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1. Introduction

The modeling of oscillators and their dynamics has interested researchers in many fields such
as those in physics, chemistry, engineering, and biology. The Hodgkin-Huxley (Hodgkin
& Huxley, 1952) and Fitzhugh-Nagumo models (FitzHugh, 1961), which corresponds
to the Bonhöffer van der Pol (BvP) equation, are well-known models of biological
neurons. They have been described by differential equations, i.e., they are continuous-time
relaxation oscillators. Discrete-time oscillators, e.g., one consisting of a recurrent neural
network (Haschke & Steil, 2005) and another consisting of a spiking neuron model (Rulkov,
2002), have been proposed.
Synchronization observed in coupled oscillators has been established to be an important
topic (Pikovsky et al., 2003; Waller & Kapral, 1984). Research on coupled oscillators
has involved studies on pattern formation (Kapral, 1985; Oppo & Kapral, 1986), image
segmentation (Shareef et al., 1999; Terman & Wang, 1995; Wang & Terman, 1995; 1997),
and scene analysis (Wang, 2005). Of these, a locally excitatory globally inhibitory oscillator
network (LEGION) (Wang & Terman, 1995), which is a continuous-time dynamical system,
has been spotlighted as an ingenious image-segmentation system. A LEGION can segment
an image and exhibit segmented images in a time series, i.e., it can spatially and temporally
segment an image. We call such processing dynamic image segmentation. A LEGION consists
of relaxation oscillators arranged in a two-dimensional (2D) grid and an inhibitor globally
connected to all oscillators and it can segment images according to the synchronization of
locally coupled oscillators. Image segmentation is the task of segmenting a given image so
that homogeneous image blocks are disjoined; it is a fundamental technique in computer
vision, e.g., object recognition for a computer-aided diagnosis system (Doi, 2007) in medical
imaging. The problem with image segmentation is still serious, and various frameworks have
been proposed (Pal & Pal, 1993; Suri et al., 2005) to solve this.
We proposed a discrete-time oscillator model consisting of a neuron (Fujimoto et al., 2008),
which was modified from a chaotic neuron model (Aihara, 1990; Aihara et al., 1990),
coupled with an inhibitor. Despite discrete-time dynamics as well as the recurrent neural
network (Haschke & Steil, 2005), a neuron in our oscillator can generate a similar oscillatory
response formed by a periodic point to an oscillation as observed in a continuous-time
relaxation oscillator model, e.g., the BvP equation. This is a key attribute in our idea.
Moreover, we proposed a neuronal network system consisting of our neurons (discrete-time
oscillators) arranged in a 2D grid and an inhibitor globally coupled to all neurons. As well as
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a LEGION, our neuronal network system can work as a dynamic image-segmentation system
according to the oscillatory responses of neurons. Our system provides much faster dynamic
image segmentation than a LEGION on a digital computer because numerical integration is
not required (Fujimoto et al., 2008). Another advantage of our system is that it simplifies
the investigation of bifurcations of fixed points and periodic points due to the discrete-time
dynamical system. A fixed point and a periodic point correspond to non-oscillatory and
periodic oscillatory responses. Knowledge on the bifurcations of responses allows us to
directly design appropriate system parameters to dynamically segment images. The assigned
system parameters are made available by implementing our dynamic image-segmentation
system into hardware such as field-programmable gate array devices (Fujimoto et al., 2011b).
This article describes the derivation of a model reduced from our dynamic
image-segmentation system that can simplify bifurcation analysis. We also explain our
method of bifurcation analysis based on dynamical systems theory. Through analysis in
reduced models with two or three neurons using our method of analysis, we find parameter
regions where a fixed point or a periodic point exists. We also demonstrate that our
dynamic image-segmentation system, whose system parameters were appropriately assigned
according to the analyzed results, can work for images with two or three image regions.
To demonstrate that segmentation is not limited to three in the system, we also present a
successive algorithm for segmenting an image with an arbitrary number of image regions
using our dynamic image-segmentation system.

2. Discrete-time dynamic image-segmentation system

2.1 Single neuronal system

Figure 1(a) illustrates the architecture of a system consisting of a neuron (Fujimoto et al., 2008)
and an inhibitor. Here, let us call it a single neuronal system. Our neuron model modified from
a chaotic neuron model (Aihara, 1990; Aihara et al., 1990) has two internal state variables, x
and y; z corresponds to the internal state variable of an inhibitor, in which x, y, z ∈ R with R

denoting the set of real numbers. Let the sum of internal state values in a neuron, i.e. x + y,
be the activity level of a neuron. The dynamics of the single neuronal system is described by
difference equations:

x(t + 1) = k f x(t) + d + Wx · g(x(t) + y(t), θc)− Wz · g(z(t), θz) (1a)

y(t + 1) = kry(t)− α · g(x(t) + y(t), θc) + a (1b)

z(t + 1) = φ
{

g
(

g(x(t) + y(t), θ f ), θd

)

