
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322394561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

In this chapter we consider classification of systems that can be modeled as hidden Markov
models (HMMs). Given two1 known HMMs, we discuss how to build an optimal classifier
to determine, with minimal probability of error, which competing model has most likely
produced a given sequence of observations. The main issue when dealing with HMMs is
that the state cannot be directly observed but, instead, only the (possibly non-unique) output
associated with the state and/or the transition of the model can be observed. Apart from
describing how to optimally perform the classification task (in a way that minimizes the
probability of error), we analyze the classification scheme by characterizing the effectiveness
of the classifier in terms of a bound on the associated probability of error. We also analyze a
more challenging scenario where the observations are possibly erroneous.
The likelihood that a given observed sequence has been generated from a particular HMM can
be calculated as the sum of the probabilities of all possible state sequences that are consistent
with the sequence of observations. This can be done using an iterative algorithm similar to the
forward algorithm (Rabiner, 1989), which solves the evaluation problem in HMMs and is used
frequently in speech recognition applications (Jelinek, 1998), (Rabiner, 1989), (Poritz, 1988).
More specifically, given a model and an observed sequence, the evaluation problem consists
of computing the probability that the observed sequence was produced by the model. When
there are many competing models, these probabilities can be used to choose the model which
best matches the observations, in a way that minimizes the probability of error. The forward
algorithm is also used in pattern recognition applications (Fu, 1982), (Vidal et al., 2005) to
solve the syntax analysis or parsing problem, i.e., to recognize a pattern by classifying it to
the appropriate generating grammar, and in bioinformatics (Durbin et al., 1998), (Koski, 2001)
to evaluate whether a DNA sequence or a protein sequence belongs to a particular family of
sequences.
This chapter begins with an overview of optimal classification schemes for HMMs where the
goal is to minimize the probability of error of the classifier. Given a particular sequence of

1 We can easily generalize the discussion in this chapter to deal with classification of more than two
models, but choose to focus on the case of two models for clarity/brevity purposes.

Eleftheria Athanasopoulou1 and Christoforos N. Hadjicostis2,1

1University of Illinois, Urbana-Champaign
2University of Cyprus, Nicosia

1,2USA
2Cyprus

Classification of Hidden Markov Models:
Obtaining Bounds on the Probability

of Error and Dealing with Possibly
Corrupted Observations

4

www.intechopen.com

observations, these techniques can be used to choose the HMM that most likely generated the
sequence of observations and, in the process, also characterize the associated probability of
error (for the given sequence of observations). However, in order to measure the classification
capability of the classifier before making any observations, one needs to compute the a priori
probability that the classifier makes an incorrect decision for any of the possible sequences of
observations. Enumerating all possible sequences of a given length (in order to evaluate their
contribution to the probability of error) is prohibitively expensive for long sequences; thus,
we describe ways to avoid this computational complexity and obtain an upper bound on the
probability that the classifier makes an error without having to enumerate all possible output
sequences. Specifically, we present a constructive approach that bounds the probability of
error as a function of the observation step. We also discuss necessary and sufficient conditions
for this bound on the probability of error to go to zero as the number of observations increases.
After obtaining bounds on the probability of erroneous classification, we consider the
additional challenge that the observed sequence is corrupted, due to noise coming from sensor
malfunctions, communication limitations, or other adversarial conditions. For example,
depending on the underlying application, the information that the sensors provide may
be corrupted due to inaccurate measurements, limited resolution, or degraded sensor
performance (due to aging or hardware failures). We consider unreliable sensors that
may cause outputs to be deleted, inserted, substituted or transposed with certain known
probabilities. Under such sensor malfunctions, the length of the observed sequence will
generally not equal the length of the output sequence and, in fact, several output sequences
may correspond to a given observed sequence. Thus, one would need to first identify all
possible state sequences and the probabilities with which they agree with both the underlying
model and the observations (after allowing, of course, for sensor failures). In particular, if
symbols in the output sequence can be deleted, there may be an infinite number of output
sequences that agree with a given observed sequence, which makes the standard forward
algorithm inapplicable for classification. This inability of the standard forward algorithm can
be overcome via an iterative algorithm that allows us to efficiently compute the probability
that a certain model matches the observed sequence: each time a new observation is made,
the algorithm simply updates the information it keeps track of and outputs on demand the
probability that a given model has produced the sequence observed so far. The iterative
algorithm we describe relates to (and generalizes) iterative algorithms for the evaluation
problem in HMMs (Rabiner, 1989), the parsing problem in probabilistic automata (PA) (Fu,
1982), (Vidal et al., 2005), and the trellis-based decoding of variable length codes (VLC) (Bauer
and Hagenauer, 2000), (Guyader et al., 2001), all of which can be modified to deal with some
types of sensor failures but are not quite as general (or effective) as the iterative algorithm we
describe.
We motivate the study of the above problems (bounding the probability of classification error
and dealing with corrupted observations) using examples from the areas of failure diagnosis
and computational biology. For instance, the problem of failure diagnosis in systems that
can be modeled as finite state machines (FSMs) with known input statistics can be converted
to the problem of classification of HMMs (Athanasopoulou, 2007). FSMs form a particular
class of discrete event systems (DESs) that have discrete state spaces and whose evolution
is event-driven, i.e., only the occurrence of discrete events forces the systems to take state
transitions. Any large scale dynamic system, such as a computer system, a telecommunication
network, a sensor network, a manufacturing system, a chemical process or a semiconductor
manufacturing process, can be modeled as an FSM at some level of abstraction. In addition,

86 Hidden Markov Models, Theory and Applications

www.intechopen.com

network protocols that describe the rules and conditions for exchanging information in
distributed environments can also be modeled by FSMs. Given two known FSMs (one
corresponding to the fault-free version of the underlying system and the other corresponding
to a faulty version of the system) and an associated input distribution, a classifier (called
diagnoser in this case) can be used to determine which of the two competing models has
most likely produced a given sequence of observations. Work in this area by the authors has
appeared in (Athanasopoulou et al., 2010), (Athanasopoulou and Hadjicostis, 2008). HMMs
are also used in the area of computational biology to capture the behavior of DNA sequences;
as we will see via examples in this chapter, these models can then be used to perform
classification in order to characterize various properties of interest in DNA sequences.

