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1. Introduction 

Embryonic stem cells (ESCs) are derived from preimplantation embryos and are capable of 

both long-term proliferation (self-renewal) and differentiation into cell types of all three 

germ layers (pluripotency). The self-renewal and pluripotency of ESCs are sustained by 

certain essential transcription factors. Intriguingly, the viral transduction of these 

transcription factors into differentiated adult somatic cells results in reprogramming of the 

developmental process that the somatic cells have undergone. Consequently, pluripotent 

cells similar to ESCs, termed induced pluripotent stem cells, can be artificially established 

from specialized cells. These two types of pluripotent stem cells (PSCs) have held the 

promise of providing customized tissue replacements as well as platforms for drug 

screening since they were derived from human tissues and embryos. However, the 

heterogeneous nature of PSC cultures, which may reflect the plasticity of early embryonic 

cells, hampers the establishment of a definitive and reproducible culture microenvironment. 

In addition, the induction of PSC differentiation is dependent on random events and 

generates heterogeneous populations of specialized cells. Furthermore, PSCs, by definition, 

are able to generate benign tumors called teratomas, which consist of cell types of three 

germ layers. To prevent the growth of teratomas in therapeutic transplanted tissue 

replacements, it is necessary to establish techniques for efficiently manipulating cell fate 

decisions in PSCs and to understand the mechanism responsible for tumorigenesis in the 

stem cells. To our surprise, the mechanism of teratoma formation from PSCs has received 

little attention to date. Thus, in order to better understand self-renewal, pluripotency and 

tumorigenesis in PSCs, this chapter will address the following three simple but overlooked 

questions:   

1. Does every pluripotent stem cell possess identical self-renewal capability? 
2. Are current standard culture conditions optimal for maintaining pluripotent stem cells? 
3. Is tumorigenesis an inherent feature of cellular pluripotency? 
Accumulating experimental evidence, including our recent studies using mouse ESCs as a 
model, indicates that the self-renewal of PSCs can be easily compromised by extrinsic 
factors in the culture microenvironment that can turn the stem cells tumorigenic. Thus, the 
safety of PSC-based therapy may be significantly improved by more careful manipulation 
and definition of the cellular microenvironment. 
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2. Pluripotent stem cells generate heterogeneous populations 

2.1 Pluripotent stem cells  
Pluripotent stem cells (PSCs) are an excellent model to study mechanisms of cellular 
pluripotency and differentiation in vitro because of their capacity for self-renewal and their 
capability to become most kinds of specialized cells, including germ cells. The identification 
and characterization of a mouse strain that naturally develops testicular teratoma (Stevens & 
Little, 1954; Stevens, 1973) contributed to demonstrating that teratomas originate from PSCs 
(Solter, 2006). A benign teratoma, normally found in 1 out of 40,000 live births (Barksdale & 
Obokhare, 2009), is a “monstrous“ tumor consisting of specialized cells derived from all 
three germ layers (ectoderm, mesoderm and endoderm). The first PSCs, embryonic 
carcinoma cells (ECCs), were derived from malignant teratocarcinomas, which were 
experimentally generated by transplantation of peri-implantation embryos into the testes of 
host animals (Stevens, 1970). ECCs are transplantable, in that they will develop into 
teratocarcinomas when transplanted. Because ECCs are pluripotent, the original study 
established an in vitro system to study the cell fate decision mechanism. Furthermore, this 
study indicated that there could be another kind of PSCs in early embryos that could be 
directly established by in vitro culture, but not by transplantation, of early embryos. During 
mouse preimplantation development, the first cell differentiation event gives rise to the 
pluripotent inner cell mass (ICM) and the lineage-committed trophectoderm. When cultured 
on embryonic fibroblasts, the ICM gives rise to pluripotent stem cells. Mouse embryonic 
stem cells (ESCs) were successfully derived in 1981 (Martin, 1981; Evans & Kaufman, 1981) 
and have been the primary model used to investigate mechanisms of cell fate decision. 
Similar PSCs were later established from primordial germ cells, namely embryonic germ 
cells (Matsui et al., 1992). These studies on mouse embryos paved the way for the derivation 
of embryonic stem and germ cells from human embryos (Thomson et al., 1998; Shamblott et 
al., 1998). The derivation of PSCs from human embryos shed light on regenerative medicine 
and helped to expand this field of research (Tanaka, 2010). ESCs have been derived from a 
variety of species (Tanaka, 2010). Studies on self-renewal and pluripotency using ESCs 
further enabled the establishment of other kinds of PSCs, including early primitive 
ectoderm-like stem cells (EPLCs; Rathjen et al., 1999) and epiblast-derived stem cells 
(EpiSCs; Brons et al., 2007; Tesar et al., 2007). Because EpiSCs are derived from, and EPLCs 
are thought to be equivalent to, cells of post-implantation embryos, their capabilities to 
generate differentiated cells are more restricted than those of ESCs (Hiratani et al., 2010). 
That is, embryonic development proceeds by restricting a cell’s ability to generate 
specialized cells. Therefore, a method to erase such acquired restrictions in specialized cells 
was sought in order to restore differentiated cells to the pluripotent state. This was first 
achieved by transferring somatic cell nuclei into enucleated oocytes (Briggs & King, 1952; 
Campbell et al., 1996; Wakayama et al., 1998; Rideout et al., 2002; Gurdon & Melton, 2008). 
Intriguingly, recent studies have shown that delivering extra copies of four transcription 
factors that orchestrate self-renewal and pluripotency into differentiated cells results in the 
reprogramming of the specialized cells into PSCs, called induced pluripotent stem cells 
(iPSCs; Takahashi & Yamanaka, 2006). Since the successful derivation of iPSCs from human 
cells (Takahashi et al., 2007; Yu et al., 2007), iPSCs have been considered to hold great 
potential for developing customized replacement tissues and for providing platforms for 
drug screening. However, cells differentiated from PSCs in vitro that have been transplanted 
into animal disease models (for example, Kerr et al., 2003; Brederlau et al., 2006; Jomura et al., 
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2007) tend to develop into teratomas due to residual populations of undifferentiated PSCs. 
Thus, a better understanding of extrinsic and intrinsic factors involved in cell fate decisions 
and tumorigenesis in PSCs is necessary to significantly improve iPSC-based stem cell 
therapy.  

