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1. Introduction 

The isolation of tissue-specific self-renewable stem cells from human embryonic or adult 

stem cells is one of the most promising applications for regenerative medicine. Ongoing 

research suggests that multipotent stem cells are a viable source of specialized cells for 

tissue repair. Undifferentiated stem cells are better suited when multiple cell types are lost 

to injury or disease. However, when a single lineage species is associated with an injury or 

disease, multipotent stem cells can be instructed to terminally differentiate into specific cell 

types. The terminal differentiation is induced by culturing the multipotent stem cells in 

media containing specific instructive molecules or by over-expressing lineage-specific 

gene(s). Further studies are needed to generate cellular phenotypes with stable expression in 

vitro and after grafting into diseased or injured tissue. Harnessing mechanisms governing 

tissue histogenesis that take place during early embryogenesis is a promising strategy for 

engineering specific cell types or tissues. Likewise, the same developmental pathways could 

also be induced in vitro using a set of instructive cues different from those normally 

involved during embryonic development. 

Within the framework of developing therapeutic products, this chapter will discuss the 

cellular and molecular control of neural stem cell derivation from adult and pluripotent 

stem cells and their differentiation into dopaminergic lineage. 

2. Derivation and properties of neural stem cells 

Neural stem cells (NSCs) are defined by their ability to self-renew and generate a large 

number of progeny able to differentiate into the principal central nervous system (CNS) cell 

types: neurons, astrocytes and oligodendrocytes. NSCs have the ability to maintain 

themselves in culture under genetic or epigenetic stimulation and to generate a large 

number of progeny. Contrary to the hematopoietic system where the hematopoietic stem 

cells are defined by a set of cell markers and thus can be purified by fluorescence-activated 

cell sorting (FACS), there are no specific cellular markers, necessary and sufficient to 

identify NSCs. The cell surface marker CD133 (prominin-1/2) epitope has been used to 

isolate the neurosphere-forming neural precursors from human fetal brain (Uchida et al., 
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2000). However, this cell surface marker is also expressed by immature hematopoietic stem 

cells, epithelial, tumor cells and endothelial progenitors characterized by the expression of 

other cell surface markers including CD34 and CD45 (Miraglia et al., 1998; Corbeil et al., 

2000; Peichev et al., 2000; Florek et al., 2005). Thus, to purify the neural precursor population 

it has to be sorted out from the CD34 and CD45 negative population. Using a combinatorial 

surface antigen code, specific populations of neural precursors are isolated from adult, fetal 

brain or pluripotent human embryonic stem cells. A recent study used the same 

combination of cell surface markers to isolate neural stem cells from hESCs (Golebiewska et 

al., 2009). This population of neural precursors expressed low levels of the pluripotency 

markers Oct4 and Nanog (Johansson et al., 1999) CD133+ cells expressed the neural specific 

marker Pax6, nestin, vimentin, Olig2, Sox1, sox3, Gli3, beta-tubulin3 and myelin basic 

protein (MBP). Interestingly these cells also expressed the transcription factor Pax7 that is 

characteristic of muscle precursor cells (Golebiewska et al., 2009). This mixed expression 

pattern suggests that cells do not correlate with a specific regional identity and that CD133+ 

cells perhaps retain the potential to differentiate into a wide range of cells.  

A second cell surface marker expressed by neural precursors in vivo in the subventricular 

zone (SCZ) is CD15 (stage-specific embryonic antigen-1, lewis –X antigen) (Capela and 

Temple, 2002). CD15+ SVZ-derived precursors give rise to neurospheres capable of 

differentiating into all major CNS cell types. In this study, the CD15- / CD24+ ependymal 

cells lining the 3rd ventricle, previously thought to contribute to the NSC compartment 

(Johansson et al., 1999), were incapable of forming neurospheres in vitro (Capela and 

Temple, 2002).  

In an effort to isolate homogenous populations of neural stem cells from hESCs, a 

combination of markers was used simultaneously. This combinatorial flow cytometry 

included the cell surface markers CD15+, CD29 high (small cell lung carcinoma cluster 4 

antigen) and CD24 low (beta1-integrin) (Pruszak et al., 2009). CD15 is strongly expressed in 

Sox1+ and Sox2+ neurepithelial rosette structures derived from hESCs, as well in the 

CD133+ cells. The CD15+/CD24LO/CD29HI subset was enriched for the neurosphere 

forming colonies. Interestingly, transplantation of this cell type showed neuroepithelial 

tumors that displayed characteristic neural rosettes expressing neural precursor markers: 

Sox2, nestin, vimentin and radial glial markers 3CB2 and RC2. The expression profile of the 

CD15–/CD24LO/CD29HI fraction was characteristic of the neural crest/mesenchymal stem 

cells and expressed the cell surface markers CD271, CD57 and CD73. This subpopulation 

was also tumorigenic after injection in animals. The third subpopulation with the CD15–

/CD24HI/CD29LO surface antigen signature defined a neuronal/neuroblast population that 

was highly enriched for neuronal markers, such as doublecortin and microtubule-associated 

protein (MAP)-2. In contrast, CD15–/CD24HI/CD29LO grafts did not form tumors, 

differentiated into NCAM-positive cells and extended neuronal processes into the host brain 

(Pruszak et al., 2009).  