− z(t)
}

. (1c)

The t ∈ Z denotes the discrete time where Z expresses the set of integers. g(·, ·) is the output
function of a neuron or an inhibitor and is described as

g(u(t), θ) =
1

1 + exp(−(u(t)− θ)/ε)
. (2)

Note that g(·, θd) where g(x(t) + y(t), θ f ) is nested in Eq. (1c) is neither output function, but a
function to find the firing of a neuron that corresponds to a high level of activity. Therefore, an
inhibitor plays roles in detecting a fired neuron and suppressing the activity level of a neuron
at the next discrete time. The k f , kr, and φ are coefficients corresponding to the gradient of x,
y, and z. The d denotes an external direct-current (DC) input. The Wx and α are self-feedback
gains in a neuron, and Wz is the coupling coefficient from an inhibitor to a neuron. The a is a
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bias term in a neuron. The θc and θz are threshold parameters in output functions of a neuron
and an inhibitor, respectively. Also, θ f and θd are threshold parameters to define the firing of
a neuron and to detect a fired neuron, respectively. The ε is a parameter that determines the
gradient of the sigmoid function (2) at u(t) = θ.
When we set all the parameters to certain values, our neuron can generate a similar oscillatory
response formed by a periodic point to an oscillation as observed in a continuous-time
relaxation oscillator model. For instance, the time evolution of a generated response, in
which this is a waveform, is shown in Fig. 1(b) for initial values, (x(0), y(0), z(0)) =
(32.108,−31.626, 0.222), at k f = 0.5, d = 2, Wx = 15, θc = 0, Wz = 15, θz = 0.5, kr = 0.89,
α = 4, a = 0.5, φ = 0.8, θ f = 15, θd = 0, and ε = 0.1. To clarify the effect of the inhibitor,
we have shown the activity level of the neuron and the internal state of the inhibitor on the
vertical axis in this figure. The points marked with open circles “◦” indicate the values of
x + y and z at discrete time t. Although the response of a neuron or an inhibitor is formed
by a series of points because of its discrete-time dynamics, we drew lines between temporally
adjacent points as a visual aid. Therefore, our neuron coupled with an inhibitor is available as
a discrete-time oscillator.

Neuron

Inhibitor

(x, y)

z

(a) Architecture
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(b) Oscillatory response

Fig. 1. Architecture of single neuronal system and generated oscillatory response

2.2 Neuronal network system

We have proposed a neuronal network system for dynamic image segmentation (Fujimoto
et al., 2008). Figure 2(a) outlines the architecture of our system for a 2D image with P
pixels. It is composed of our neurons that have as many pixels as in a given image and
an inhibitor that is called a global inhibitor because it is connected with all neurons. All
neurons are arranged in a 2D grid so that one corresponds to a pixel, and a neuron can have
excitatory connections to its neighboring neurons. Here, we assumed that a neuron could
connect to its four-neighboring ones. The formation of local connections between neighboring
neurons is determined according to the value of DC input to each neuron. Note that, we
can use our neuronal network system, in which neurons are arranged in a 3D grid so that
one neuron corresponds to a voxel, which means a volumetric picture element, as a dynamic
image-segmentation system for a 3D image.
The architecture for the ith neuron in a neuronal network system is illustrated in Fig. 2(b).
The open and closed circles at the ends of the arrows correspond to excitatory and inhibitory
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Output
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(b) The ith neuron

Fig. 2. Architecture of neuronal network system and a neuron

couplings. A neuron can receive external inputs from neighboring ones connected to it. An
external input from another neuron can induce in-phase synchronization in the responses
of connected neurons. Note that the number of external inputs in Fig. 2(b) indexed by g(xk +
yk, θc) is the same as that of the other neurons connected to the ith neuron; moreover, when the
DC-input value to the ith neuron is low, positive self-feedback vanishes and the neuron also
has no connection to the others. Wx/Mi and Wz in external inputs represent coupling weights;
the other Wx/Mi and α are feedback gains, where Mi denotes the number of connections to
the ith neuron and neighboring neurons. What Mi means will be explained later.
The dynamics of our neuronal network system is described as

xi(t + 1) = k f xi(t) + di + ∑
k∈Li

Wx

Mi
g(xk(t) + yk(t), θc)− Wz · g(z(t), θz) (3a)

yi(t + 1) = kryi(t)− α · g(xi(t) + yi(t), θc) + a (3b)

(i = 1, 2, . . . , P)

z(t + 1) = φ

{

g

(

P

∑
n=1

g(xn(t) + yn(t), θ f ), θd

)

− z(t)

}

. (3c)
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The g(·, ·) was already defined in Eq. (2). The third term on the right hand side of Eq. (3a)
denotes the ith neuron’s self-feedback and external inputs from neighboring neurons, in
which Li represents an index set for neurons connected to the ith one. Therefore, the maximum
number of elements in Li is five in the architecture in Fig. 2(a). The Mi expresses the number
of elements in Li. Note that, when the ith neuron has no connection to neighboring neurons
including itself, i.e., Mi = 0, we treat it as Wx/Mi = 0 because division by zero occurs.
As seen in Eq. (3c), the dynamics of a global inhibitor is improved from that in Eq. (1c) so
that it can detect one or more firing neurons; moreover, it suppresses the activity levels of all
neurons via negative couplings described at the fourth term in the right hand side of Eq. (3a).
Therefore, when we set all the parameter values in Eq. (3) to those described in Sec. 2.1, only
neurons with self-feedback can generate oscillatory responses.