2. Preliminaries and notation: FSMs, Markov chains, and hidden Markov models

A finite state machine (FSM) is a four-tuple (Q, X, δ, q0), where Q = {0, 1, 2, ..., |Q| − 1} is the
finite set of states; X is the finite set of inputs; δ is the state transition function; and q0 is the
initial state. The FSMs we consider here are event-driven and we use n to denote the time
epoch between the occurrence of the nth and (n + 1)st input. The state Q[n + 1] of the FSM at
time epoch n + 1 is specified by its state Q[n] at time epoch n and its input X[n + 1] via the
state transition function δ as Q[n + 1] = δ(Q[n], X[n + 1]). A finite state machine (FSM) with
outputs is described by a six-tuple (Q, X, Y, δ, λ, q0), where (Q, X, δ, q0) is an FSM; Y is the
finite set of outputs; and λ is the output function. The output Y[n + 1] is determined by the
state Q[n] and the input X[n + 1] via the output function, i.e., Y[n + 1] = λ(Q[n], X[n + 1]),
which maps a state and input pair to an output from the finite set of outputs Y.
We denote a time homogeneous Markov chain by (Q, ∆, π[0]), where Q = {0, 1, 2, ..., |Q| − 1}
is the finite set of states; π[0] is the initial state probability distribution vector; and ∆ captures
the state transition probabilities, i.e., ∆(q, q′) = P(Q[n + 1] = q′ | Q[n] = q), for q, q′ ∈ Q.
If we denote the state transition probabilities by ajk = P{(Q[n + 1] = j) | (Q[n] =
k)}, the state transition matrix of the Markov chain associated with the given system is
A = (ajk)j,k=0,1,...,|Q|−1. (To keep the notation clean, the rows and columns of all matrices
are indexed starting from 0 and not 1.) The state transition matrix A captures how state
probabilities evolve in time via the evolution equation π[n + 1] = Aπ[n], for n = 0, 1, 2,
Here, π[n] is a |Q|-dimensional vector, whose jth entry denotes the probability that the Markov
chain is in state j at time epoch n. In our development later on, we will find it useful to
define the notion of a time homogeneous Markov chain with inputs, which we denote by
(Q, X, ∆, π[0]); here, Q = {0, 1, 2, ..., |Q| − 1} is the finite set of states; X is the finite set of
inputs; π[0] is the initial state probability distribution vector; and ∆ captures the state and
input transition probabilities, i.e., ∆(q, xi , q′) = P(Q[n + 1] = q′ | Q[n] = q, X[n + 1] = xi), for
q, q′ ∈ Q, xi ∈ X.
An HMM is described by a five-tuple (Q, Y, ∆, Λ, ρ[0]), where Q = {0, 1, 2, ..., |Q| − 1} is the
finite set of states; Y is the finite set of outputs; ∆ captures the state transition probabilities;
Λ captures the output probabilities associated with transitions; and ρ[0] is the initial state
probability distribution vector. More specifically, for q, q′ ∈ Q and σ ∈ Y, the state transition
probabilities are given by ∆(q, q′) = P(Q[n + 1] = q′ | Q[n] = q) and the output probabilities
associated with transitions are given by Λ(q, σ, q′) = P(Q[n + 1] = q′, Y[n + 1] = σ | Q[n] =
q), where Λ denotes the output function that assigns a probability to the output σ associated
with the transition from state Q[n] to state Q[n + 1]. We define the |Q| × |Q| matrix Aσ,
associated with output σ ∈ Y of the HMM, as follows: the entry at the (j, k)th position of Aσ

captures the probability of a transition from state k to state j that produces output σ. Note that

87Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

∑σ∈Y Aσ = A, i.e., the transition matrix whose (j, k)th entry denotes the probability of taking a
transition from state k to state j. The joint probability of the state at step n and the observation
sequence y[1], . . . , y[n] is captured by the vector ρ[n] where the entry ρ[n](j) denotes the
probability that the HMM is in state j at step n and the sequence yn

1 = y[1], . . . , y[n] has been
observed. More formally, ρ[n](j) = P(Q[n] = j, Yn

1 = yn
1) (note that ρ is not necessarily a

probability vector).

3. Posterior probability calculation with uncorrupted observations

In this section, we examine the simplest case where no sensor failures are present. It will
become apparent later that this case does not involve any complications, such as loops in
the trellis diagram, and the calculations can be easily performed iteratively by a forward-like
algorithm.
Given the observation sequence YL

1 = yL
1 =< y[1], y[2], ..., y[L] > and two candidate HMMs

S1 and S2 (together with their initial state probability distributions and their prior probabilities
P1 and P2 = 1 − P1), the classifier that minimizes the probability of error needs to implement
the maximum a posteriori probability (MAP) rule by comparing P(S1 | yL

1)
>

<
P(S2 | yL

1) ⇒

P(yL
1 | S1)

P(yL
1 | S2)

>

<

P2

P1
, and deciding in favor of S1 (S2) if the left (right) quantity is larger.

To calculate the probability P(yL
1 | S) of the observed sequence given a particular model

S, we first capture the evolution of S as a function of time for a given observed sequence
by constructing the trellis diagram of S. The state sequences that agree with the observed
sequence (consistent sequences) are those that start from any valid initial state and end at any
final state while ensuring that the output at each step n matches the observed output y[n]. Due
to the Markovian property, the probability of a specific consistent state sequence can be easily
calculated as the product of the initial state probability and the state transition probabilities
at each time step. Thus, to calculate the probability P(yL

1 | S) we need to first identify all
consistent sequences and their probabilities and then sum up the total probability.
The computation of P(yL

1 | S) is not iterative in respect to the number of observation steps,
hence it is not amenable for online monitoring. To make the computation iterative we can use
a forward-like algorithm. For candidate HMM S, we can update ρS iteratively as

ρS[n + 1] = AS,y[n+1]ρS[n], n = 0, 1, ..., L − 1,

where ρS[0] is taken to be the probability distribution of the initial states for model S and
AS,y[n+1] is the matrix that describes the state transition probabilities under the output
observed at time epoch n + 1. If L is the last step, the probability that the observation
sequence was produced by FSM S is equal to the sum of the entries of ρS[L], i.e., P(yL

1 |

S) = ∑
|Q|−1
j=0 ρS[L](j). This iterative algorithm is the standard forward algorithm that is used

to solve the evaluation problem in HMMs.