Forse1 (forebrain surface embryonic antigen-1) is another cell surface marker expressed by 
neural precursors (Tole et al., 1995) and used to identify multipotent neural stem cells (Tole 
et al., 1995; Pruszak et al., 2007; Elkabetz et al., 2008). Cells expressing Forse1 within the 
hESC-derived neural rosettes exhibited anterior neural fate as assessed by the expression of 
the forebrain transcription factor BF1. Forse1- cells gave rise to neural crest stem cells and 
were enriched for posterior CNS markers. Interestingly, both Force1+ and Force1- retain the 
ability to form rosettes and Force1+ have the potential to revert to caudal fates, including 
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spinal cord motor neurons and midbrain dopamine neurons and to generate neural crest 
cells (Elkabetz et al., 2008). Transplantation of the Force1+ neural precursors into the rat 
striatum led to graft overgrowth and formation of rosette in vivo. This overgrowth was 
observed even when Force1+ cells were sorted before transplantation suggesting that cell 
contamination is not the cause of the tumorigenicity. 
A recent study, however, demonstrated that neither CD133 nor CD15 are necessary markers 

to define a neural stem cell. Human NSCs positive or negative for either CD133 or CD15 

have exhibited multipotency and the ability to differentiate into neurons, astrocytes and 

oligodendrocytes (Sun et al., 2009). Of interest, the CD133 marker appears to be down 

regulated as the cells enter the S phase and during the G2 or M phases. This observation 

renders the neural stem cell identity even more elusive. 

In addition to cell surface markers, specific populations of NSCs may be isolated based on 

their responsiveness to mitogenic growth factors. The fundamental three properties 

necessary for cells to be defined as NSC are: 1) self-renewal ability and maintenance of long-

term cultures through multiple passages under clonogenic conditions, 2) generation of a 

large number of progenies and 3) differentiation into the three principal neural lineages i.e. 

neurons, astrocytes and oligodendrocytes.  

Conti et al. isolated homogenous and clonogenic populations of NSCs from mouse and 

human ESC-derived rosettes (Conti et al., 2005). The rosettes were mechanically transferred 

into serum free media in the presence of EGF and bFGF and propagated for up to 5 months. 

When exposed to appropriate differentiation factors, these NSCs expressed nestin, vimentin 

and the radial glial marker 3CB2 and differentiated into neurons, astrocytes and 

oligodendrocytes, (Sun et al., 2008). After transplantation into adult mouse hippocampus 

and striatum, these NSCs engrafted and differentiated into neurons and astrocytes without 

forming tumors.  

Daadi et al. recently reported the isolation and perpetuation of a homogenous population of 

hNSCs, from hECSs based on their proliferative response to the exposure to EGF, bFGF and 

LIF (Daadi et al., 2008). The cumulative cell number and population doubling analysis 

demonstrated the continuous and stable growth of the hNSCs. These hNSCs were 

clonogenic and expressed the neural precursor cell markers nestin, vimentin and the radial 

glial cell marker 3CB2. Under differentiation conditions, the hNSCs gave rise to neurons, 

astrocytes and oligodendrocytes, expressed transcripts for the neural-specific genes nestin, 

Notch1 and neural cell adhesion molecule (N-CAM), Sox2 and for the lineage specific 

markers β-tubulin class III, medium-size neurofilament (NF-M) and microtubule-associated 

protein 2 (MAP-2) for neurons, GFAP for astrocytes and myelin basic protein (MBP) for 

oligodendrocytes. 

Koch et al. recently reported the isolation, perpetuation and characterization of the rosette-

derived EGF+FGF2 responsive hNSCs (Koch et al., 2009). These neural precursors were 

isolated from rosettes dissected out of the culture plate and grown in suspension as spheres. 

