it is clear the tracking error decreases as increasing the preview steps 

by these figures. 

6. Conclusion 

In this paper we have studied the stochastic linear quadratic (LQ) optimal tracking control 
theory considering the preview information by state feedback and output feedback for the 
linear discrete-time Markovian jump systems affected by the white noises, which are a class 
of stochastic switching systems, and verified the effectiveness of the design theory by 
numerical examples. In order to solve the output feedback problems, we have introduced 
the LMMSE filters adapted to the effects of preview feedforward compensation. In order to 
design the output feedback controllers, we need the solutions of two types of coupled 
Riccati difference equations, i.e., the ones to decide the state feedback gains and the ones to 
decide the filter gains. These solutions of two types of coupled Riccati difference equations 
can be obtained independently i.e., the separation principle holds. Correspondingly the 
compensators introducing the preview information of the reference signal are coupled with 
each other. This is the very important research result in this paper. 
We have considered both of the cases of full and partial observation. However, in these 
cases, we have considered the situations that the switching modes are observable over 
whole time interval. The construction of the design theory for the case that the switching 
modes are unknown is a very important further research issue. 

Appendix 1. Proof of Proposition 3.1 

(Proof of Proposition 3.1) 

Sufficiency: 

Let Xi(k)>O and iα , i=1, …, M, be solutions to (3) and (4) over [0,N] such that 

Xi(N)=C1d,i'(N)C1d,i (N) and iα (N)=0. 
Define 

 

, ( )k m kφ :=
1kR

E
+

{E{x’(k+1)Xm(k+1) (k+1)x(k+1)+α m(k+1)(k+1)|x(k),m(k)}} 

-
kR

E {x’(k)Xm(k) x(k)+α m(k)(k)}  

 
We first consider the case of rd(·)≡0. Then the following equalities hold by the assumptions 

A3. 
 

                     E{x’(k+1)Xm(k+1) (k+1)x(k+1)+α m(k+1)(k+1)|x(k),m(k)} 

                         = E{ (Ad,m(k)(k) x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k)ud(k))’ 

                                  ×Xm(k+1) (k+1) (Ad,m(k)(k) x(k)+Gd,m(k)(k)ωd(k)+B2d,m(k)(k)ud(k)) 

                                     +α m(k+1)(k+1)|x(k),m(k)} 
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                        =(Ad,m(k)(k)x(k)+B2d,m(k)(k)ud(k))’ 

                                  ×  Em(k)(X(k+1),k) (Ad,m(k)(k) x(k)+B2d,m(k)(k)ud(k)) 

                                  +
1

M

j=∑ tr { Gd,i (k) iΧ  (k)Gd,i ‘(k)Ei(X(k+1),k)}+E{α m(k+1) (k+1)|x(k),m(k)} 

 

It can be shown that the following equality holds, using the system (1) and the coupled 

Riccati equations (3) and the coupled scalar equations (4). ([Costa et al. (2005); Fragoso 

(1989)]) 

, ( )k m kφ =
kR

E {-|zd(k) 2| +| 1/2
2, ( )m kT (k)[ud(k)-F2,m(k)(k) x(k)] 2| } 

Moreover, in the genaral case that rd(·) is arbitrary, we have the following equality. 

, ( )k m kφ =
kR

E {-|zd(k) 2| +| 1/2
2, ( )m kT (k)[ud(k)-F2,m(k)(k)x(k)]-Du,m(k)(k)rd(k) 2|  

+ 2x'(k) , ( )d m kB (k)rd(k)+Jd,k,m(k)(rd)} 

 

Notice that, in the right hand side of this equality, Jd,k,m(k) (rd), which means the tracking 

error without considering the effect of the preview information, is added. 

