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1. Introduction    

Several image processing applications aim to detect and mark remarkable features which in 
turn might be used to perform high-level tasks. In particular, image segmentation seeks to 
group pixels within meaningful regions. Commonly, gray levels belonging to the object are 
substantially different from the gray levels featuring the background. Thresholding is thus a 
simple but effective tool to isolate objects of interest from the background. Its applications 
include several classics such as document image analysis, whose goal is to extract printed 
characters (Abak et al., 1997; Kamel & Zhao, 1993) logos, graphical content, or musical 
scores; also it is used for map processing which aims to locate lines, legends, and characters 
(Trier & Jain, 1995). It is also used for scene processing, aiming for object detection and 
marking (Bhanu, 1986); Similarly, it has been employed to quality inspection for materials 
(Sezgin & Sankur, 2001; Sezgin & Tasaltin, 2000), discarding defective parts. 
Thresholding selection techniques can be classified into two categories: bi-level and multi-
level. In bi-level thresholding, one limit value is chosen to segment an image into two 
classes: one represents the object and the other represents the background. When an image 
is composed of several distinct objects, multiple threshold values have to be selected for 
proper segmentation. This is called multilevel thresholding. 
A variety of thresholding approaches have been proposed for image segmentation, 
including conventional methods (Guo & Pandit, 1998; Pal & Pal, 1993; Shaoo et al., 1988; 
Snyder et al., 1990) and intelligent techniques such as in (Chen & Wang, 2005; Chih-Chih, 
2006). Extending the algorithm to a multilevel approach may arise some inconveniences: (i) 
they may have no systematic and analytic solution when the number of classes to be 
detected increases and (ii) the number of classes is either difficult to be predicted or must be 
pre-defined. However, this parameter is unknown for many real applications. 
In order to solve these problems, an alternative approach using an optimization algorithm 
based on learning automata for multilevel thresholding is proposed in this paper. In the 
traditional multilevel optimal thresholding, the intensity distributions belonging to the 
object or to the background pixels are assumed to follow some Gaussian probability 
function; therefore a combination of probability density functions is usually adopted to 
model these functions. The parameters in the combination function are unknown and the 
parameter estimation is typically assumed to be a nonlinear optimization problem 
(Gonzalez & Woods, 1990). The unknown parameters that give the best fit to the processed 
histogram are determined by using a LA algorithm (Thathachar & Sastry, 2002).  
The main motivation behind the use of LA as an optimization algorithm for parameter 
adaptation is to use its capabilities of global optimization when dealing to multimodal 
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surfaces. Using LA, the search for the optimum is done within a probability space rather than 
seeking within a parameter space as done by other optimization algorithms (Najim &Poznyak, 
1994). Learning automata is referred to as an automaton, acting embedded into an unknown 
random environment. Such automaton improves its performance to obtain an optimal action. 
On the other hand, an action is applied to a random environment and gives a fitness value to 
the selected action of the automata. The response of the environment is used by automata to 
select its next action. This procedure is continued to reach the optimal action. 
LA has been used for solve different sorts of engineering problems. For instance, pattern 
recognition (Seyed-Hamid, 2008), adaptive control (Zeng et al., 2000) signal processing 
(Howell & Gordon, 2000) and power systems (Wu, 1995). Recently, some effective 
algorithms have been proposed for multimodal complex function optimization based on the 
LA (see (Howell & Gordon, 2000; Thathachar & Sastry, 2002; Zeng & Liu, 2005; Beygi & 
Meybodi, 2006)). Furthermore, it was shown experimentally that the performance of these 
optimization algorithms is comparable to or better than the genetic algorithm (GA) in [22]. 
This work employs the algorithm proposed in (Zeng & Liu, 2005), which is called 
continuous action reinforcement learning automata (CARLA). 
In this chapter, an automatic image multi-threshold approach based on Learning Automata 
is presented. Hereby the segmentation process is considered to be similar to an optimization 
problem. First, the algorithm approximates the 1-D histogram of the image using a mix of 
Gaussian functions whose parameters are calculated using the Learning automata method. 
Each Gaussian function approximating the histogram represents a pixel class and therefore 
the threshold points. 
This chapter is organized as follows. Section 2 presents the Gaussian approximation to the 
histogram. Section 3 presents the LA algorithm, while Section 4 shows the determination of 
the threshold points. In section 5 the implementation details are shown. Experimental 
results for the proposed approach are presented in Section 6, finally the conclusion are 
presented in Section 7.normal) 