2.3 Scheme of dynamic image segmentation

There is an image segmentation scheme using our neuronal network system in Fig. 3. For
simplicity, let us now consider a simple gray-level image with 3× 3 pixels. The image contains
two image regions consisting of the same gray-level pixels: the first is composed of the first
and fourth pixels, and the second is made up of only the ninth pixel.
Nine neurons are arranged in a 3 × 3 grid for the given image. The value of DC input, di, is
associated with the gray level of the ith pixels. A neuron with a high DC-input value forms
positive self-feedback and also connects to neighboring ones with similar DC-input values.
Therefore, the red and blue neurons in this schematic have positive self-feedback connections
and can generate oscillatory responses; the others corresponding to black pixels have no
self-feedback and do not fire. Direct connection is formed between the red neurons because
they correspond to pixels with the same gray levels, i.e., they have the same DC-input values.
As seen from the red waveforms in Fig. 3, direct connection induces in-phase synchronization
in the responses of coupled neurons. However, as seen from the red and blue waveforms,
the responses of uncoupled neurons corresponding to pixels in different image regions are
out of phase. This effect is produced by the global inhibitor that detects one or more firing
neurons and suppresses the activity levels of all neurons with its own kindling. By assigning

Input image
with 3x3 pixels

1

2

3

4

5

6 9

8

7

Pixels' indices Global inhibitor

Nine neurons arranged
in a 2D grid

Our neuronal network for
dynamic image segmentation

Oscillatory responses of neurons and global inhibitor

Output images exhibited in time series

Discrete time
t = tk t = tk+7 t = tk+14

Firing

Kindling

Fig. 3. Scheme of dynamic image segmentation using our system
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the ith pixel value in the output image at time t to a high value corresponding to the white
pixel only if xi(t) + yi(t) ≥ θ f , segmented images are output and are exhibited in a time
series. As a result, the given image is spatially and temporally segmented, i.e., dynamic image
segmentation is achieved.

3. Analysis for parameter design

3.1 Reduced model

Our neuronal network model has complex dynamics and a variety of nonlinear phenomena
such as synchronized neuron responses and bifurcations in these responses are therefore
expected to occur in our system. From the viewpoint of dynamical systems theory, detailed
analyses of the local and global bifurcations observed in our system would be interesting.
However, we have only concentrated on analysis to design appropriate parameter values for
dynamic image segmentation in this article, i.e., to find parameter regions where there are
stable non-oscillatory or periodic oscillatory responses.
First, we need to derive a reduced model to simplify bifurcation analysis. Let us consider
a dynamic image-segmentation system for a P-pixel image with Q image regions, where
generally Q ≪ P. A reduced model consists of a global inhibitor and Q neurons without
direct coupling to the others as illustrated in Fig. 4. Here, we call it a Q-coupled system.
A neuron in a Q-coupled system stands for neurons corresponding to all pixels in the same
image region in our original neuronal system in Fig. 2(a). This reduced model is derived from
three assumptions (Fujimoto et al., 2009b) in our dynamic image segmentation system for an
image with Q image regions: 1) all pixel values in an identical image region are the same;
viz., all neurons corresponding to pixels in an image region have the same DC-input values
and are locally coupled with one another, 2) the responses of all neurons corresponding to
pixels in an identical image region are synchronized in phase; this arises naturally from the
first assumption, and 3) connections from the global inhibitor to the neurons are negligible
because neurons corresponding to pixels with low gray-levels do not fire.
A non-oscillatory response and a periodic oscillatory response correspond to a fixed point and
a periodic point. Therefore, knowing about their bifurcations in a Q-coupled system allows
us to directly design appropriate parameter values to dynamically segment any sized image
with Q image regions.