2.2 Extrinsic factors for maintenance of self-renewal 
The derivation of ESC lines from human and mouse embryos could not have been 
accomplished without feeder layers of embryonic fibroblasts. Although cultured ECCs do not 
require a layer of feeder cells for growth, both embryonic germ cell and iPSC cultures do. 
Interestingly, conditioned medium (CM) from embryonic fibroblasts was sufficient to support 
the culture of undifferentiated mouse ESCs in the absence of feeder layers (Smith & Hooper, 
1983). Analysis of components in CM led to the identification of the leukemia inhibitory factor 
(LIF) as a differentiation inhibitor (Smith et al., 1988; Williams et al., 1988). These studies laid 
the foundation for investigating the dependence of self-renewal and pluripotency of ESCs on 
other extrinsic factors. In addition to LIF, the maintenance of mouse ESC culture requires Bone 
morphogenetic protein 4 (Bmp4; Ying et al., 2003), vitamin A (retinol and retinoic acid; Chen & 
Khillan, 2008; Wang et al., 2008; Chen & Khillan, 2010), threonine (Wang et al., 2009) and a 
decreased oxidation state (Yanes et al., 2010). The existence of another extrinsic factor 
independent from the LIF/Stat3 signal, namely ES cell renewal factor, has also been postulated 
(Dani et al., 1998). The supplementation of basal culture media with animal sera, such as fetal 
bovine serum (FBS), provides all of these extrinsic factors except LIF. Although human ESCs 
are similar to mouse ESCs with respect to their self-renewal and pluripotency, the extrinsic 
factors necessary for mouse ESC culture failed to support the culture of human ESCs. For 
example, the combination of LIF and serum could not support long-term self-renewal of 
human ESC lines (Bongso et al., 1994). Furthermore, Bmp4 promoted differentiation of human 
ESCs into trophoblasts (Xu et al., 2002), whereas long-term proliferation of these cells was 
maintained in the presence of Noggin, an antagonist of Bmp4 (Wang et al., 2005; Xu et al., 
2005b). Instead, the maintenance of human ESC self-renewal and pluripotency mainly relies on 
basic fibroblast growth factor (bFGF; Xu et al., 2005a). In addition, members of the 
transforming growth factor β (TGFβ) superfamily, especially TGFβ, activin and Nodal, are 
essential for maintaining the pluripotency of human ESCs in combination with bFGF (Beattie 
et al., 2005; James et al., 2005; Vallier et al., 2005). Mouse and human iPSCs exhibit dependency 
on extrinsic factors similar to mouse and human ESCs, respectively. Mouse and rat EpiSCs are 
dependent on activin and bFGF to sustain self-renewal and pluripotency, and thus human 
ESCs are more similar to these EpiSCs. These discrepancies are attributed to differences in 
development between mouse and human embryos, even though mouse and human ESCs 
have been derived from embryos at similar developmental stages. Very interestingly, it has 
been suggested that the reprogramming process makes human iPSCs more similar to mouse 
ESCs (Hanna et al., 2010). ECCs do not exhibit dependency on extrinsic factors, whereas the 
maintenance of embryonic germ cells requires LIF, bFGF and the c-Kit ligand, Steel factor 
(Matsui et al., 1991; Matsui et al., 1992). Thus, signals from these extrinsic factors may converge 
in maintaining the activity of a common set of intrinsic genetic factors that define cellular 
“stemness“. 