2. Gaussian approximation 

Assuming an image has L gray levels −…[0, , 1]L , following a gray level distribution which 

can be displayed in the form of the histogram ( )h g . In order to simplify the description, the 

histogram is normalized and is considered as a probability distribution function: 

 1 1

0 0

( ) ,   ( ) 0,

,  and ( ) 1,

g

L L

g

g g

n
h g h g

N

N n h g

− −

= =

= ≥

= =∑ ∑
 (1) 

Assuming that gn  denotes the number of pixels with gray level g while N is the total 

number of pixels in the image. The histogram function can be contained into a mix of 

Gaussian probability functions, yielding: 
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considering that  Pi  is the a priori probability of class i, ( )ip x  is the probability distribution 

function of gray-level random variable x in class i, iμ and iσ  are the mean and standard 

deviation of the i-th probability distribution function, and K is the number of classes within 

the image. In addition, the constraint 
1

1
K

ii
P

=
=∑  must be satisfied. 

The typical mean square error consideration is used to estimate the 3K parameters iP , iμ  

and iσ , i = 1, . . ,K. For example, the mean square error between the composite Gaussian 

function ( )ip x  and the experimental histogram function ( )ih x is defined as follows: 
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= =
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Assuming an n-point histogram as in [13] and ω  being the penalty associated with the 

constrain 
1

1
K

ii
P

=
=∑ . In general, the determination of parameters that minimize the square 

error is not a simple problem. A straightforward method to decrease the partial derivatives 
of the error function to zero considers a set of simultaneous transcendental equations 
(Gonzalez & Woods, 1992). An analytical solution is not available due to the non-linear 
nature of the equations. The algorithm therefore makes use of a numerical procedure 
following an iterative approach based on the gradient information. However, considering 
that the gradient descent method may easily get stuck within local minima. In the standard 
gradient method, the new operation point lies within a neighbourhood distance of the 
previous point. This is not the case for adaptation algorithm based on stochastic principles 
such as LA, as the new operating point is determined by probability function and is 
therefore not considered to be near the previous operating point. This gives the algorithm a 
higher ability to locate the global minima.  
Some previous experiences have shown that the intelligent approaches actually provide a 
satisfactory performance in case of image processing problems (Chen & Wang, 2005; Chih-
Chih, 2006; Baştürk & Günay, 2009; Lai & Tseng, 2001; Tseng & Lai, 1999). The LA algorithm 
is therefore adopted in order to find the parameters and their corresponding threshold 
values. 

3. Learning automata 

LA operates by selecting actions via a stochastic process. Such actions operate within an 
environment while being assessed according to a measure of the system performance. 
Figure 1a shows the typical learning system architecture. The automaton selects an action 
(X) probabilistically. Such actions are applied to the environment, and the performance 

evaluation function provides a reinforcement signal β . This is used to update the 

automaton’s internal probability distribution whereby actions that achieve desirable 
performance are reinforced via an increased probability, while those not-performing actions 
are penalised or left unchanged depending on the particular learning rule which has been 
employed. Over time, the average performance of the system will improve while a given 
limit is reached. In terms of optimization problems, the action with the highest probability 
would correspond to the global minimum as demonstrated by rigorous proofs of 
convergence available in (Narendra & Thathachar, 1989) and (Najim & Poznyak, 1994).  
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                           (a)                                                                                       (b) 

Fig. 1. (a) Reinforcement learning system and (b) Interconnected automata. 