…

An input image with
    isolated image regions

N1 N2 NQ

Q
GI

(x1, y1) (x2, y2) (xQ, yQ)

Fig. 4. Architecture of Q-coupled system and its correspondence to image with Q image
regions
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Now, let x(t) = (x1(t), y1(t), . . . , xQ(t), yQ(t), z(t))⊤ ∈ RV , where ⊤ denotes the transpose of
a vector. The dynamics of the Q-coupled system is described by a V-dimensional discrete-time
dynamical system where V = 2Q + 1 as

x(t + 1) = f (x(t)), (4)

or equivalently, an iterated map defined by

f : R
V → R

V ;x �→ f (x). (5)

The nonlinear function, f , describes the dynamics of the Q-coupled system given by

f

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

y1
...

xQ

yQ

z

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k f x1 + d1 + Wx · g(x1 + y1, θc)− Wz · g(z, θz)
kry1 − α · g(x1 + y1, θc) + a

...
k f xQ + dQ + Wx · g(xQ + yQ, θc)− Wz · g(z, θz)
kryQ − α · g(xQ + yQ, θc) + a

φ

{

g

(

Q

∑
n=1

g(xn + yn, θ f ), θd

)

− z

}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6)

where g(·, ·) was defined in Eq. (2).

3.2 Method of bifurcation analysis

A non-oscillatory response observed in the Q-coupled system corresponds to a fixed point of
f in Eq. (5), and a periodic oscillatory response is formed by a periodic point of f . Therefore,
we can find their local bifurcations for the change in a system parameter value using a method
of analysis based on qualitative bifurcation theory for discrete-time dynamical systems. The
results from analyzing bifurcation in a reduced model enabled us to design suitable parameter
values in our neuronal network system for dynamic image segmentation.
The following explains our method of analysis. Let us now consider a point, x∗, satisfying

x∗ − f (x∗) = 0. (7)

This is called a fixed point of f in Eq. (5) and corresponds to a non-oscillatory response
observed in the Q-coupled system. The characteristic equation of x∗ is defined as

det (µE − Df (x∗)) = 0, (8)

where E and Df (x∗) correspond to the V ×V identity matrix and the Jacobian matrix of f at
x = x∗. Moreover, the roots of Eq. (8), i.e., characteristic multipliers, are described as

{µ1, µ2, . . . , µV} =
{

µi ∈ C
∣

∣ det (µE − Df (x∗)) = 0
}

, (9)

where C denotes the set of complex numbers. When the values of all |µi|s are neither unity
nor zero, we say that x∗ is hyperbolic. Now, let us assume x∗ is a hyperbolic fixed point. Let
U be the intersection of RV and the direct sum of the generalized eigenspaces of Df (x∗) such
that |µi| > 1, ∀i; U is called the unstable subspace of RV . Moreover, let H = Df (x∗)|U . The
topological type of a hyperbolic fixed point is classified according to the value of dimU and
the sign of detH (Kawakami, 1984).
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A hyperbolic fixed point bifurcates when its stability is varied, or more correctly its topological
type is changed, according to variations in a system parameter value; change in a topological
type occurs when one or more characteristic multipliers are on the unit circle in the complex
plane. There are generally three types of co-dimension-one bifurcations, i.e., tangent
(saddle-node), period-doubling, and Neimark-Sacker bifurcations. D-type of branching
(pitchfork bifurcation) can also appear as a degenerate case of tangent bifurcation in only a
dynamical system that is symmetrical. Tangent bifurcation or D-type of branching appears if
µ = +1, period-doubling bifurcation occurs when µ = −1, and Neimark-Sacker bifurcation
is generated when µ = ejϕ, where j =

√
−1 except for µ = ±1.

A bifurcation point of x∗ is computed by solving simultaneous equations consisting of Eqs. (7)
and (8) as the values of x∗ and a system parameter are unknown; we employed Newton’s
method for the numerical determination. The Jacobian matrix of the simultaneous equations
used in Newton’s method is derived from the first and second derivatives of f . Note that, in
Eq. (7), a fixed point, x∗, becomes an m-periodic point by replacing f with fm, which denotes
the m-times iteration of f , where m is a natural number such that m ≥ 2. We can define an
m-periodic point and its bifurcations according to fm; moreover, we can numerically compute
the bifurcation points of an m-periodic point as well as those of a fixed point.
As previously mentioned, we focused on bifurcation analysis to design suitable parameter
values for our dynamic image segmentation system. Therefore, we will next illustrate
parameter regions where there are stable fixed or stable periodic points in two-parameter
bifurcation diagrams.

3.3 Results of analysis

We will now illustrate parameter regions where there are stable fixed or periodic points with
our method of analyzing bifurcations. Knowing about the bifurcations allows us to directly
set system-parameter values that yield successful results for dynamic image segmentation.
We treated a single neuronal system and two- and three-coupled systems and set the system
parameter values in Eqs. (2) and (6) except for kr, φ, and dis to ε = 0.1, k f = 0.5, Wx = 15,
θc = 0, Wz = 15, θz = 0.5, α = 4, a = 0.5, θ f = 15, and θd = 0. In the bifurcation diagrams
that follow, we used symbols Gm

ℓ
, Im

ℓ
, NSm

ℓ
, and Dm

ℓ
to denote tangent, period-doubling,

and Neimark-Sacker bifurcations, and D-type of branching for an m-periodic point. The
subscript series number ℓ was appended to distinguish bifurcation sets of the same type for
an m-periodic point. Note that these symbols indicate bifurcations of a fixed point if m = 1.