2.3 Intrinsic factors to maintain self-renewal 
Maintenance of the self-renewal and pluripotency of mouse ESCs relies on the activity of the 

downstream target of the LIF signal, the Stat3 transcription factor (Niwa et al., 1998; 
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Matsuda et al., 1999). However, key players further downstream of Stat3 are essential for 

these processes because the LIF/Stat3 signaling pathway is not required for the maintenance 

of pluripotent cells in developing embryos or for the self-renewal and pluripotency of 

human ESCs (Dani et al., 1998; Tanaka, 2009). This pathway may interact with the 

transcription factors Oct3/4/ Pou5f1 (Nichols et al., 1998; Niwa et al., 2000), Sox2 (Avilion et 

al., 2003; Masui et al., 2007), Nanog (Chambers et al., 2003; Mitsui et al., 2003), Klf4 (Li et al., 

2005) and c-Myc (Cartwright et al., 2005). In a steady state, a balance of the relative 

expression levels of these genes is essential for fate decisions of mouse ESCs (Fujikura et al., 

2002; Niwa et al., 2005). The genetic network of these transcription factors and the expression 

of their downstream target genes have been elucidated by genomic approaches (Ivanova et 

al., 2002; Ramalho-Santos et al., 2002; Tanaka et al., 2002; Boyer et al., 2005; Loh et al., 2006; 

Matoba et al., 2006; Walker et al., 2007). These genomic approaches revealed that cellular 

pluripotency is characterized by the expression of a unique set of genes that suppress 

transcripts associated with cellular differentiation. Recently, the self-renewal of mouse ESCs 

was shown to be maintained by simple pharmacological inhibition of Erk, which is 

downstream of FGF receptors, and the inhibition of Gsk3β activity (Ying et al., 2008). 

Because mouse ESCs express Fgf4 (Wilder et al., 1997), these studies indicate that ESCs 

maintain self-renewal by competing against their own differentiation-inducing signals. 

Mouse and human ESCs express Wnt (Nordin et al., 2008; Lako et al., 2001; Okoye et al., 

2008), which is the biological inhibitor of Gsk3β, and the pharmacological inhibition of 

Gsk3β alone promotes self-renewal of both mouse and human ESCs (Sato et al., 2004) as well 

as derivation of ESCs from the ICM (Umehara et al., 2007). However, exogenous Wnt 

promotes the differentiation of mouse (Lindsley et al., 2006) and human (Wang & 

Nakayama, 2009) ESCs. Thus, the role of Wnt in the self-renewal of ESCs requires further 

investigation. Finally, a comparison of global gene expression profiles of mouse ESCs of 

different genetic backgrounds, teratocarcinoma cells (ECCs) and embryonic germ cells 

showed that the expression of Rex1 was higher in cells with greater pluripotency (Sharova et 

al., 2007). The zinc-finger protein Rex1/Zfp42 was originally identified as one of the genes 

whose expression was downregulated when the teratocarcinoma cell line F9 was induced to 

differentiate by retinoic acid (Hosler et al., 1989). However, the targeted knockout of Rex1 

revealed that it is not required for the maintenance of self-renewal (Masui et al., 2008). There 

are several genes expressed specifically in pluripotent embryonic cells at significant levels, 

which do not play any essential role in pluripotency (e.g., Esg1/Dppa5; Western et al., 2005; 

Amano et al., 2006; Tanaka et al., 2006). 