In this study the self-renewable NSCs were maintained for up to 75 passages without 

apparent changes in proportions of the neural lineages and a pronounced differentiation 

toward neuronal lineage (40 to 70%). These NSCs developed an anterior hindbrain identity 

with predominant generation of GABAergic neurons. They retained the ability to convert to 

a ventral midbrain identity in response to sonic hedgehog (SHH) and FGF8 treatment with 

31% of beta-tubulin+ neurons expressing tyrosine hydroxylase. 
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Another approach used to generate a homogeneous and specific NSC population at the 

clonal level is the genetic immortalization of neural precursors with propagating genes, such 

as v-myc, large T-antigen and telomerase reverse transcriptase (hTER) (Snyder et al., 1992; 

Whittemore and Synder, 1996; Lundberg et al., 1997; Roy et al., 2004). Over expression of 

human telomerase reverse transcriptase (hTERT) was used to immortalize neural 

progenitors from the human fetal spinal cord. These cells have been shown to yield multiple 

cell lines with different lineage proportions including some restricted to a neuronal lineage 

both in vitro and in vivo. The cell line expressed markers consistent with a ventral spinal 

neuronal (interneurons and motor neurons) phenotype. The functional property of the 

neurons was demonstrated electrophysiologically by using calcium influx in response to 

depolarizing stimuli. The cells were passaged without evidence of senescence, karyotypic 

abnormality or loss of normal growth control. The cells did not form tumors or overgrow 

after transplantation into developing rat fetal telencephalon or spinal cord. Human NSC 

clones were genetically propagated using v-myc (Flax et al., 1998; Villa et al., 2009). 

Transplantation of these hNSCs demonstrated their ability to migrate throughout the CNS 

and differentiate into multiple developmentally and regionally appropriate cell types. The 

gene product of v-myc was undetectable in grafted hNSCs 24-48 hours following 

transplantation, which suggests the lack of graft overgrowth in vivo. However, there is 

possibility of clonal variations in v-myc expression or re-activation of v-myc in vivo and 

tumor formation. Thus, regulated expression of immortalizing genes would be a safer 

approach for exploring therapeutic application of the immortalized cell lines (Hoshimaru et 

al., 1996). 

The prospective isolation and perpetuation of homogenous populations of neural stem cells 

have also been carried out using reporter genes placed under the regulatory control of cell-

specific promoters. Using human cells, this technique requires the transfection and FACS 

isolation of the cell population expressing the reporter gene, such as green fluorescent 

protein (GFP). Among the cell-specific gene promoters used to isolate neural stem cells are 

nestin, musashi, Sox1 and Sox2. Nestin is an intermediate filament expressed by 

neuroepithelial stem cells. The second intronic enhancer of nestin directs its transcription to 

neural stem and progenitor cells. This strategy was used to isolate homogenous nestin+ 

neural stem cells and to differentiate them into specific lineages (Keyoung et al., 2001). 

Musashi1 is an RNA-binding protein expressed by neural progenitors of the fetal brain 

(Kaneko et al., 2000). Neural cells expressing the musashi1/hGFP co-expressed nestin in 

96% of the progeny. The majority of cells (93%) are undergoing cell division as monitored by 

BrdU incorporation (Keyoung et al., 2001). Sox1 gene is one of the earliest genes that mark 

the neuroectoderm specification in the developing mouse embryo. It is expressed in 

neuroepithelial precursors but down-regulated during neuronal and glial differentiation. 

Using a Sox1-GFP knock-in line, purified populations of neural stem cells were isolated, 

perpetuated and differentiated into specialized neuronal populations. (Ying et al., 2003; 

Barraud et al., 2005; Chung et al., 2006). Similarly, Zappone et al defined the regulatory 

element of Sox2 gene expression in both stem and progenitor cells (Zappone et al., 2000). 

Using adenoviral vector expressing Sox2/EGFP Wang et al transduced and FACS purified 

Sox2 expressing neural stem cells from the developing human fetal brain (Wang et al.). The 

Sox2+ neural precursors were self-renewable, multipotent and displayed higher telomerase 