Example 1.a: In this example we consider the finite state machine (FSM) S with known input

distribution shown on the left of Figure 1: S has four states Q = {0, 1, 2, 3}, three inputs X =
{x1, x2, x3}, and three outputs Y = {a, b, c}. Each transition is labeled as xi | σ, where xi ∈ X
denotes the input that drives the FSM and σ ∈ Y denotes the associated output produced by
the FSM. If we assign equal prior probabilities to the inputs, i.e., if each input has probability
1/3 of occurring, the resulting HMM is shown on the right of Figure 1: each transition in the
HMM is labeled as p | σ, where p denotes the probability of the transition and σ ∈ Y denotes
the output produced.

88 Hidden Markov Models, Theory and Applications

www.intechopen.com

0 1

3 2

x 3|c

x 2|a

x 1|a

x 3|c

x 1|a

x 3|c

x 1|c
x 1|b

x 2|b

x 2|b

x 3|c

0 1

3 2

1/3|c

1/3|a

1/3|a

1/3|c
1/3|a

1/3|c

1/3|c
2/3|b

1/3|b

1/3|b

1/3|c

1

x 2|b

Fig. 1. State transition diagram of FSM S of Example 1 (left) and its corresponding HMM
(right).

0,0

0,1

0,3

0,2

2,0

2,1

2,3

2,2

3,0

3,1

3,3

3,2

4,0

4,1

4,3

4,2

1,0

1,1

1,3

1,2

Fig. 2. Trellis diagram corresponding to S of Example 1 for observation sequence
y4

1 =< abcb > (transition probabilities are not included for clarity).

Suppose that we monitor S for L = 4 steps and we observe the sequence y4
1 =< abcb >. The

corresponding trellis diagram is shown in Figure 2 (pairs of states that are associated with
zero transition probabilities are not connected in the diagram and transition probabilities are

89Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

n ρT
S [n] P(yn

1 | S)

0 [0.2500 0.2500 0.2500 0.2500] 1
1 [0 0.1667 0 0.0833] 0.2500

2 [0 0.0556 0.0556 0] 0.1112

3 [0.0370 0.0185 0 0] 0.0555
4 [0 0 0.0062 0] 0.0062

Table 1. Iterative calculations for vector ρS for the sequence of observations y4
1 =< abcb >.

not included for clarity of presentation). Each state of the trellis diagram is identified by a
pair (m, j), where m = 0, 1, 2, 3, 4 denotes the observation step and j ∈ {0, 1, 2, 3} denotes the
state of S. For example, the probability of a transition from state (0, 0) to state (1, 3) producing
output a is 1/3. Assuming uniform initial distribution, the probability that the observations
were produced by S can be calculated iteratively and is given by P(y4

1 | S) = 0.0062. Note
that this probability is expected to go down as the number of observations increases. Table 1
shows the sequence of iterations in order to obtain the vector ρS[n] as observations are coming
in. ✷

Example 1.b:
As another example, we consider a problem from computational biology. Specifically, we
concentrate on identifying CpG islands in a DNA sequence, where the alphabet consists of
the four nucleotides A, C, G, T (Durbin et al., 1998). Regions that are characterized by higher
than usual concentration of CpG dinucleotides (more generally, higher concentration of C and
G nucleotides) are called CpG islands.2 It is important to be able to identify these regions
because they typically appear around the promoters or start regions of many genes (Fatemi
et al., 2005). Consider the following task: given a short stretch of genomic sequence, can we
decide whether it comes from a CpG island or not? For illustration purposes, we assume that
we are only capable of observing two output symbols, α and β, as follows: we observe the
symbol α when the true output is A or C and we observe the symbol β when the true output is
G or T (this could be used, for instance, to model situations where instruments are unable to
distinguish between specific pairs of nucleotides). We assume that we are given two HMMs,
CpG+ and CpG−, with known structure, which model respectively regions with and without
CpG islands. As shown in Figure 3, CpG+ and CpG− have four states Q = {A, C, G, T}, and
two outputs Y = {α, β}. We also assume (for simplicity) that the priors of the two models are
pCpG+ = pCpG− = 0.5.

Suppose that we observe the sequence y4
1 =< αβαβ > and our goal is to determine which

of the two HMMs (CpG+ or CpG−) has most likely generated the observed sequence.
According to the previously described iterative algorithm, we need to first define the
transition probability matrices for each symbol for each one of the two HMMs (ACpG+,α,

ACpG+,β, ACpG−α, ACpG−,β); for example, for HMM CpG+, we have

ACpG+,α =

⎡

⎢

⎢

⎢

⎢

⎣

A C G T
A 0.18 0.17 0.16 0.08
C 0.27 0.37 0.34 0.36
G 0 0 0 0
T 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

2 The formal definition of a CpG island is a region with at least 200 base pairs that has a GC percentage
that is greater than 50% and an observed/expected CpG ratio that is greater than 60 (Gardiner-Garden
and Frommer, 1987).

90 Hidden Markov Models, Theory and Applications

www.intechopen.com

A C

G

0.27/g

T

0.18/g

0.17/g

0.37/g

0.16/g

0.34/g

0.08/g
0.36/g

0.43/く

0.12/く

0.27/く

0.19/く

0.37/く

0.13/く

0.38/く

0.18/く

A C

G

0.2/g

T

0.3/g

0.32/g

0.3/g

0.25/g

0.25/g

0.18/g
0.24/g

0.29/く

0.21/く

0.08/く

0.3/く

0.29/く

0.29/く

0.21/く

0.29/く
a) b)

Fig. 3. State transition diagram of the two HMMs used to identify regions with or without
CpG islands in Example 1.b: (a) CpG+ (left), and (b) CpG− (right).

n ρT
+[n] P(yn

1 | CpG+)

0 [0.2500 0.2500 0.2500 0.2500] 1
1 [0.1475 0.3350 0 0] 0.4825

2 [0 0 0.1539 0.0814] 0.2353

3 [0.0311 0.0816 0 0] 0.1127
4 [0 0 0.0354 0.0192] 0.0546

Table 2. Iterative calculations for posterior probabilities for the sequence of observations
y4

1 =< αβαβ > for the model CpG+.