A wide variety of learning rules have been reported in the literature. One of the most widely 

used algorithms is the linear reward/inaction ( RIL ) scheme, which has been shown to 

guaranteed convergence properties (see [1008]). In response to action ix , being selected at 

time step k, the probabilities are updated as follows: 

 
( 1) ( ) ( ) (1 ( ))

( 1) ( ) ( ) ( ) if 
i i i

j j j

p n p n n p n

p n p n n p n i j

θ β
θ β

+ = + ⋅ ⋅ −
+ = − ⋅ ⋅ ≠

 (4) 

beingθ  a learning rate parameter and 0 1θ< < and [0,1]β ∈ the reinforcement signal; 

1β = indicates the maximum reward and 0β = is a null reward. Eventually, the probability 

of successful actions will increase to become close to unity. In case that a single and foremost 

successful action prevails, the automaton is deemed to have converged.  
With a large number of discrete actions, the probability of selecting any particular action 
becomes low and the convergence time can become excessive. To avoid this, learning 
automata can be connected in a parallel setup as shown by Figure 1b. Each automaton 
operates a smaller number of actions and the ‘team’ works together in a co-operative 
manner. This scheme can also be used where multiple actions are required. 
Discrete stochastic learning automata can be used to determine global optimal states for 
control applications with multi-modal mean square error surfaces. However, the discrete 
nature of the automata requires the discretization of a continuous parameter space, and the 
level of quantization tends to reduce the convergence rate. A sequential approach may be 
adopted (Howell & Gordon, 2000) to overcome such problem by means of an initial coarse 
quantization. It may be later refined using a re-quantization around the most successful 
action. In this paper, an inherently continuous form of the learning automaton is used to 
speed the learning process and to avoid this additional complexity. 

3.1 CARLA algorithm 
The continuous action reinforcement learning automata (CARLA) was developed as an 
extension of the discrete stochastic learning automata for applications involving searching of 
continuous action space in a random environment (Howell & Gordon, 2000). Several 
CARLA can be connected in parallel, in a similar manner to discrete automata (Figure 1b), to 
search multidimensional action spaces. The interconnection of the automata is through the 
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environment however, no direct inter-automata communication exist. The automaton’s 
discrete probability distribution is replaced by a continuous probability density function 
which is used as the basis for action selection. It operates a reward/inaction learning rule 
similar to the discrete learning automata. Successful actions receive and increase on the 
probability of future selection via a Gaussian neighborhood function which increases the 
probability density in the vicinity of such successful action. Table 1 shows the generic 
pseudo-code for the CARLA algorithm.  The initial probability distribution can be chosen as 
being uniform over a desired range. After a considerable number of iterations, it converges 
to a probability distribution with a global maximum around the best action value. 

If action x is defined over the range min max( , )x x , the probability density function ( , )f x n at 

iteration n is updated according to the following rule: 

 min min[ ( , ) ( ) ( , )] if ( , )
( , 1)

0 otherwise

f x n n H x r x x x
f x n

α β⋅ + ⋅ ∈⎧
+ = ⎨

⎩
 (5) 

With α being chosen to re-normalize the distribution according to the following condition 

 
max

min

( , 1) 1

x

x

f x n dx+ =∫  (6) 

with ( )nβ being again the reinforcement signal from the performance evaluation and 

( , )H x r a symmetric Gaussian neighbourhood function centered on ( )r x n= . It yields 

 
2

2

( )
( , ) exp

2

x r
H x r λ

σ
⎛ ⎞−

= ⋅ −⎜ ⎟
⎝ ⎠

 (7) 

 

CARLA Algorithm 

Initialize the probability density function to a uniform distribution 

     Repeat 

              Select an action using its probability density function 

              Execute action on the environment 

              Receive cost/reward for previous action 

              Update performance evaluation function β  

              Update probability density function 

    Until stopping condition 

Table 1. Generic pseudo-code for the CARLA algorithm 

with λ  and σ being parameters that determine the height and width of the neighborhood 

function. They are defined in terms of the range of actions as follows: 

 max min( )wg x xσ = ⋅ −  (8) 

 
max min( )

hg

x x
λ =

−
 (9) 
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The speed and resolution of learning are thus controlled by free parameters wg and hg . Let 

action x(n) be applied to the environment at iteration n, returning a cost or performance 

index J(n). Current and previous costs are stored as a reference set R(n). The median and 

minimum values medJ  and minJ  may thus be calculated, by means of ( )nβ being defined as: 

 med

med min

( )
( ) max 0,

J J n
n

J J
β

⎧ ⎫−⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (10) 