Now introducing the vector ( )m kθ , which can include some preview information of the 

tracking signals, 

1kR
E

+
{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}}-

kR
E { ( )m kθ ’(k)x(k)} 

=
kR

E {Em(k)(θ '(k+1),k)(Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k) 

        +B2d,m(k)(k)ud(k)+B3d,m(k)(k)rd(k))}-
1kR

E
+

{ ( )m kθ ’ (k)x(k)} 

Then we obtain 

, ( )k m kφ +2{
1kR

E
+

{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}}-
kR

E { ( )m kθ ’ (k)x(k)}} 

=
kR

E {-| zd(k) 2| +| 1/2
2, ( )m kT (k)[ud(k)-F2,m(k)(k)x(k)-Du,m(k)(k)rd(k)] 2|  

+ 2x'(k) , ( )d m kB (k)rd(k)+Jd,k,m(k) (rd)} 

+2
kR

E {{ Em(k)(θ '(k+1),k)(Ad,m(k)(k)x(k)+Gd,m(k)(k)ωd(k) 

+B2d,m(k)(k)ud(k)+B3d,m(k)(k)rd(k))}-
1kR

E
+

{ ( )m kθ ’(k)x(k)}} 

=
kR

E {-| zd(k) 2| +| 1/2
2, ( )m kT (k)[ud(k)-F2,m(k)(k)x(k)-Du,m(k)(k)rd(k) 

-Dθu,m(k)(k)Em(k)(θ (k+1),k)] 2| + , , ( )d k m kJ (rd)} 

     

(14) 

where 

iθ (k)= ,d iA ’(k)Ei(θ (k+1),k)+ ,d iB (k)rd(k) 
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to get rid of the mixed terms of rd and x, or ( )m kθ  and x. , , ( )d k m kJ (rd) means the tracking error 
including the preview information vector θ  and can be expressed by 

, , ( )d k m kJ (rd)=-| 1/2
2, ( )m kT  Dθu,m(k)(k)Em(k)(θ (k+1),k)] 2|  

-Em(k)(θ '(k+1),k)Dθu,m(k) ’ T2,m(k)Du,m(k)(k)rd(k) 

+2 Em(k)(θ '(k+1),k)B3d,m(k)rd(k)+Jd,k,m(k) (rd) 

Taking the sum of the quantities (14) from k=0 to k=N-1 and adding E{|C1d,m(N)(N)x(N)+ 
D13d,m(N)(N)rd(N) 2| } and taking the expectation E{ }, 

1

0

N

k

−

=
∑ E{

kR
E {| zd(k) 2| }}+E{|C1d,m(N)(N)x(N)+ D13d,m(N)(N)rd(N) 2| } 

+
1

0

N

k

−

=
∑  E{ , ( )k m kφ +2{

1kR
E

+
{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}} 

-
kR

E { ( )m kθ ’(k)x(k)}}|x(k),m(k)} 

=
1

0

N

k

−

=
∑ E{

kR
E {| ˆ

du (k)- Dθu,m(k) (k) Em(k)(θ (k+1),k)
2 , ( )

2
( )|

m kT k } 

+E{|C1d,m(N)(N)x(N)+D13d,m(N)(N)rd(N) 2| } 

+
1

0

N

k

−

=
∑  E{

kR
E { , , ( )d k m kJ (rd)}} 

where 

ˆ
du (k)= ud(k)-F2,m(k)(k) x(k)-Du,m(k)(k)rd(k). 

 
Since the left hand side reduces to 
 

1

0

N

k

−

=
∑ E{

kR
E {|zd(k) 2| }}+E{|C1d,m(N)(N)x(N)+D13d,m(N)(N)rd(N) 2| } 

+ E{2 ( )m Nθ ’ (N)x(N)+x’(N)Xm(N) (N)x(N)+ ( )m Nα (N)} 

+E{
0R

E {-2
0i

θ ’(0)x(0)-x’(0)
0i

X (0)x(0)-
0i

α (0)}} 

 
noticing that the equality 
 

NR
E {E{x’(N)Xm(N)(N)x(N)+ ( )m Nα (N)+2 ( )m Nθ ’(N)x(N)|x(l),m(l)}} 

-
lR

E {x’(l)Xm(l)x(l)+ ( )m lα (l)+2 ( )m lθ ’(l)x(l)} 

=
1N

k l

−

=
∑  E{

1kR
E

+
{E{x’(k+1)Xm(k+1)(k+1)x(k+1)+ ( 1)m kα + (k+1) 