Given our previous discussion, we can calculate

æ+[4] = ACpG+,β · ACpG+,α · ACpG+,β · ACpG+,α · ρCpG+[0]

æ−[4] = ACpG−,β · ACpG−,α · ACpG−,β · ACpG−,α · ρCpG−[0]

and obtain P(y4
1 | CpG+) = 0.0546 and P(y4

1 | CpG−) = 0.0445. We can now apply the MAP

rule
P(y4

1 | CpG+)

P(y4
1 | CpG−)

>

<

pCpG+

pCpG−
which reduces to

0.0546

0.0445
>

<
1, and decide in favor of CpG+

since the left quantity is larger. Tables 2 and 3 show the various values obtained for the vectors
ρ+ and ρ− (corresponding to CpG+ and CpG− respectively) during the iteration.

91Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

n ρT
−[n] P(yn

1 | CpG−)

0 [0.2500 0.2500 0.2500 0.2500] 1
1 [0.2625 0.2475 0 0] 0.51

2 [0 0 0.0959 0.1294] 0.2253
3 [0.0473 0.0550 0 0] 0.1023

4 [0 0 0.0181 0.0264] 0.0445

Table 3. Iterative calculations for posterior probabilities for the sequence of observations
y4

1 =< αβαβ > for the model CpG−.

4. Probability of error

In this section we focus on bounding the probability of classification error, i.e., the probability
that the classifier makes the incorrect decision.

4.1 Preliminaries

We start by conditioning on a given observation sequence yL
1 and we compute online the

conditional probability that the classifier makes an incorrect decision as follows:

P(error at L | yL
1) = P(decide S2 at L, S1 | yL

1) + P(decide S1 at L, S2 | yL
1)

= P(decide S2 at L | S1, yL
1) · P(S1 | yL

1)+
P(decide S1 at L | S2, yL

1) · P(S2 | yL
1)

= min{P(S2 | yL
1), P(S1 | yL

1)}.

Since both posteriors are already computed (for use in the MAP rule comparison), the
probability of error given the observation sequence yn

1 as a function of n can be easily
computed online along with the maximum likelihood decision. At each step, the classifier
chooses the model with the larger posterior and makes an error with probability equal to the
posterior of the other model (of course, the posteriors need to be normalized so that they sum
up to one).
Our goal is to find a measure of the classification capability of the classifier a priori, i.e., before
any observation is made. The probability of error at step L is given by

P(error at L) = ∑
yL

1

(

P(yL
1) · min{P(S2 | yL

1), P(S1 | yL
1)}

)

.

To perform such computation, we need to find each possible observation sequence yL
1 , along

with its probability of occurring, and use it to compute the posterior of each model conditioned
on this observation sequence. To avoid the possibly prohibitively high computational
complexity (especially for large L) we will focus on obtaining an easily computable upper
bound and then show that, under certain conditions on the underlying HMMs, this bound on
the probability of error decays exponentially to zero with the number of observation steps L.
A classifier that uses the MAP rule necessarily chooses model S1 (S2) if the observation
sequence cannot be produced by S2 (S1), with no risk of making an incorrect decision.
However, if the observation sequence can be produced by both models, the classifier chooses
the model with the highest posterior, thereby risking to make an incorrect decision. The bound
we obtain considers the worst case scenario where, when both models are consistent with the
observation sequence yL

1 (i.e., when P(Si | yL
1) > 0 for i = 1 and 2), the classifier is assumed

to always make the incorrect decision; specifically, one has

92 Hidden Markov Models, Theory and Applications

www.intechopen.com

P(error at L) = ∑
yL

1

min{P(S1 | yL
1), P(S2 | yL

1)} · P(yL
1)

= 1 − ∑
yL

1

max{P(S1 | yL
1), P(S2 | yL

1)} · P(yL
1)

= 1 − ∑
yL

1
:P(Si|y

L
1
)=0

for i=1 or 2

P(yL
1)− ∑

yL
1

:P(Si|y
L
1
)>0

for i=1 and 2

max{P(S1 | yL
1), P(S2 | yL

1)} · P(yL
1)

≤ 1 − ∑
yL

1
:P(Si|y

L
1
)=0

for i=1 or 2

P(yL
1)−

1

2 ∑
yL

1
:P(Si|y

L
1
)>0

for i=1 and 2

P(yL
1)

= 1 − ∑
yL

1
:P(Si|y

L
1
)=0

for i=1 or 2

P(yL
1)−

1

2

(

1 − ∑
yL

1
:P(Si|y

L
1
)=0

for i=1 or 2

P(yL
1)
)

= 1
2

(

1 − ∑
yL

1
:P(Si|y

L
1
)=0

for i=1 or 2

P(yL
1)
)

= 1
2

(

1 − P1 ∑
yL

1
:S2

incons.

P(yL
1 | S1)− P2 ∑

yL
1

:S1
incons.

P(yL
1 | S2)

)

.

In the previous formulas we used the fact that, when both S1 and S2 are consistent with the
observations, then the maximum of their posteriors is greater than or equal to half.

4.2 Calculation of bound on probability of error

Initially, our objective is to capture the set of observation sequences that are consistent with S1

but not with S2 (or sequences that are consistent with S2 but not with S1), i.e., to capture the set
of output sequences that can be produced by S1 but not by S2 (or the other way around). Once
we have identified this set of output sequences, we need to find its probability of occurring.
First, we construct the Markov chain S12|1 (respectively MC S12|2) to help us compute the
bound on the probability that S2 (respectively S1) becomes inconsistent with the observations,
given that the actual model is S1 (respectively S2). In particular, we explain how to construct
MC S12|1 starting from HMMs S1 and S2 in the following five steps (a similar procedure can
be followed to construct MC S12|2).