2.4 Transcriptional heterogeneity in pluripotent stem cells 
One of the challenges in understanding the mechanism of self-renewal and pluripotency of 
PSCs is that cultured ESCs consist of cell populations that show fluctuating expression of 
genes. That is, a bulk preparation of ESCs may only show an averaged state of ESCs and 
thus obscure the presence of distinct ESC populations. Therefore, a better understanding of 
gene expression at the cellular level is critical. In fact, several groups have performed 
expression microarray analyses at the single-cell level and have revealed populations of cells 
that differ in their transcript profiles (Crino et al., 1998; Chiang & Melton, 2003; Kurimoto et 
al., 2006; Ramos et al., 2006; Tang et al., 2010). Several studies, including ours, have found 
that well-maintained mouse ESC cultures consist of a small percentage of cells that show 
fluctuating expression levels of genes such as Dppa3 (Stella/Pgc7; Payer et al., 2006; Hayashi 
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et al., 2008), Nanog (Chambers et al., 2007; Singh et al., 2007), Pecam1 (Furusawa et al., 2004; 
Furusawa et al., 2006), Rex1 (Toyooka et al., 2008) and Zscan4 (Falco et al., 2007; Zalzman et al., 
2010), or genes associated with cell differentiation, such as Brachyury/T (Suzuki et al., 2006a; 
Suzuki et al., 2006b), Rhox6/9 (Carter et al., 2008), Tcf15 and Twist2 (Tanaka et al., 2008). These 
genes are either downregulated (Nanog and Rex1) or expressed (the rest) in about one-tenth of 
cells in culture as a steady state (Fig. 1; Tanaka, 2009). Mouse ESCs showing fluctuating 
expression of Nanog, Rex1, T, Dppa3 and Zscan4 have been extensively characterized. When 
mouse ESCs were sorted according to expression levels of one of these genes and cultured 
separately, the resulting ESC populations eventually showed similar fluctuating expression of 
the gene. For example, when sorted Zscan4-positive and -negative subpopulations were 
replated and cultured separately, both subpopulations regained Zscan4-negative and -positive 
cells, respectively (Zalzman et al., 2010). Each subpopulation possessed a unique 
differentiation potential. Thus, the heterogeneous nature of PSCs may reflect the plasticity of 
early embryonic cells (Hayashi et al., 2008; Zalzman et al., 2010). The underlying mechanism  
 

 

Fig. 1. Standard culture of mouse embryonic stem cells (ESCs) exhibit fluctuating 
expression of genes (modified from Tanaka et al., 2008). (A, left) The Tcf15 expression 
pattern in a 10.5 days post-conception (d.p.c.) embryo shown by whole-mount in situ 
hybridization (WISH). S, sense (negative) control. (A, right) Expression of a reporter (LacZ) 
under the Tcf15 promoter in a 10.5 d.p.c. embryo derived solely from the mouse ESCs by 
tetraploid aggregation and in undifferentiated mouse ESCs plated on gelatin-coated dishes 
(Undiff. mESCs). (B, left) Twist2 expression patterns in 9.5 and 10.5 d.p.c. embryos 
examined as in A. (B, right) Expression of a fluorescent reporter (Venus) under the Twist2 
promoter in a 10.5 d.p.c. embryo derived solely from mouse ESCs and in undifferentiated 
mouse ESCs.  
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responsible for inducing the transcriptional heterogeneity in ESCs remains largely unknown. 
However, as will be discussed in the following sections, ESCs in culture may have received 
some signals from the microenvironment, such as the stiffness of culture dishes and serum 
components, which initiate the heterogeneous transcription of these genes. 

3. Impacts of culture conditions on the self-renewal of pluripotent stem cells 

3.1 Stiffness of a culture dish  
When LIF is supplied in the culture medium, mouse ESCs can be maintained on gelatin-
coated plates without a layer of embryonic fibroblasts as feeders (Robertson, 1987). 
Similarly, human ESCs can be maintained on plates coated with Matrigel (a basement 
membrane preparation extracted from a murine Englebreth-Holm-Swarm sarcoma) 
independent of a feeder layer in a chemically defined culture medium. Interestingly, other 
extracellular matrix proteins elicit different responses from ESCs. For example, collagen IA 
promotes the self-renewal of mouse ESCs (Furue et al., 2005), and fibronectin and laminin 
 

 