3.3.1 Single neuronal system

This is the reduced model of a dynamic image segmentation system for an image with only
one image region. Its architecture is outlined in Fig. 1(a). It may seem that the analysis of
bifurcations observed in this reduced model is meaningless for dynamic image segmentation.
However, the existence of a fixed point in this model leads to considerable knowledge to
devise an algorithm for dynamic image segmentation as will be explained later.
We set d = 2 and used kr and φ as unfixed parameters to analyze bifurcation. As shown in
Fig. 1(b), an oscillatory response was observed in this model with kr = 0.89 and φ = 0.8.
Moreover, we found a stable fixed point, x∗ = (32.244,−23.333, 0.22222), at kr = 0.85 and φ =
0.8. We investigated a parameter region where there was a stable fixed point and also found
the genesis of the oscillatory response (Fujimoto et al., 2009b).
Figure 5 shows a two-parameter bifurcation diagram on a fixed point in the (kr, φ)-plane. We
found three Neimark-Sacker bifurcation sets and located the shaded parameter region where
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there was a stable fixed point. When we gradually changed the value of kr under φ = 0.8 so
that the parameter point passed through the bifurcation line indexed by NS1

1 from the shaded
region to the non-shaded region, the stable fixed point destabilized on the Neimark-Sacker
bifurcation line. As a result, an oscillatory response was generated as seen in Fig. 6. In the
numerical simulation, we set kr = 0.88975 and φ = 0.8 that correspond to the parameter
point in the neighborhood at right of NS1

1 in Fig. 5; the initial values were set to x(0) =
(32.10,−31.58, 0.2222), which is in the vicinity of the destabilized fixed point. That is, this
figure gives the time evolution in the transient state that starts from the destabilized fixed
point to generate an oscillatory response. Although we observed an oscillatory response in
the other non-shaded region surrounded by NS1

2 and NS1
3, it is not suited to dynamic image

segmentation because of its small amplitude and short period.

φ
−
→

kr −→

NS
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NS
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1
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1

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 5. Bifurcations of fixed point observed in single neuronal system
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Fig. 6. Oscillatory response caused by Neimark-Sacker bifurcation of stable fixed point

3.3.2 Two-coupled system

This two-coupled system consists of a global inhibitor and two neurons without direct
coupling to other neuron. This was derived as a reduced model of our scheme to dynamically
segment an image with two image regions.
Here, the unfixed parameters were set to d1 = d2 = 2, which means that all pixel values in
the two image regions are the same. Therefore, this system is symmetrical for the exchange of
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(x1, y1) and (x2, y2) from Eq. (6) at d1 = d2. The kr and φ were used as unfixed parameters in
the analysis of bifurcation that is discussed below.
First, we investigated the bifurcations of a fixed point in a symmetrical two-coupled
system (Fujimoto et al., 2009b) where we observed a stable fixed point, x∗ =
(32.244, 32.244,−23.333,−23.333, 0.222), at kr = 0.85 and φ = 0.8. The occurrence of a fixed
point is adverse for dynamic image segmentation because only black images are output; this
means dynamic image segmentation has failed. By analyzing bifurcation for the fixed point,
we obtained the two-parameter bifurcation diagram in Fig. 5, i.e., this is the same as that for
the results obtained for the fixed point in the single neuronal system.
We observed two types of oscillatory responses formed by periodic points at kr = 0.89 and
φ = 0.8. Figure 7 shows in-phase and out-of-phase oscillatory responses in which the blue
and red points correspond to the responses of the first and second neurons. To understand
their phases better, we also drew phase portraits.
Figure 8(a) illustrates bifurcation sets of several in-phase periodic points, and the line marked
NS1

1 at the bottom left corresponds to the Neimark-Sacker bifurcation set of the fixed point.
As seen in the figure, we found the tangent bifurcations of in-phase periodic points. There is
a stable in-phase m-periodic point in the shaded parameter region surrounded by Gm

1 and Gm
2

for m = 60, 61, . . . , 70. Therefore, in-phase periodic points could be observed in the shaded
parameter regions in the right parameter regions of NS1

1. Note that in-phase periodic points
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(a) In-phase oscillatory response
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(b) Out-of-phase oscillatory response

Fig. 7. Different types of oscillatory responses observed in symmetric two-coupled system at
kr = 0.89 and φ = 0.8

are inappropriate for dynamically segmenting an image with two image regions (Fujimoto
et al., 2009b).
Next, we investigated the bifurcations of out-of-phase periodic points on the
(kr, φ)-plane. (Musashi et al., 2009). As shown in Fig. 8(b), their tangent bifurcations
and D-type of branchings were found. For example, there are stable out-of-phase m-periodic
points in the shaded parameter region surrounded by Gm