Step 1. Construct FSMs S1ND and S2ND from HMMs S1 and S2 respectively.
The set of input sequences that SiND accepts is the set of output sequences that Si is capable
of producing (where i = 1, 2). Recall that HMM Si is denoted by (Qi, Y, ∆i, Λi, ρi[0]) (without
loss of generality3 we assume that Y1 = Y2 = Y). Ignoring the transition probabilities of
HMM Si, we build the possibly nondeterministic FSM SiND which has the same set of states
as Si and its set of inputs is equal to the set of outputs of Si. The state transition functionality
of SiND is determined by the output functionality of Si which is captured by Λi (although the
probabilities are not important at this point). More formally, FSM SiND is denoted by SiND =
(QiND, XiND, δiND, qiND0), where QiND = Qi; XiND = Y; qiND0 = {j | ρi[0](j) > 0} (i.e.,
qiND0 includes all states of Si with nonzero initial probability); and δiND(qiND, σ) = {q′iND ∈
QiND | Λi(qiND, σ, q′iND) > 0}.

Step 2. Construct FSMs S1D and S2D from FSMs S1ND and S2ND respectively.
We can think of FSM SiD as an observer for Si because each state of SiD contains the set of

3 We can always redefine Y = Y1 ∪ Y2 to be the output of both machines if Y1 and Y2 are different.

93Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

2

0

1

0,1

0,2

0

a

a

ab

1/2|b

2/3|a

1|a
1/3|a

1/2|b

0

a

NC

a,b

0,2
b

0,1

b a

a

b

aa
2

1

b

2

1

(ii)(i) (iii)

b b

a

Fig. 4. State transition diagrams of (i) HMM S1, (ii) FSM S1D , and (iii) FSM S1DNC of
Example 2.

states that Si may be in given the observation sequence. The number of states of SiD, i.e., the

deterministic version of SiND could be as high as 2|QiND |. Although this may raise complexity
issues, it is very common in practical scenarios for SiD to have roughly the same number
of states as SiND (Hopcroft et al., 2001). Following the procedure of subset construction
(Hopcroft et al., 2001) we use SiND to build the deterministic, equivalent machine SiD = (QiD,
XiD , δiD , qiD0), where QiD contains subsets of states in the set Qi (recall that QiND = Qi);
the set of inputs are the same as the set of inputs of SiND, i.e., XiD = Y (recall that Xi = Y);
qiD0 = qi0; and δiD is determined from SiND by the procedure of subset construction, i.e., for
QS ⊂ Qi and σ ∈ Y, δiD(QS, σ) = {k | ∃j ∈ QS, k ∈ δiND(j, σ)}.

Step 3. Construct FSM S2DNC from FSM S2ND.
Next, we append the inconsistent state NC to S2D to obtain FSM S2DNC. As mentioned earlier,
FSM S2D accepts all sequences that can be produced by S2. FSM S2DNC accepts not only the
sequences that can be produced by S2, but also all other sequences (that cannot be produced
by S2). In fact, all sequences that cannot be produced by S2 will lead S2DNC to its inconsistent
state NC. More specifically, S2DNC = (Q2DNC, X2DNC, δ2DNC, q2DNC0), where Q2DNC =
Q2D ∪ {NC}; X2DNC = Y; q2DNC0 = q2D0 and δ2DNC is given by δ2DNC(q2DNC, σ) =

{

δ2D(q2DNC, σ), if q2DNC 	= NC, δ2D(q2DNC, σ) 	= ∅,
NC, otherwise.

Step 4. Construct FSM S1D2DNC from FSMs S1D and S2DNC.
To capture the set of observations that can be produced by S1 but not by S2, we need
to build the product FSM S1D2DNC. FSM S1D2DNC accepts all sequences that can be
produced by S1; from all of these sequences, the ones that cannot be produced by S2 lead
S1D2DNC to a state of the form {q1D, NC}. More specifically, S1D2DNC = S1D × S2DNC, i.e.,
S1D2DNC = (Q1D2DNC, X1D2DNC , δ1D2DNC , q0,1D2DNC), where Q1D2DNC = Q1D × Q2DNC;
X1D2DNC = Y (recall that X1D = X2DNC = Y); q0,1D2DNC = q0,1D × q0,2DNC; and δ1D2DNC

is given by δ1D2DNC({q1D, q2DNC}, σ) = {δ1D(q1D, σ), δ2DNC(q2DNC, σ)}, σ ∈ Y. Note that
δ1D2DNC({q1D, q2DNC}, σ) is undefined if δ1D(q1D, σ) is undefined.

Step 5. Construct MC S12|1 from FSM S1D2DNC or from S1, S1D, and S2D.
To compute the probabilities of the sequences captured by S1D2DNC we construct the Markov
chain with inputs S12|1 = (Q12|1 X12|1, ∆12|1, ρ12|1[0]), where Q12|1 = Q1 × Q1D2DNC; X12|1 =

94 Hidden Markov Models, Theory and Applications

www.intechopen.com

2

0

1

0,1,2

0

1,2

1

0,1

2

a

a

a
a

a

b

b

b

b

b

1/2|b

1/2|a
1/2|a

1/2|b

2/3|b1/3|a

a

0

a

1,2
a

b

b

b

2

1

0,1

0,1,2
a

b
a

b

b

a

a,b

NC

(ii)(i) (iii)

Fig. 5. State transition diagrams of (i) HMM S2, (ii) FSM S2D , and (iii) FSM S2DNC of
Example 2.

Y; ρ12|1[0]({q1, q0,1D2DNC}) = ρ1[0](q1), for every q1 ∈ Q1 and zero otherwise;4 and ∆12|1

is given by ∆12|1 ({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ), δ2DNC(q2DNC, σ)}) = Λ1(q1, σ, q′1)

for all σ ∈ Y such that δ1D(q1D, σ) 	= ∅. We group all states of the form {q1, q1D, NC} in
one new state and call it NC; we also add a self-loop at state NC with probability one.
Alternatively we can build MC S12|1 from S1, S1D, and S2D as follows: S12|1 = (Q12|1,

X12|1, ∆12|1, ρ12|1[0]), where Q12|1 = Q1 × Q1D × Q2D; X12|1 = Y; ρ12|1[0]({q1, q1D, q2D}) =

ρ1[0](q1), for every q1 ∈ Q1, q1D ∈ Q1D, and q2D ∈ Q2D; and ∆12|1 is given by

∆12|1({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D , σ), δ2DNC(q2DNC, σ)}) = Λ1(q1, σ, q′1), for all σ ∈ Y

such that δ1D(q1D, σ) 	= ∅ and δ2D(q2D , σ) 	= ∅ or ∆12|1 ({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ),

NC}) = Λ1(q1, σ, q′1), for all σ ∈ Y such that δ1D(q1D, σ) 	= ∅ and δ2D(q2D, σ) = ∅. (Note
that for all q2D and all σ we have δ1D(q1D, σ) 	= ∅.) As mentioned before, we group all states
of the form {q1, q1D, NC} in one new state and call it NC; then we add a self-loop at state NC
with probability one.
Notice that any path in S12|1 that ends up in state NC represents a sequence that can be
produced by S1 but not by S2; the probability of such path is easily computed using the
Markovian property. Recall that our objective is to calculate the probability that HMM S2

is inconsistent with the observations given that the observations are produced by S1 (i.e., we
would like to calculate ∑yL

1
:S2

incons.