Fig. 2. Soft substrates promote mouse embryonic stem cell self-renewal. Mouse ESCs were 
plated on substrates that have the same stiffness as mouse ESCs (A-C) or on glass-bottomed 
dishes (D-F) and maintained under standard culture conditions with LIF (A & D) or without 
LIF for 5 days (B, C, E & F). Bars, 50 µm. (A & D) In the presence of LIF, mouse ESCs 
typically formed round colonies (top) on collagen type IA-coated surfaces and maintained 
Oct3/4 expression, indicated by the enhanced green fluorescent protein (EGFP) driven by the 
Oct3/4 promoter (Oct3/4::EGFP, bottom). (B & C) Mouse ESCs on soft substrates without LIF 
for 5 days formed round colonies that maintained active alkaline phosphatase (B) and the 
expression of Nanog (C). (E & F) Mouse ESCs on a glass-bottomed dish without LIF for 5 
days exhibited appearance of differentiated cells with no detectable alkaline phosphatase 
activity (E) or Nanog expression (F).  
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help decrease their differentiation potential (Hayashi et al., 2007; Hayashi et al., 2010). 
Collagen IV is  an inducer of mesoderm lineages for both mouse and human ESCs (Schenke-
Layland et al., 2007). Intriguingly, the analysis of Matrigel components has led to the 
discovery of synthetic polymers that can support the long-term self-renewal of human ESCs 
(Melkoumian et al., 2010; Rodin et al., 2010; Villa-Diaz et al., 2010). Recently, it has become 
evident that cell fate decisions in stem cells are regulated by matrix elasticity or substrate 
stiffness (Discher et al., 2009). For example, synthetic soft substrates (Elasticity, E = ~1 kPa) 
that mimic the elasticity of the brain induced the differentiation of neurons from 
mesenchymal stem cells, whereas stiffer substrates (E = ~40 kPa) that mimic the elasticity of 
collagenous bone induced the differentiation of osteoblasts (Engler et al., 2006). In contrast, 
we found that mouse ESCs are intrinsically soft and respond optimally to physical forces 
when cultured on substrates that match their intrinsic softness, which is 0.6 kPa (about 7000-
fold softer than plastic culture dishes; Chowdhury et al., 2010). In culture conditions, mouse 
ESCs are grown on much harder substrates than any tissue in vivo. To investigate the effect 
of soft substrates on the self-renewal of mouse ESCs, we plated a mouse ESC line expressing 
enhanced green fluorescent protein (EGFP) under the Oct3/4 promoter (Fig. 2A & D; Walker 
et al., 2007) on either soft substrates or glass-bottomed dishes in the absence of LIF for 5 
days. Remarkably, mouse ESCs on the soft substrate grew as uniformly round colonies 
without any noticeable differentiating colonies (see Fig. 2E) and were able to maintain the 
expression of markers for pluripotent cells: Oct3/4 (data not shown), alkaline phosphatase 
(Fig. 2B) and Nanog (Fig. 2C). Mouse ESCs cultured on a glass-bottomed dish fully 
differentiated and downregulated these markers (Fig. 2E & F). Therefore, these results 
strongly indicate that substrate stiffness is a critical extrinsic factor to sustain the self-
renewal of mouse ESCs (Chowdhury et al., 2010). 

3.2 Culture conditions with animal serum 
Animal serum provides nutrients, hormones, growth factors, steroids and matrix proteins to 
cultured cells. It also contains remnants of plasma components used for the activation and 
processing of blood clots as well as other substances that do not normally pass through the 
endothelial barrier (Hewlett, 1991; Holliday, 1999; Sato et al., 2010). Despite the fact that 
animal serum is similar but not identical to the interstitial fluid (i.e., lymph) that surrounds 
cells in vivo, animal serum is preferred for cell culture because it significantly improves the 
growth of cells. However, animal serum is also known to negatively impact cells in culture 
(Sato, 1975). For example, complement in serum may inhibit cell growth; these components 
may be inactivated by heat (Robertson, 1987). In addition, serum promotes aneuploidy in 
cultured cells (Loo et al., 1987) that may contribute to the incidence of chromosomal 
instability in mouse ESCs (Rebuzzini et al., 2008). In fact, no cell types in vivo are exposed to 
serum for extended periods, except the ones in the vicinity of a wound where clotting has 
taken place (Barnes & Sato, 1980). Because animal serum provides cell culture with many 
other uncharacterized components that may compromise the capability of PSCs to self-
renew and differentiate, only qualified animal serum can be used for PSC culture 
(Robertson, 1987). Furthermore, animal products cannot be used to maintain human iPSCs 
for transplantation purposes (Ludwig et al., 2006b). Although attempts have been made to 
culture human ESCs in human serum, these cells exhibited extensive differentiation (Rajala 
et al., 2007). Chemically defined culture is a preferable alternative, as it not only allows us to 
obtain more consistent results for better manipulation of PSC differentiation, but can also be 
applied to practical therapeutic uses for iPSCs.  
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3.3 Serum-free culture conditions 
To eliminate the effects of unknown components in animal serum, chemically defined 