ℓ
and Dm

1 for m = 30, 32, 34, 36 for
the observed periodic points. Note that the overlapping parameter region indicates that
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Fig. 8. Bifurcations of perodic points observed in symmetric two-coupled system
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Fig. 9. Out-of-phase oscillatory response observed in asymmetric two-coupled system at
kr = 0.85 and φ = 0.8

out-of-phase periodic points coexist. The whole parameter region where there are stable
out-of-phase periodic points is much wider than that of stable in-phase periodic points.
This is favorable for dynamic image segmentation, because an in-phase periodic point is
unsuitable and an out-of-phase periodic point is suitable.
We set d1 �= d2 in the two-coupled system, and therefore, the symmetry for the exchange of
(x1, y1) and (x2, y2) in Eq. (6) is lost. This asymmetric two-coupled system corresponds to a
situation where an input image contains two image regions of different colors. No symmetric
periodic points occur in this system; however, we could observe the asymmetric out-of-phase
periodic point shown in Fig. 9. Note that it is difficult to determine whether a periodic point is
symmetric only from waveforms and phase portraits; however, this is not important because
the feasibility of dynamic image segmentation is not dependent on whether there is symmetry
or not but on the number of phases in a periodic point.
Figure 10(a) shows bifurcation sets of out-of-phase periodic points observed at d1 = 2 and
d2 = 1.9. Different from the symmetric system, D-type of branching never appeared due to
the asymmetric system; instead, period-doubling bifurcations were found. Comparing the
extent of all the shaded parameter regions in Figs. 8(b) and 10(a), the asymmetric system is
as wide as the symmetric system. Moreover, we set d1 = 2 and φ = 0.8 and investigated
their bifurcations on the (kr, d2)-plane as seen in Fig. 10(b). This indicates that there were
stable out-of-phase periodic points even if the value of |d1 − d2| was large; in other words, the
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difference between the gray levels of the pixels in the two image regions is large. This is also
favorable for a dynamic image segmentation system.
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(b) Case of d1 = 2 and φ = 0.8

Fig. 10. Bifurcations of out-of-phase perodic points observed in asymmetric two-coupled
system

3.3.3 Three-coupled system

This model is composed of a global inhibitor and three neurons without direct coupling to
the others and was derived as a reduced model of our dynamic segmentation of an image
containing three image regions. As well as the aforementioned reduced models, we drew
several two-parameter bifurcation diagrams to find the parameter regions such that a stable
fixed point or a stable m-periodic point existed.
When we set d1 = d2 = d3 = 2, the three-coupled system was symmetric for a
circular exchange of (xi, yi) for (xi+1, yi+1), i = 1, 2, 3 where the value of i + 1 returns
to 1 if i = 3. In this symmetric system, we found a stable fixed point, x∗ =
(32.244,−29.167, 32.244,−29.167, 32.244,−29.167, 0.222), at kr = 0.88 and φ = 0.8. In
the results we investigated, we found the bifurcation diagram on the fixed point on the
(kr, φ)-plane was the same as the one in Fig. 5. Moreover, as well as those in the symmetric
two-coupled system, we could observe in-phase oscillatory responses in only the right hand
side region of NS1

1. The waveform of an in-phase oscillatory response and its phase portraits
are shown in Fig. 11(a), where the blue, red, and green points correspond to the responses of
the first, second, and third neurons. The results suggest that the Neimark-Sacker bifurcation
set, NS1

1, causes in-phase oscillatory responses to generate and these are similar to those of the
symmetric two-coupled system (Fujimoto et al., 2009b; Musashi et al., 2009). Therefore, this
implies that the global bifurcation structure of a fixed point and the generation of in-phase
oscillatory responses are intrinsic properties of the symmetric Q-coupled system.
We also observed several oscillatory responses in certain parameter regions. Figures 11(b)
and 11(c) show a two-phase and a three-phase periodic points. For the following reasons, we
only focused on the bifurcations of three-phase periodic points that were appropriate for
dynamically segmenting an image with three image regions.
Figure 13 shows bifurcation sets of three-phase periodic points observed in the symmetric
system. Tangent, period-doubling, and Neimark-Sacker bifurcations were observed. The
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(a) In-phase oscillatory response
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(b) Two-phase oscillatory response
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(c) Three-phase oscillatory response

Fig. 11. Different types of oscillatory responses observed in symmetric three-coupled system
at d1 = d2 = d3 = 2, kr = 0.89, and φ = 0.8
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Fig. 12. Three-phase oscillatory response observed in asymmetric three-coupled system at
d1 = 2, d2 = 1.9, d3 = 1.8, kr = 0.89, and φ = 0.8