enzymatic activity, in comparison to the Sox2-depleted population.  
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3. Therapeutic application in Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of 
dopamine (DA) neurons in the substantia nigra pars compacta, resulting in decreased 
dopaminergic input to the striatum. Symptoms include tremors, rigidity, bradykinesia and 
instability. Existing therapies for PD are only palliative and treat the symptoms but do not 
address the underlying cause or prevent the progression of the disease. Levodopa (L-dopa), 
the gold standard pharmacological treatment to restore dopamine, is compromised over 
time by decreased efficacy and by increased side effects. Neurosurgical treatments, such as 
pallidotomy, thalamotomy and deep electrical stimulation are only considered after the 
failure of pharmacological treatment. A reliable long-term treatment to halt the progression 
of the disease and restore function remains elusive. 
Neural transplantation is a promising strategy for improving dopaminergic dysfunction in 
PD. Over 20 years of research using fetal mesencephalic tissue as a source of DA neurons 
has demonstrated the therapeutic potential of cell transplantation therapy in rodents and 
non-human primate animal models and in human patients (Mendez et al., 2008). In many 
patients grafts have survived, formed synaptic connections and improved motor function 
(Olanow et al., 1997; Barker and Dunnett, 1999). However, there are limitations associated 
with human fetal tissue transplantation, including high tissue variability, lack of scalability, 
ethical concerns and inability to obtain an epidemiologically meaningful quantity of tissue. 
Thus, the control of the identity, purity and potency of these cells becomes exceedingly 
difficult and jeopardizes both the safety of the patient and the efficacy of the therapy. With a 
reliance on fetal tissue as a source of neurons, cell replacement therapy cannot develop into 
a widely available treatment option for patients with neurodegenerative diseases. These 
critical issues render the search and development of alternative sources of cells a very 
worthwhile goal with societal importance and commercial application.  

4. Differentiation of neural stem cells into dopaminergic neurons 

Alternative sources of natural dopamine expressing cells explored have been the adrenal 
medulla cells (Schueler et al., 1993), PC12 cells (Ono et al., 1997), the glomus cells of the 
carotid bodies (Espejo et al., 1998) and the porcine fetal tissue (Deacon et al., 1997). Most of 
these sources have been abandoned due to poor cell survival, inefficiency or health risks for 
the patient (Yurek and Sladek, 1990; Isacson and Breakefield, 1997). The current most 
promising strategy in generating an unlimited supply of cells for neural transplantation is 
the generation of dopaminergic neurons from NSCs.  
Cellular differentiation may be defined as a multistep process driving a given cell from a 
precursor stage to functional competence. These steps often are manifested by changes in 
cellular morphology and by the appearance of new gene products. Each differentiation step 
is timely orchestrated and often depends on the interplay between the cell’s intrinsic and 
extrinsic programs. Knowledge of both extrinsic differentiation signals and the molecular 
machinery underlying the intrinsic events is rapidly progressing.   
Extrinsic cues may regulate neuronal diversity by selectively rescuing a specific 
subpopulation of neuronal precursors committed to expressing a specific neurotransmitter 
phenotype or by instructing the neuronal precursors during a narrow developmental 
window to adopt a specific fate. 
The relative distribution of the in vivo environmental cues is thought to play a critical role in 
directing fate choices of stem cell neuronal progeny. For instance, in the peripheral nervous 
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system (PNS), neural crest stem cells (NCSCs) derived from the E10.5 neural tube behave 
differently from the E14.5 sciatic nerve-derived NCSC. The latter became less sensitive to the 
autonomic instructive action of bone morphogenetic protein-2 (BMP-2) and consequently 
their potential is limited to a cholinergic fate. This time-dependant decrease in the BMP-2 
sensitivity may have resulted from a combination of an in vivo selection and developmental 
change in the NCSCs mode to respond to BMP2.  
A promising stem cell source for DA neurons is embryonic stem (ES) cells. Early studies 
demonstrated that these cells have the potential to generate DA neurons (Kawasaki et al., 
2000; Lee et al., 2000a). In presence of serum, ES cells form clusters of floating cells or 
embryoid bodies (EBs) containing ectodermal, mesodermal and endodermal derivatives.  
When these EBs are treated with FGF2, FGF8 and Shh, 71% of the cells differentiated into 

neurons as identified with the neuronal marker class III β-tubulin and 33% of these neurons 
displayed characteristics of the midbrain DA neurons (Lee et al., 2000a). A second group of 
investigators proceeded first to generate a homogenous neural lineage from the ES cells 
(Kawasaki et al., 2000) before inducing DA phenotype. This was achieved by co-culturing ES 
cells with the stromal cells PA6 that induced the pan-neural marker NCAM in 92% of the ES 
cells colonies. PA6-derived conditioned media was inefficient in inducing neural 