To avoid problems with infinite storage, and to allow the system to adapt to changing 

environments, only the last m values of the cost functions are stored in R(n). Equation (10) 

limits ( )nβ  to values between 0 and 1 and only returns nonzero values for costs that are 

below the median value. It is easy to understand how ( )nβ  affects the learning process 

informally as follows: during the learning, the performance and the number of selecting 

actions can be wildly variable, generating extremely high computing costs. However, 

( )nβ is insensitive to these extremes and to the very high values of J(n) resulting from a poor 

choice of actions. As learning continues, the automaton converges towards more worthy 

regions of the parameter space and these actions within such regions are chosen for 

evaluation increasingly often. While more of such responses are being received, medJ  gets 

reduced. Decreasing medJ  in the performance index effectively enables the automaton to 

refine its reference around the better responses previously received, and hence resulting in a 

better discrimination between the competing selected actions. 
To define an action value x(n) which has been associated to this probability density function, 
an uniformly distributed pseudo-random number z(n) is generated within the range of [0,1]. 
Simple interpolation is then employed to equate this value to the cumulative distribution 
function: 

 

min

( )

( , ) ( )

x n

x

f x n dx z n=∫  (11) 

For implementation purposes, the distribution is stored at discrete points with an equal 
inter-sample probability. Linear interpolation is used to determine values at intermediate 
positions (see full details in [19]). 

4. Determination of threshold values 

The next step is to determine the optimal threshold values. Considering that the data classes 

are organized such that 1 2 Kμ μ μ< < <… , the threshold values are obtained by computing 

the overall probability error for two adjacent Gaussian functions, following: 

 1 1 2( ) ( ) ( ),i i i i iE T P E T P E T+= ⋅ + ⋅   1,2, , 1i K= −…  (12) 

considering 

 1 1( ) ( ) ,
iT

i iE T p x dx+
−∞

= ∫  (13) 
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and 

 
2( ) ( ) ,

i

i i

T

E T p x dx
∞

= ∫  (14) 

1( )iE T is the probability of mistakenly classifying the pixels in the (i + 1)-th class to the i-th 

class, while 2( )iE T is the probability of erroneously classifying the pixels in the i-th class to 

the (i + 1)-th class. sjP ′  are the a priori probabilities within the combined probability density 

function, and iT  is the threshold value between the i-th and the (i + 1)-th classes. One iT  

value is chosen such as the error ( )iE T  is minimized. By differentiating ( )iE T  with respect 

to iT  and equating the result to zero, it is possible to use the following equation to define the 

optimum threshold value iT : 

 2 0i iAT BT C+ + =  (15) 

considering 

2 2
1i iA σ σ += −   

 

 2 2
1 12 ( )i i i iB μσ μ σ+ += ⋅ −  (16) 
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( ) ( ) 2 ( ) ln i i
i i i i i i

i i
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P

σσ μ σ μ σ σ
σ

+
+ + +

+

⎛ ⎞
= − + ⋅ ⋅ ⎜ ⎟

⎝ ⎠
 

Although the above quadratic equation has two possible solutions, only one of them is 
feasible (positive and inside the interval). The figure 2 shows the determination process of 
the threshold points. 
 

 

Fig. 2. Determination process of the threshold points 

iμ

1( )ip x+

iμ 1iμ +iT
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5. Implementation 

In the implementation four different pixel classes are used to segment the images. The idea 
is to show the effectiveness of the algorithm and the little information required for the 
localization of the threshold points, the implementation could be effortlessly carried out for 
a bigger number of pixel classes. 
To approach the histogram of an image by 4 Gaussian functions (one for each pixel class), it 

is necessary first, calculate the optimum values of the 3 parameters (Pi, iμ and iσ ) for each 

Gaussian function (in this case, 12 values according to equation 2). This problem can be 

resolved optimizing equation 3, considering that function ( )p x is formed by 4 Gaussian 

functions. 