respective periodic points are symmetrical for the aforementioned circular exchange.
However, as seen in Fig. 13, we could find no D-type of branching in these investigations.
There is a stable three-phase periodic point in each shaded parameter region. Compared
with the extent of the entire shaded parameter region in Fig. 8(b), that of the three-phase
periodic points is small; however, it is sufficient to design the parameters of our dynamic
image segmentation system.
Next, we set d1 �= d2 �= d3, i.e., this model is asymmetric. Although this three-coupled
system loses symmetry, there is a three-phase periodic point in certain parameters as shown in
Fig. 12. We investigated the bifurcations of several three-phase periodic points observed in the
asymmetric system and drew two bifurcation diagrams. Figure 14(a) shows the bifurcation
sets of three-phase periodic points on the (kr, φ)-plane. Of course, we found no D-type of
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Fig. 13. Bifurcations of three-phase periodic points observed in symmetric three-coupled
system
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Fig. 14. Bifurcations of three-phase periodic points observed in asymmetric three-coupled
system

branching because of the asymmetric system. There is a stable three-phase periodic point in
each parameter region shaded by a pattern. The shape and size of the whole shaded parameter
region where there are three-phase periodic points are similar to those in Fig. 13.
As seen in Fig. 14(b), we also computed the bifurcations of three-phase periodic points
observed at d1 = 2, d2 = 1.9, and φ = 0.8 on the (kr, d3)-plane. As we can see from the figure,
there are several stable three-phase periodic points even if the value of d3 is set as small as 1.5.
This suggests that our dynamic image-segmentation system can work for an image with three
regions having different gray levels.

4. Application to Dynamic Image Segmentation

We demonstrated successful results for dynamic image segmentation carried out by our
system with appropriate parameter values according to the results analyzed from the two- and
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three-coupled systems. Our basic concept was that we assigned system parameters to certain
values such those in-phase oscillatory responses, which are unsuitable for dynamic image
segmentation. They do not appear but a multiphase periodic point with as many phases as
image regions does occur.

4.1 Image with two image regions

Let us consider a dynamic image segmentation problem for the 8-bit gray-level image with
256 × 256 pixels shown in Fig. 15(a). This is a slice from the X-ray CT images of the human
head from the Visible Human Dataset (Ackerman, 1991). Using a thresholding method, we
transformed the gray-level CT image into a binary image in preprocessing with ∀i, pi =
{0, 255}, where pi denotes the ith pixel value. Here, the black and white correspond to 0
and 255. The process image contains the two white image regions shown in Fig. 15(b). The
upper region corresponds to teeth and the mandible bone, and the lower regions indicate the
cervical spine.
We need a neuronal network system to segment the binary image consisting of 256 × 256
neurons and a global inhibitor. The DC-input value to the ith neuron, di, was set to 2.0 for
neurons corresponding to pixels in the two white image regions based on di = 2pi/255.
Therefore, we can design system-parameter values according to the analyzed results for the
symmetric two-coupled system in Figs. 5 and 8.
Based on the information in the bifurcation diagrams, we set the two unfixed parameters to
kr = 0.885 and φ = 0.8, which correspond to a parameter point in the left neighborhood of
NS1

1 in Fig. 5, so that no in-phase oscillatory responses appear from any initial values but a
fixed point or an out-of-phase 36-periodic point does occur. Note that, any of the out-of-phase
periodic points in Fig. 8(b) are available for dynamic image segmentation, and the period
of the periodic point used in dynamic image segmentation corresponds to the period each
segmented image appeared in output images that were exhibited in a time series.
The binarized image was input to our dynamic image segmentation system with 256 × 256
neurons and a global inhibitor. According to an out-of-phase 36-periodic point, our system
output images in the time series shown in Fig. 15(c), i.e., images were dynamically segmented
successfully. Note that the output images sequentially appeared from the top-left to the
bottom-right, and they also began to appear in each line from the left; moreover, output
images corresponding to state variables in the transient state were removed. We confirmed
from the series of output images that the period where each image region appeared was 36.

4.2 Image with three image regions

We considered the 8-bit gray-level image with 128× 128 pixels shown in Fig. 16(a). It has three
image regions: a ring shape, a rectangle, and a triangle. To simplify the problem, the color in
each image region was made into a monotone in which the pixel values were 255, 242, and 230
so that these values corresponded to d1 = 2, d2 = 1.9, and d3 = 1.8 according to di = 2pi/255.
To dynamically segment the target image, we needed a neuronal network system consisting
of 128 × 128 neurons and a global inhibitor. The DC-input value to the ith neuron, di, was
set to 2.0 for neurons corresponding to pixels in the ring shape, 1.9 for those in the rectangle,
and 1.8 for those in the triangle. The neuronal network system with 128 × 128 neurons could
be regarded as an asymmetric three-coupled system. Therefore, according to the analyzed
results in Fig. 14, e.g., we set the unfixed parameter values to kr = 0.875 and φ = 0.8 such that
a three-phase 25-periodic point occurred in the asymmetric three-coupled system.
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(a) CT image (b)
Binarization

(c) Output images in time series

Fig. 15. Results of dynamic image segmentation based on out-of-phase oscillatory response

In trials for randomly given initial values, we achieved a successful result where three image
regions appeared separately, as shown in Fig. 16(b). In addition, because the output images
were generated according to a three-phase 25-periodic point observed in the asymmetric
three-coupled system, we confirmed that the period where each image region appeared was
25. Note that we removed output images corresponding to state variables in the transient
state. Our neuronal network system could work for a simple gray-level image with three
image regions.