P(yL
1 | S1)). Therefore, we are interested in the probability

of S12|1 being in the inconsistent state NC as a function of the observation step given by

P(S12|1 in state NC at L) = π12|1[L](NC), where π12|1[L](NC) denotes the entry of π12|1[L]
that captures the probability that S12|1 is in the inconsistent state NC at L. Note that

π12|1[L] = AL
12|1

π12|1[0], where A12|1 is the matrix that captures the transition probabilities

for MC S12|1 and π12|1[0] = ρ12|1[0] (note that at this point the particular inputs associated

with a transition are not needed and are ignored — only the probabilities of these transitions
matter).

4 Abusing notation, we use ρ12|1[0]({q1, q1D2DNC}) to denote the entry of ρ12|1[0] that corresponds to

state {q1, q1D2DNC}; of course, ρ1[0](q1) denotes the entry of ρ1[0] that corresponds to state q1.

95Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

0 0 0

0 0,1 1,2

0 0,1 1 1 0,1 1

0 0,2 2

0 0,2 0,1,2

1 0,1 1,2

2 0,2 0,1,2

NC

1

2/3|a

1/3|a2/3|a

2/3|a 1/3|a
1/2|b

 1|a

 1/2|b

1/2|b

1/3|a

 1|a

2/3|a
1/3|a 1/2|b

2 2 2

1 1 12 0,2 2

 1|a
1/2|b

1/2|b

 1|a

Fig. 6. State transition diagram of MC S12|1 of Example 2.

Proposition 1: The probability of error as a function of the observation step is given by

P(error at L) ≤ 1
2

(

1 − P1 · ∑
yL

1
:S2

incons.

P(yL
1 | S1)− P2 · ∑

yL
1

:S1
incons.

P(yL
1 | S2)

)

= 1
2 − 1

2 P1 · π12|1[L](NC)− 1
2 P2 · π12|2[L](NC),

where π12|1[L](NC) captures the probability of S12|1 being in state NC at step L, π12|2[L](NC)
captures the probability of S12|2 being in state NC at step L, and P1 and P2 denote the priors of
S1 and S2. ✷

Example 2: We consider two candidate HMMs S1 and S2 with Q1 = Q2 = {0, 1, 2}, Y1 =

Y2 = {a, b}, initial state {0}, and transition functionality, as shown in Figures 4.(i) and 5.(i),
where each transition is labeled by pi | σ, i.e., the probability of the transition and the output
it produces. Following the procedure of subset construction we construct the deterministic
FSMs S1D and S2D as shown in Figures 4.(ii) and 5.(ii), respectively (notice that we include
states {1} and {2} in the state transition diagram of S1D for completeness although they are
not reachable from the initial state {0}). Adding the inconsistent state for each machine we get
FSMs S1DNC and S2DNC as shown in Figures 4.(iii) and 5.(iii), respectively. Then, we construct
MCs S12|1 and S12|2 with state transition diagrams as shown in Figures 6 and 7, respectively.
For example, the sequence < a a b a > can be produced by S1 but not by S2 (hence, given that
this is the observation sequence, the probability that the classifier makes an incorrect decision
is zero). In fact, all sequences in S12|1 that end up in state NC can be produced by S1 but not
by S2. ✷

4.3 Properties of bound on probability of error

The inconsistent state NC in MC S12|1 is an absorbing state by construction. Therefore, the
probability that S12|1 is in state NC does not decrease as a function of the observation step; the
same property holds for S12|2. From Proposition 1 it is clear that the bound on the probability
of error is a nonincreasing function of the observation step.

96 Hidden Markov Models, Theory and Applications

www.intechopen.com

0 0 0

1 0,1 1,2 2 0,1 1,2

1 0,1 1 2 0,2 0,1,2 0 0,2 0,1,2 1 0,2 0,1,2

2 0,2 2

NC

1

1/2|a 1/2|a

1/2|a
1/2|a2/3|b1/3|a

2/3|b

2/3|b

1/3|a

1/2|b
1/2|b

1/3|a

2/3|b

1/3|a
 1|b

 1|b 1|b

1 1 1
2 2 2

Fig. 7. State transition diagram of MC S12|2 of Example 2.

Proposition 2: The bound on the probability of error given by Proposition 1 is a nonincreasing
function of the number of observation steps. ✷

In fact, if MCs S12|1 and S12|2 have a single absorbing state each, i.e., state NC is the only
absorbing state in each model, then the bound goes to zero as the number of observation
steps increases. The expected number of steps to absorption, given that the initial state is the
0th state of S12|1, can be calculated using the fundamental matrix of the absorbing Markov
chain S12|1 (Kemeny et al., 1976). If AT12|1 is the substochastic transition matrix of S12|1 that
captures the transitions among all transient states (all but NC) then the fundamental matrix is

given by ∑
∞
i=0 AT12|1

i = (I − AT12|1)
−1 and its (j, k)th entry captures the expected number

of transitions from state k to state j before absorption. The expected number of steps to
absorption, given that the initial state is state {0}, is equal to the sum of the elements of the
0th column of the fundamental matrix. In fact, the rate of convergence to absorption depends
on the largest eigenvalue of the substochastic matrix AT12|1 (because the rate of convergence
of matrix Am