+2 ( 1)m kθ + ’(k+1)x(k+1)|x(k),m(k)}} 
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-
kR

E {x’(k)Xm(k)x(k)+ ( )m kα (k)+2 ( )m kθ ’(k)x(k)}|x(l),m(l)} 

   =
1N

k l

−

=
∑  E{ , ( )k m kφ  

+2{
1kR

E
+

{E{ ( 1)m kθ + ’ (k+1)x(k+1)|x(k),m(k)}}  

-{
kR

E ( )m kθ ’ (k)x(k)}} x(l),m(l)} 

 
 
holds for l, 0 ≤ l ≤ N-1, we obtain 
 

JdN(x0, ud, rd)=tr{
0i

Q
0i

X }+
0i

α (0)+E{
0R

E {2
0i

θ ’(0)x0}} 

+E{
1

0

N

k

−

=
∑

kR
E {| ˆ

du (k)-Dθu,m(k)(k)Em(k)(θ (k+1),k)
2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

 

 

where we have used the terminal conditions Xi(N)=C1d,i'(N)C1d,i(N),  iθ (N)=C1d,i‘D13d,ird(N) 

and iα (N)=0. Note that  dJ (rd) is independent of ud and x0. Since the average of , ( )c m kθ − (k) 

over kR  is zero, including the 'causal' part , ( )c m kθ (k) of θ (·) at time k, we adopt 

 

*ˆ
du (k)= Dθu,m(k) (k) Em(k)( cθ (k+1),k) 

as the minimizing control strategy. 
Then finally we obtain 
 

JdN(x0, ud, rd)=tr{
0i

Q
0i

X }+
0i

α (0)+E{
0R

E {2
0i

θ ’(0)x0}} 

+E{
1

0

N

k

−

=
∑

kR
E {| ˆ

du (k)-Dθu,m(k)(k)Em(k)(θ (k+1),k)
2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

≥tr{
0i

Q
0i

X }+
0i

α (0)+E{
0R

E {2
0i

θ ’(0)x0}} 

+ E{
1

0

N

k

−

=
∑

kR
E {|Dθu,m(k)(k)Em(k)( cθ

− (k+1),k)
2 , ( )

2
( )|

m kT k }}+E{ dJ (rd)} 

= JdN(x0, 
*ˆ
du , rd) 

 

 
which concludes the proof of sufficiency.  
Necessity: 

Because of arbitrariness of the reference signal rd(·), by considering the case of rd(·) ≡  0, one 
can easily deduce the necessity for the solvability of the stochastic LQ optimal tracking 
problem [Costa et al. (2005); Fragoso (1989)]. Also notice that, in the proof of sufficiency, on 
the process of the evaluation of the performance index, by getting rid of the mixed terms of 
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rd and x, or ( )m kθ  and x, we necessarily obtain the form of the preview compensator 
dynamics. (Q.E.D.) 

Appendix 2. Proof of Orthogonal Property (10) 

In this appendix we give the proof of the orthogonal property (10). 
We prove it by induction on k. 

For k=0, since ˆ
ex (0) is deterministic, 

 

E{
0R

E {e(0) ˆ
ex '(0)1{m(0)=i}}}= (0)iπ E{

0R
E {e(0)}} ˆ

ex '(0)=O. 

 
We have already shown that, for each k∈ [0,N], 
 

E{
kR

E {e(k) ,d cr '(k)1{m(k)=i}}}=O 

 
in section 4. Suppose  
 

E{
kR

E {e(k) ˆ
ex '(k)1{m(k)=i}}}=O. 