The parameters to be optimized are summarized in table 2. Where i
Pk  is the parameter that 

represents the a priori probability (P), ikσ  represents the variance (σ ) and ikμ  represents the 

expected value ( μ ) of the Gaussian function i. 

 

Parameters Gaussian 

1
Pk  1kσ  1kμ  1 

2
Pk  2kσ  2kμ  2 

3
Pk  3kσ  3kμ  3 

4
Pk  4kσ  4kμ  4 

Table 2. Parameters to be optimized 

In LA optimization, each parameter is considered like an Automaton which chooses actions. 

The actions correspond to values assigned to the parameter, by a probability distribution 

inside of an interval. The intervals used in this work for the parameters are defined as 
i
Pk ∈ [0,0.5],  ikσ ∈ [0,60] , and ikμ ∈ [0,255]. 

For this 12-dimensional problem will be 12 different Automatons which represent the 
parameters to approach the corresponding histogram. One of the main advantages of the LA 
is that in a multi-dimensional problem the Automatons are coupled only through the 
enviorement, thus each Automaton operated independently, during the optimization.  

Thus, in each instant n each Automaton chooses an action according to their probability 

distribution, which can be represented in a vector A(n)={ 1
Pk , 1kσ , 1kμ …, 4

Pk , 4kσ , 4kμ }.  This 

vector represents a certain approach of the histogram. Then, the quality of the approach is 

evaluated (according to equation 3) and converted to a reinforcement signal ( )nβ  (through 

equation 10). Having obtained the reinforcement value ( )nβ  as product of the elected 

approach A(n), the distribution of probability is update for n+1 of each Automaton 

(according to the equation 5). To simplify parameters of equation 8 and 9 are the same for 

the 12 Automatons, such that 0.02wg = and hg =0.3.  In this work is considers to limit to 2000 

the iterations on the optimization process. 
Next, the optimization algorithm is described: 
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i Set iteration n=0. 

ii 
Define the action set A(n)={ 1

Pk , 1kσ , 1kμ …, 4
Pk , 4kσ , 4kμ } such that i

Pk ∈ [0,0.5], ikσ ∈  

[0,60] and ikμ ∈  [0,255]. 

iii Define probability density functions at iteration n: ( , )i
Pf k n , ( , )if k nσ  and ( , )if k nμ   

iv 
Initialize ( , )i

Pf k n , ( , )if k nσ  and ( , )if k nμ  as an uniform distribution between the 

defined limits. 

v Repeat while 2000n ≤  

 (a) 
Using a pseudo-random number generator for each Automaton, select ( )i

Pz n , 

( )iz nσ  and ( )iz nμ  uniformly between 0 and 1. 

 (b) 

Select i
Pk ∈  [0,0.5], ikσ ∈  [0,60] and ikμ ∈  [0,255] where the area under the 

probability density function is 
( )

0
( , ) ( )

i
Pk n

i i
P Pf k n z n=∫ , 

( )

0
( , ) ( )

ik n
i if k n z n

σ

σ σ=∫  and 

( )

0
( , ) ( )

ik n
i if k n z n

μ

μ μ=∫ . 

 (c) Evaluate the performance using Eq. (3). 

 (d) Obtain the minimum, minJ , and median, medJ  of  J (n). 

 (e) Evaluate ( )nβ via Eq. (10). 

 (f) 
Update the probability density functions ( , )i

Pf k n , ( , )if k nσ  and ( , )if k nμ  using 

Eq. (5). 

 (g) Increment iteration number n. 

The learning system search in the 12-dimensional parameter space with the aim of reducing 
the values for J in Eq. (3).  

6. Experimental results 

In this section the performance of the algorithm is tested by two experiments. In both 
experiments a 4 pixel class segmentation is consider and an approaching of the original 
histogram of the image by LA. To test the consistency of the algorithm, 10 independent 
repetitions were made for each experiment. 