T12|1 is captured by the rate of convergence of λm
12|1, where λ12|1 is the largest

eigenvalue of AT12|1 and m denotes the number of steps (Kemeny et al., 1976)).
Let us now consider the scenario where neither S12|1 nor S12|2 includes the inconsistent state
NC in their set of states. Then the bound on the probability of error will not go to zero; in
fact, it will always be equal to half, thereby providing us with no useful information. This
scenario corresponds to the case where all output sequences that can be produced by S1 can
also be produced by S2 and vice versa. For this to be true, S1 and S2 need to be equivalent,
i.e., generate the same regular language (i.e., the same set of output sequences). Of course,
although the set of output sequences is the same for both models, the probabilities associated
with an output sequence could be different for each model. However, the posteriors of the
candidate models in this case would be strictly greater than zero for any observation sequence;
hence, the error in the MAP decision will always be nonzero. We can check whether S1 and
S2 are equivalent using standard approaches with complexity O((|Q1D|+ |Q2D|)

2) (Hopcroft
et al., 2001). We can also easily check equivalence by using S1D2DNC and S1DNC2D which
we have already constructed: if the inconsistent state in either S1D2DNC or S1DNC2D (and

97Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Observation Step

Bound on probability of error (solid)
Probability of error by simulation (dashed)

Fig. 8. Plot of the bound on the probability of error (solid) and the empirical probability of
error obtained by simulation (dashed) in Example 2, both shown as functions of the
observation step.

consequently S12|1 or S12|2) can be reached starting from the initial state, then the two models
are not equivalent.
If MC S12|1 has no absorbing state and MC S12|2 has only the state NC as an absorbing state,

then the bound on the probability of error goes to the value P1
2 . This case corresponds to the

language generated by S1 being a subset of the language generated by S2, i.e., the set of output
sequences that can be produced by S1 can also be produced by S2. To check for this scenario,
we can check whether the inconsistent state in S1D2DNC is reachable from the initial state. We
formalize the above discussion in the following proposition.

Proposition 3: For two HMMs S1 and S2, the upper bound on the probability of error for the
classification decision

• tends to zero exponentially with the number of observation steps, if (and only if) each of
FSMs S1D2DNC and S1DNC2D has a unique absorbing state, namely the inconsistent state;

• tends to the value P1/2 exponentially with the number of observation steps, if FSM
S1D2DNC has no inconsistent state and FSM S1DNC2D has a unique absorbing state, i.e.,
the inconsistent state;

• tends to the value P2/2 exponentially with the number of observation steps, if FSM
S1D2DNC has no inconsistent state and FSM S1DNC2D has a unique absorbing state, i.e.,
the inconsistent state;

• is equal to 1/2, if (and only if) FSMs S1D2DNC and S1DNC2D have no inconsistent states. ✷

Example 2 (continued): As shown in Figures 6 and 7, each of S12|1 and S12|2 have NC as the
unique absorbing state. Thus, the bound on the probability of error goes to zero exponentially
with the observation time; this is evident in Figure 8 where we assume equal priors (i.e., P1 =

98 Hidden Markov Models, Theory and Applications

www.intechopen.com

2

0

1

1/2|b

2/3|a

1|a
1/3|a

1/2|b

(i) (ii)

0

1|a

1

 1|b

Fig. 9. State transition diagram of (i) HMM S1 and (ii) HMM S3 of Example 3.

P2 = 0.5). After running simulations, half with the actual model being S1 and the other half
with the actual model being S2, we obtain the empirical probability of error given S1 (and
given S2) by recording the fraction of simulations for which the classifier incorrectly decided
S2 (and S1, respectively). The empirical probability of error as a function of the observation
step is shown in Figure 8. The expected time to absorption for S12|1 is calculated to be 6.8 steps
and the expected time to absorption for S12|2 is 6.3 steps; hence, for equal priors, the expected
number of steps for the bound on the probability of error to become zero is 6.55 steps. ✷

Example 3: Consider HMM S1 and HMM S3 shown in Figure 9, and assume equal priors.
Notice that any output sequence that can be produced by S3 can also be produced by S1; thus,
there is no inconsistent state in S13|3 and the probability ∑yL

1 :P(S1|yL
1)=0 P(yL

1 | S3) is always

equal to zero. On the other hand, S13|3 has a unique absorbing inconsistent state. According
to the proposition, we expect the bound on the probability of error to go to P1/2 = 0.25. From
Figure 10 we see that, although the bound on the probability of error indeed goes to 0.25 (as
expected), the simulations show that the empirical probability of error goes to zero as the
number of steps increases; for this set of candidate models, the bound is not tight, even as the
number of observation steps goes to infinity. ✷

5. Posterior probability calculation with corrupted observations

So far, we have assumed that the output sequence of the HMM is correctly observed by
the classifier. Next, we consider the scenario where sensor failures may convert the output
sequence to a corrupted observed sequence.

5.1 Sensor failure model

The output sequence yL
1 =< y[1], y[2], ..., y[L] > produced by the system under classification

may become corrupted due to noise or sensor unreliability. When sensor failures are possible,

what is actually observed by the system, denoted by zLz
1 =< z[1], z[2], ..., z[Lz] >, may be

different from the output sequence. In fact, if sensor failures are allowed to insert and/or

delete outputs, the length of the observed sequence zLz

1 may be different from the length of
the output sequence (i.e., it could be that Lz 	= L). We consider sensor failures that may result
in the deletion, insertion, or substitution of output symbols, or the transposition of adjacent
output symbols. We assume that sensor failures are transient and occur independently at each
observation step with certain (known) probabilities that could depend on the observation step,
e.g., the probability of such transient errors could vary as a function of time. We also make

99Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Observation Step

Bound on probability of error (solid)
Probability of error by simulation (dashed)

Fig. 10. Plot of the bound on the probability of error (solid) and the empirical probability of
error obtained by simulation (dashed) in Example 3, both shown as functions of the
observation step.

the reasonable assumption that sensor failures are conditionally independent from the HMM
given the observation sequence.
If an output σ ∈ Y is deleted by the sensor, then we do not observe the output, i.e., the deletion
causes σ → ε, where ε denotes the empty label. Similarly, if an output σ ∈ Y is inserted by
the sensor, then we observe σ instead of ε, i.e., the insertion causes ε → σ. Also, if an output
σj ∈ Y is substituted by σk ∈ Y, then we observe σk, i.e., the substitution causes σj → σk.
Lastly, the corruption of subsequence < σjσk > to < σkσj > is referred to as a transposition
error.
To perform the posterior probability calculation, we construct the trellis diagram of S as
before but modify it to capture the sensor failures. Note that we call each column of the
trellis diagram a stage to reflect the notion of an observation step. Deletions appear in the
trellis diagram as vertical transitions within the same stage and insertions appear as one-step
forward transitions. A substitution appearing at a particular observation step results in a
change of the transition functionality of the HMM for that step. The transposition of two
adjacent outputs appears in the trellis diagram as an erroneous transition that spans two
columns.
Given the sensor failure model, we can assign probabilities to all types of errors on the
observed sequence. Since the probabilities of sensor failures are known and are (conditionally)
independent from the transition probabilities of the HMM, we can easily determine the
probabilities associated with transitions in the modified trellis diagram that accounts for
sensor failures. Due to space limitations, we focus on deletions which is the most challenging
case of sensor failures because they may produce vertical cycles in the trellis diagram; the
interested reader can find more details in (Athanasopoulou, 2007).