Then, since ωd(k) is zero mean, not correlated with  ˆ
ex (k) and  ,d cr (k) and independent of 

m(k), we have 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

1 {m k 1 i}

, d,i i i d,i i 2d,i{m k i}
( )

d,i i d,i d d,i i 2d,i{m k i}

d,i

ˆE {e k 1 ’ k 1  1 }

ˆA M C k E {e k ' k 1 } A M C ’ k

ˆ                   G M H k E { k ' k 1 } A M C ’ k  

                    A M

k

k

k

eR

d ij eR
i J k

eR

E x

p E x

E xω

+ + =

=
∈

=

+ +

⎡⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎢⎣

⎡ ⎤ ⎡ ⎤+ + +⎣ ⎦ ⎣ ⎦

+ +

∑

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

, *i 2d,i 2d,i{m k i}

, *d,i i d,i d 2d,i{m k i}

,d,i i 2d,i 3d,i{m k i}

d,i i

C k E {e k ' k 1 } B ’ k

                    G M H k E { k ' k 1 } B ’ k

                    A M C k E {e k ' k 1 } B ’ k

                   G M

k

k

k

d cR

d cR

d cR

E u

E u

E r

ω

=

=

=

⎡ ⎤⎣ ⎦

⎡ ⎤+ +⎣ ⎦

⎡ ⎤+ +⎣ ⎦

+ + ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

( ) ( )

,d,i d 3d,i{m k i}

d,i i 2d,i i{m k i}

d,i i d,i d i{m k i}

, d,i i 2d,i
( )

H k E { k ' k 1 } B ’ k

                    A M C k E {e k y' k 1 } M ’ k

                   G M H k E { k y' k 1 } M ’ k

A M C k E {e k y'

k

k

k

k

d cR

R

R

d ij R
i J k

E r

E

E

p E

ω

ω

=

=

=

∈

⎡ ⎤⎣ ⎦

⎡ ⎤− +⎣ ⎦

⎤⎡ ⎤− +⎣ ⎦ ⎥⎦

⎡ ⎤= − +⎣ ⎦∑ ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

i{m k i}

d,i i d,i d i{m k i}

k 1 } M ’ k

                    G M H k E { k y' k 1 } M ’ k
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E ω

=

=

⎡
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where  , *d cu (k)=F2,i(k) ˆ
ex (k) , i=1, ···,M. Notice that 

y(k)= C2d,m(k)(k)x(k)+Hd,m(k)(k)ωd(k)= C2d,m(k)(k)(e(k)+ ˆ
ex (k))+Hd,m(k)(k)ωd(k). 

 

Then, by induction on k, we obtain 
 

E{
kR

E {e(k)y’(k)1{m(k)=i}}}= E{
kR

E {e(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{
kR

E {e(k) ˆ
ex '(k)1{m(k)=i}}}C2d,i'(k) 

+ E{
kR

E {e(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

 =Yi(k)C2d,i'(k)     
 

We also obtain  

   E{
kR

E {ωd(k)y’(k)1{m(k)=i}}} 

                  = E{
kR

E {ωd(k)e'(k)1{m(k)=i}}}C2d,i'(k)+E{
kR

E {ωd(k) ˆ
ex '(k)1{m(k)=i}}}C2d,i'(k) 

                                    + E{
kR

E {ωd(k)ωd'(k)1{m(k)=i}}}Hd,i'(k) 

                  = E{ωd(k)ωd'(k)}P{m(k)=i}Hd,i'(k)= πi(k)Hd,i'(k). 
 

 
Then considering the assumption A4 Gd,i(k)Hd,i'(k) = O, i=1, ···,M, and  

Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)= - Ad,iYi(k)C2d,i’ 

by (11), we finally obtain 

E{
1kR

E
+

{e(k+1) ˆ
ex '(k+1) 1{m(k+1)=i}}} 

                  = ,
( )

d ij
i J k

p
∈
∑ [-[Ad,i+MiC2d,i](k)Yi(k)C2d,i'(k)-[Gd,i+MiHd,i](k)πi(k)Hd,i'(k)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)-Mi(k)(Hd,iHd,i’πi(k)+ C2d,iYi(k)C2d,i’)]Mi’(k) 

                  = ,
( )

d ij
i J k

p
∈
∑ [-Ad,iYi(k)C2d,i'(k)+ Ad,iYi(k)C2d,i’]Mi’(k) 

                  =0 

which concludes the proof. (Q.E.D.) 
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