serum-free culture methods have been established for PSCs (Ying et al., 2003; Furue et al., 

2005; Ludwig et al., 2006a; Ludwig et al., 2006b; Furue et al., 2008). Typically, these defined 

culture media are composed of critical growth factors (e.g., LIF and Bmp4) and other factors 

present in animal sera, such as hormones (e.g., insulin and transferrin), vitamins, fatty acids 

and minerals. In addition, a pre-mixed serum replacement that claims to include no animal 

serum components was introduced in 1998 (Goldsborough et al., 1998; Cheng et al., 2004). 

Although the exact components in the serum replacement cannot be disclosed by its patent 

(Price et al., 1998), the patent indicates that it contains at least albumin, amino acids, 

vitamins, transferrin, antioxidants, insulin, collagen precursors and some trace elements. In 

spite of the fact that the serum replacement successfully supported the growth of primate 

ESCs (e.g., Suemori et al., 2001), human ESCs cultured with this preparation indicated the 

presence of some BMP-like factors that induced the differentiation of trophoblasts (Xu et al., 

2005b). The maintenance of the undifferentiated state of both mouse and human ESCs using 

defined culture media has been well documented (Ludwig et al., 2006a; Ludwig et al., 2006b; 

Hayashi et al., 2007; Ying et al., 2008), and the pluripotency of these mouse ESCs has been 

validated by their differentiation in vitro (Furue et al., 2005; Hayashi et al., 2007) and by the 

development of chimeric mice (Ying et al., 2003).  

4. Tumorigenesis in pluripotent stem cells 

4.1 Intrinsic factors involved in tumorigenesis 
The ability of cells to grow as a teratoma after transplantation into a host animal is a 

hallmark of cellular pluripotency (see ”2.1 Pluripotent stem cells”; Chambers & Smith, 

2004; Solter, 2006; Jaenisch & Young, 2008; Damjanov & Andrews, 2007; Lensch & Ince, 

2007). Testing this cellular ability requires no special techniques or equipment and 

reduces the use of experimental animals, and it is particularly useful and widely accepted 

for the validation of pluripotency in human PSCs (Yu & Thomson, 2008). However, this 

cellular ability is the major critical safety issue hampering the therapeutic application of 

human iPSCs (Yamanaka, 2009). According to Lawrenz et al. (2004), two mouse ESCs were 

sufficient able to grow into a teratoma only when mixed with 2 x 106  non-tumorigenic 

fibroblasts (MRC-5) prior to transplantation into immunocompromised mice. To date, 

little is known about the tumorigenic property of PSCs, except that the oncogene Eras is 

responsible for the tumor-like growth of mouse ESCs (Takahashi et al., 2003). It is 

interesting to note that Eras activates Akt (Takahashi et al., 2003) and that constitutive 

activation of Akt is sufficient to drive self-renewal of mouse and non-human primate 

ESCs (Watanabe et al., 2006). In addition, Akt mediates the inactivation of Gsk3β by 

insulin via phosphorylation (Bechard & Dalton, 2009; Wu & Pan, 2010; Cross et al., 1995). 