In the first experiment the image represented in figure 3a was used, whose original 

histogram is shown in figure 3b. Considering the proposed LA algorithm (detailed in the 

previous section) a global minimum was obtained (equation 3), the point defined as 
1
Pk =0.0210, 1kσ =6, 1kμ =15, 2

Pk =0.0404, 2kσ =29, 2kμ =63, 3
Pk =0.0608, 3kσ =10, 3kμ =93, 4

Pk =0.1002, 
4kσ =30, and 4kμ =163. The values of these parameters define 4 different Gaussian functions, 

which are represented in figure 4. From the mix of these 4 Gaussian functions, an approach 

to the original histogram is obtained as shown in figure 5. 

The evolution of the probability densities parameters, whose represent the expected 

values 1( , )f k nμ , 2( , )f k nμ , 3( , )f k nμ  and 4( , )f k nμ of the Gaussian functions are shown in figure 

6. It can be seen that most of the convergence is achieved at the first 1500 iterations, after 

that a gradual sharpening of the distribution occurs. The final probability densities (n=2000) 

can be taken as the final parameter value. 
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                            (a)                                                                             (b) 

Fig. 3. (a) Original image used on the first experiment, (b) and its histogram 

 
 
 

 

Fig. 4. Gaussian functions obtained by LA 

 
 
 
 

 

Fig. 5. Comparison between the original histogram and its approach 
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(a) 

 
 

(b) 
 

 

(c) 
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(d) 

Fig. 6. Evolution of the probability densities parameters, whose represent the expected 

values (a) 1( , )f k nμ , (b) 2( , )f k nμ , (c) 3( , )f k nμ  and (d) 4( , )f k nμ , of the Gaussian functions 

From the Gaussian functions obtained by LA (figure 4), the threshold values iT  are 

calculated considering equations 15-16.  From these values the image segmented in 4 classes 

shown in figure 7 is obtained. 
 

 

Fig. 7. Image segmented in 4 classes by LA 

In the second experiment, the image shown in figure 8 was used. The idea is again, to 
segment it in 4 different pixel classes using the LA approach proposed in this work. After 
execute the algorithm with the parameters detailed in the previous sections the Gaussian 
functions obtained are shown in figure 9a. 
The mix of Gaussian functions obtained by the LA algorithm approach to the original 
histogram, as can be seen in figure 9b. From figure 9b is clear that the algorithm approaches 
each one of the pixel concentrations, distributed in the histogram, except to the first one 
(presented approximately around the intensity value 7). This effect shows that the algorithm 
discards the smallest accumulation of pixels and prefer to cover those classes that contribute 
to generate a smaller error  during optimization of the equation 3. The results can be 
improved if 5 pixel classes were used (instead of segmenting the image by 4 pixel classes). 
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Fig. 8. Image used on the second experiment 

 

 

(a) 

 

(b) 

Fig. 9. (a) Gaussian functions obtained by LA, and (b) its comparison to the original 
histogram 

From the Gaussian functions obtained by LA (figure 9a), the threshold values iT  are 

calculated considering equations 15-16.  From these values the image segmented in 4 classes 

shown in figure 10 is obtained. Figure 11 shows the separation of each class obtained by the 

algorithm. 
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Fig. 10. Segmentation obtained by LA 

 

        

                                             (a)                                                           (b) 

        

                                             (c)                                                           (d) 

Fig. 11. Separation of each class obtained by the LA algorithm. (a) Pixel class 1, (b) Pixel class 
2, (c) Pixel class 3, and (d) Pixel class 3. 

6. Conclusions 

This works presents a novel segmentation algorithm which includes an automatic threshold 
determination approach. The overall method can be considered as a Learning automata 
optimization algorithm. Following the intensity distributions for each object. The intensity 

www.intechopen.com



Segmentation with Learning Automata   

 

97 

distributions of objects and background in an image are assumed to obey Gaussian 
distributions with distinct variances and means. The histogram of a given image is approach 
by a mix of Gaussian probability functions. The LA algorithm is used to estimate the 
parameters in the mix density function obtaining a minimum square error between the 
density function and the original histogram. The experimental results reveal that the 
proposed approach can produce satisfactory results. Further work of extending the 
proposed approach with other techniques and comparing the results with state of the art 
image segmentation techniques are in progress. 
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