differentiation, but was not blocked by a 0.4 μm membrane barrier. Paradoxically, 
paraformaldehyde fixed PA6 cells retained the inductive activity. Under these culture 
conditions, 52% of differentiated cells expressed neuronal markers and 30% of these neurons 
assumed midbrain DA phenotype. These DA induced neurons appear to engraft after 
implantation and to improve behavioral deficits of 6-OHDA lesioned mice. Mesencephalic 
explant cultures studies (Baizabal and Covarrubias, 2009) showed that ES-derived neural 
precursors exhibit a limited developmental window to respond to the midbrain DA cues 
and that FGF8 +SHH treatment promotes commitment to DA lineage. 
There has been a concerted effort to isolate a stable, expandable stem cell from the midbrain, 
based on the hypothesis that the progeny will be destined or at least inducible to become the 
A9 class of the midbrain projecting DA neurons and differentiate exclusively into nigro-
striatal-like DA neurons. Early studies have demonstrated that EGF responsive precursor 
cells do exist within the midbrain, however, these progeny did not consistently or robustly, 
differentiate into DA neurons neither in vitro (Mytilineou et al., 1992; Svendsen et al., 1995; 
Potter et al., 1999) nor after implantation into the rat striatum (Svendsen et al., 1996; 
Svendsen et al., 1997). Interestingly, IL-1 induced TH expression in the midbrain-derived 
progenitors (Potter et al., 1999). In addition, membrane-bound factors potentiated the TH 
induction and stimulated morphological maturation in these progenitors (Ptak et al., 1995; 
Ling et al., 1998). The continuous generation of DA neurons from a long-term expandable 
midbrain-derived stem cell will require the development of processes for proliferation and 
maintenance of DA-specific precursors. Noteworthy, radial glia of the floor plate can give 
rise to the midbrain DA neurons in vivo (Bonilla et al., 2008). In addition, ascorbic acid and 
lowered oxygen concentration appear to support survival and proliferation of DA neurons, 

respectively (Studer et al., 2000; Yan et al., 2001). The effect of a low oxygen level (3±2%) was 
partially mimicked by erythropoietin (Epo). A different approach (Sawamoto et al., 2001) 
consisted of FACS sorting mesencephalic precursors according to their expression of GFP 
driven by nestin enhancer. Nestin is a neurofilament, expressed by neuroepithelial stem 
cells (Lendahl et al., 1990). The nestin-GFP+ precursors were clonally analyzed and shown 
to have the ability to self renew and generate clusters of progeny able to differentiate into 
neurons, astrocytes and oligodendrocytes. Among this neuronal population TH+ neurons 
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were identified with no particular treatment. Importantly, five weeks after implantation of 
the sorted GFP+ cells into the striatum of 6-OHDA hemiparkinsonian rats, the animals 
showed reduction in amphetamine induced rotation. Using this FACS approach, midbrain 
DA radial glial-like precursors were isolated at the embryonic age E10.5, based on the 
expression of Lmx1a and the floor plate marker Corin (Jonsson et al., 2009). This study and 
others highlight the therapeutic efficacy of the A9 DA progenitors in cell transplantation 
therapy for PD. As follow up to the 2 early studies described above (Kawasaki et al., 2000; 
Lee et al., 2000b) numerous reports have described techniques of generating dopaminergic 
neurons from hESCs (Schulz et al., 2004; Zeng et al., 2004; Park et al., 2005; Yan et al., 2005; 
Sonntag et al., 2007; Cho et al., 2008). Some approaches require co-culturing with stromal 
cells, human astrocytes, meningeal, sertoli cells or others (Kawasaki et al., 2000; Buytaert-
Hoefen et al., 2004; Perrier et al., 2004; Takagi et al., 2005; Roy et al., 2006; Yue et al., 2006; 
Chiba et al., 2008; Hayashi et al., 2008). Studies have now begun to decipher the active 
components responsible for the DA phenotype induction. For instance, a recent study 
demonstrated that the DA-inductive signals of the stromal cell line was mimicked by the 
combination of a defined set of factors, including stromal cell-derived factor 1, pleiotrophin, 
insulin-like growth factor 2 and ephrin B1 (Vazin et al., 2009). The inducing factors in the 
other cell lines and signaling pathways involved in the DA specification remain to be 
determined. 

5. Conclusions 

Neural stem cells offer us a great tool for understanding the basic biology of cell fate choices 
and allow us to explore novel inducing factors and new developmental networks of gene 
cascades that may not necessarily occur under in vivo physiological conditions. A deeper 
and broader understanding of the molecular and cellular functioning in the development of 
specialized neural cells, strengthens our ability to efficiently produce stable, pure and viable 
sources of DA neurons. Ideally this knowledge will also enlighten the next step when 
cellular products are tested in vivo and pre-clinical efficacy is determined. Among 
challenging issues in product development for PD are the cell line stability, scalability, 
composition, efficiency in DA neurons generation, viability, cryo-preservation, recovery, 
identity, purity, potency and the in vivo fate of the implanted cell. Thus, given the 
complexity of neural system, long-term translational research will play an important and 
critical role in developing safe and efficacious cellular products for treating PD patients. 
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