Gsk3β inhibits its downstream target c-Myc through β-catenin (He et al., 1998; Bechard & 

Dalton, 2009), so Eras may indirectly activate c-Myc, which is responsible for the self-

renewal of mouse ESCs (Cartwright et al., 2005) and for tumorigenesis in mouse iPSCs 

(Okita et al., 2007; Nakagawa et al., 2010). However, this model may involve other 

uncharacterized gene products, as human ESCs do not express human ERAS (Kameda & 

Thomson, 2005; Tanaka et al., 2009) but develop into teratomas. 
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4.2 Extrinsic factors responsible for tumorigenesis 
Interestingly, mouse PSCs contribute to the development of normal chimeras, instead of 

forming teratomas, when mixed with mouse preimplantation embryos (Bradley et al., 1984; 

Auerbach et al., 2000; Polo et al., 2010). Thus, mouse PSCs may require proper extrinsic 

signals or niches (Voog & Jones, 2010) to differentiate normally and to contribute to the 

development of chimeras. The fact that mouse PSCs behave differently when exposed to 

different microenvironments raises the question of whether PSCs are inherently tumorigenic 

or are provided with extrinsic signals in vitro that promote tumor-like growth. To address 

this question, we transferred mouse ESCs maintained under standard conditions (Fig. 3A) 

using fetal bovine serum (FBS) into chemically defined serum-free (CDSF) conditions  

(Fig. 3B).  

 

 

Fig. 3. Mouse embryonic stem cells gain tumorigenicity from animal serum. (A) A mouse 

ESC line that harbors an EGFP reporter driven by the Oct3/4 promoter (right) was 

maintained under standard conditions using fetal bovine serum (FBS). Bar, 50 µm. (B) The 

same ESC line shown in (A) was plated on a collagen IA-coated plate and cultured under 

chemically defined serum-free (CDSF) conditions. The transcriptional activity of Oct3/4 is 

evidenced by the green fluorescence (right). Bar, 50 µm. (C) Expression of Eras was 

examined in mouse ESCs cultured under the indicated conditions. Diff., ESC differentiation 

was induced by the withdrawal of LIF for 5 days. Ef1α is shown as a control. (D) 1 x 106 cells 

maintained under each indicated condition were transplanted subcutaneously into NOD-

SCID mice, and their growth was monitored for 11 weeks. Bar, 1 cm. (E) Histological image 

of a teratoma consisting of a variety of specialized cells. Bar, 100 µm. 
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These ESCs were maintained under CDSF conditions for three passages before being 
subcutaneously transplanted into immunocompromised mice. Surprisingly, the ESCs failed 
to produce teratomas for up to six months, whereas mouse ESCs maintained under standard 
conditions generated well-developed teratomas within five weeks (Fig. 3D & E). When 
mouse ESCs were cultured under CDSF conditions supplemented with FBS, or when the 
cells were cultured under CDSF conditions followed by standard culture conditions, they 
consistently developed into teratomas. The tumorigenic plasticity of mouse ESCs appears to 
be unique; ECCs (F9; Bernstine et al., 1973) cultured in CDSF formed teratomas when 
transplanted (data not shown). Because serum is different from interstitial fluid (i.e., lymph), 
it is suggested with our present data that interstitial fluid will not provide tumorigenicity. 
Mouse ESCs cultured under CDSF conditions proliferated significantly more slowly than 
mouse ESCs cultured under standard conditions. Their slower proliferation was 
accompanied by the downregulation of Eras (Fig. 3C), which is responsible for the 
tumorigenicity of mouse ESCs. However, mouse ESCs cultured under CDSF conditions 
maintained the expression of transcripts associated with cellular pluripotency, Oct3/4 (Fig. 

3B), Sox2 and Esg1 (data not shown; see “2.3 Intrinsic factors to maintain self-renewal”). 
These results indicate that the tumorigenicity of mouse ESCs is reduced without 
compromising the pluripotency by short-term serum-free culture (Li & Tanaka, submitted). 
Perhaps these mouse ESCs exhibited cell death after transplantation due to the absence of a 
continuous supply of LIF (Furue et al., 2005), even though mouse ESCs express their own 
LIF transcripts (Shen & Leder, 1992). Because the effect of long-term serum-free culture on 
tumorigenesis in mouse ESCs has not yet been evaluated, we cannot rule out the possibility 
that undifferentiated mouse ESCs that have adapted to long-term serum-free culture may 
regain tumorigenic properties.  

5. Conclusion 

Here we present experimental evidence to suggest that soft substrates promote mouse ESC 
self-renewal and that short-term serum-free culture reduces the tumorigenicity of mouse 
ESCs. The underlying mechanisms involved in the cell-substrate interaction and 
tumorigenesis in mouse ESCs are currently unknown. However, these studies using mouse 
ESCs provide a basis for further study and help establish simple strategies to significantly 
enhance the control of differentiation and increase the safety of human iPSCs.  
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