4.3 Image with many image regions

To segment an image with an arbitrary number of image regions using our dynamic
image-segmentation system in one process, it is necessary for a multiphase periodic oscillatory
response with as many phases as image regions to appear. As far as our investigations
were concerned, however, it was difficult to generate a multiphase periodic point with many
phases. Therefore, we proposed an algorithm that successively and partially segments an
image.
Here, according to the previously mentioned results obtained from analysis, we considered
a successive algorithm that partially segmented many image regions using two- and
three-phase oscillatory responses. We let the gray-level image with five image regions in
Fig. 17(a) be the target that should be segmented. To simplify the segmentation problem, we
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(a) Target image

(b) Output images in time series

Fig. 16. Results of dynamic image segmentation based on three-phase oscillatory response

assumed that all pixels in an identical image region would have the same gray levels. Based
on the analyzed results for two- and three-coupled systems, we set the system parameters to
certain values such that no in-phase oscillatory responses occurred but a fixed point or a two-
or three-phase oscillatory responses appeared.
We could obtain the three segmented images in Figs. 17(b)–(d) in the first step from the input
image in Fig. 17(a) if a three-phase oscillatory response appeared. Note that the segmented
images were extracted from output images in a time series by removing duplicate images and
all black images.
Each segmented image in Figs. 17(b)–(d) became an input image for our system in the next
step. We obtained the two images in Figs. 17(e) and 17(f) in this step from the input image
in Fig. 17(b) using a two-phase oscillatory response; as well as this process, we also obtained
the two images in Figs. 17(g) and 17(h) from the input image in Fig. 17(c) according to the
two-phase response; whereas we obtained no output images from the input image in Fig. 17(d)
because the system to segment the image corresponded to a single neuronal system, and a
fixed point always appeared under the system-parameter values we assigned. Therefore, the
segmentation of the image in Fig. 17(d) was terminated in this step.
The four images with only one image region in Figs. 17(e)–(h) are input images in the third
step. As previously mentioned, we obtained no output images for an input image with only
one image region. Therefore, our successive algorithm was terminated at this point in time.
Thus, we could segment an image with an arbitrary number of image regions based on the
successive algorithm.
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no image no image no image no image no image

Segmentation by three-phase oscillatory response

Segmentation by two-phase oscillatory response

Appearance of fixed point corresponding to non-oscillatory response

Fig. 17. Schematic diagram of successive algorithm using our dynamic image-segmentation
system

5. Concluding remarks

We introduced a discrete-time neuron model that could generate similar oscillatory responses
formed by periodic points to oscillations observed in a continuous-time relaxation oscillator
model. The scheme of dynamic image segmentation was illustrated using our neuronal
network system that consisted of our neurons arranged in a 2D grid and a global inhibitor.
Note that we suggested that a neuronal network system where neurons are arranged in a 3D
grid can be applied to segmenting a 3D image.
Images were dynamically segmented according to the responses of our system, and therefore,
knowing about the bifurcations of the responses allowed us to directly set system-parameter
values such that appropriate responses for dynamic image segmentation would appear. We
derived reduced models that simplified our analysis of bifurcations observed in our neuronal
network system and we found parameter regions where there was a non-oscillatory response
or a periodic oscillatory response in the reduced models. According to the analyzed results,
we set system parameters to appropriate values, and the designed system could work for two
sample images with two or three image regions. Moreover, to segment an image with many
image regions, we proposed a successive algorithm using our dynamic image-segmentation
system.
We encountered three main problems that should be solved to enable the practical use of our
dynamic image-segmentation system:

1. Development of a method that can form appropriate couplings between neurons for a
textured image and a gray-level image containing gradation.
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2. Development of a method that can give initial values to neurons and a global inhibitor so
that an appropriate response will always appear.

3. Development of a method or system that can provide fast processing using our system to
segment a large-scale image and a 3D image within practical time limits.

To solve the first problem, we proposed a dynamic image-segmentation system with a
method of posterization (Zhao et al., 2003) used as preprocessing (Fujimoto et al., 2009a;
2010). However, their method of posterization involves high computational cost and a
large memory, we are considering a neuronal network system with plastic couplings as
weight adaptation (Chen et al., 2000). We proposed a solution to the second problem with
a method that avoids the appearance of non-oscillatory responses (Fujimoto et al., 2011a).
However, toward an ultimate solution, we are investigating parameter regions such that no
inappropriate responses appear through bifurcation analysis. An implementation to execute
our dynamic image-segmentation system on a graphics processing unit is in progress as a
means of rapid processing.
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field, we also believe that the topics described here allow us also to look through some main tendencies in the

next years in the research area.
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