100 Hidden Markov Models, Theory and Applications

www.intechopen.com

We assume that a deletion dσ′ of output σ′ occurs with known probability pdσ′
[m + 1] at

observation step m + 1 when S is in a state from which a transition that outputs σ′ is possible.
Let D = {dσ1 , dσ2 , ..., dσ|D|

| σ1, σ2, ..., σ|D| ∈ Y} be the set of deletions and define a function out

to allow us to recover the corresponding output in the set Y given a deletion, i.e., out(dσ′) = σ′.
When constructing the trellis diagram, we assign probabilities to the transitions as follows:

1. each forward (normal) transition from state (m, j) to state (m+ 1, k) associated with output
σ is assigned probability

(1 − ∑
∀d

σ′
∈D s.t.

δ(j,out(d
σ′
)) 	=∅

pdσ′
[m]) · Aσ(k, j),

where (1 − ∑
∀d

σ′
∈D s.t.

δ(j,out(d
σ′
)) 	=∅

pdσ′
[m]) is the probability that no deletion (possible from state j)

occurs and where Aσ(k, j) is the probability of going from state j to state k while producing
output σ;

2. each vertical transition (corresponding to deletions) from state (m, j) to state (m, k) is
assigned probability

∑
∀d

σ′
∈D s. t.

δ(j,out(d
σ′
))=k

(pdσ′
[m] · Aσ′(k, j)).

Note that other ways of defining these probabilities (or obtaining them from a particular
sensor failure model) are possible, e.g., under different models of sensor failures. What is
important (and a challenge) here are not the specific values of these probabilities but the
structure of the trellis diagram (in particular the loops that are present).

0,0

0,1

0,3

0,2

2,0

2,1

2,3

2,2

3,0

3,1

3,3

3,2

4,0

4,1

4,3

4,2

1,0

1,1

1,3

1,2

Fig. 11. Trellis diagram corresponding to S of Example 1 with deletions due to sensor failures
(transition probabilities are not included for clarity).

Example 1 (continued): In S of Example 1 suppose that deletion of b may occur and that

the observed sequence is z4
1 =< abcb >. The output sequence yL

1 could be of any length;
examples of possible output sequences are < abbbcb >, < babcb >, and < babbcbbb >. The

101Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

resulting trellis diagram is shown in Figure 11, where dashed arcs represent transitions due to
the deletion of b. In this example, we assume that the deletion probability pdb

is fixed for all
observation steps. The probabilities of transitions are not included in the figure for clarity, but
they can be computed as explained before the example. For instance, the (normal) transition
from state (0, 0) to state (1, 3) when symbol a is observed has probability Aa(3, 0), which is
equal to the probability that S took a transition from state 0 to state 3 and produced output a.
Similarly, the (erroneous) transition from state (0, 1) to state (0, 2) has probability pdb

· Ab(2, 1),
which is the probability that b was produced by S and then it was deleted by the sensors. ✷

5.2 Posterior probability calculation

The iterative algorithm described in Section 3 cannot be applied in the case of sensor
unreliability (see Figure 11) because the vertical arcs within a stage can possibly form loops (as
in our example) and be traversed any number of times (more loop traversals occur, of course,
with lower probability). Next, we establish some notation which will help us perform the
iteration.
We can view the trellis diagram for a given observed sequence zLz

1 as a probabilistic FSM H
with |QH | = (Lz + 1) · |Q| states and probabilities on transitions determined by the trellis
diagram. The transition probabilities do not generally satisfy the Markovian property and the
matrix AH that describes the transition probabilities of FSM H is not stochastic. We can easily
build H′ by modifying H, so that the assigned transition probabilities produce a Markov chain
and, in particular, an absorbing Markov chain. More specifically, we append |Q|+ 1 states as
described in the following two steps:

1. We add an extra stage at the end of the trellis diagram, i.e., we add |Q| states of the form
(Lz + 1, j) so that from each state of the form (Lz, j) there exists a transition with probability
one to state (Lz + 1, j), j ∈ {0, 1, 2, ..., |Q| − 1}; we also add a self-loop with probability one
at each state of the form (Lz + 1, j). We call each state of the form (Lz + 1, j) a consistent
state because H′ being in that state implies that S is consistent with the observed sequence

zLz
1 .

2. We add state qin to represent the inconsistent state, i.e., H is in state qin when the observed
sequence is not consistent with S. To achieve this, we add transitions from each state of
FSM H to the inconsistent state qin with probability such that the sum of the transition
probabilities leaving each state is equal to one; we also add a self-loop at state qin with
probability one.

The resulting Markov chain H′ has |QH ′ | = (Lz + 2) · |Q|+ 1 states. The only self-loops in
H′ with probability one are those in the consistent states (of the form (Lz + 1, j)) and in the
inconsistent state (qin). In fact, due to the particular structure of H′ (and given that there is
a nonzero probability to leave the vertical loop at each stage), the consistent and inconsistent
states are the only absorbing states, while the rest of the states are transient. Therefore, when
H′ reaches its stationary distribution, only the absorbing states will have nonzero probabilities
(summing up to one). We are interested in the stationary distribution of H′ so that we can

account for output sequences yL
1 of any length that correspond to the observed sequence zLz

1 ,
i.e., for L = Lz, Lz + 1, . . . , ∞. (Recall that without sensor failures we have L = Lz.)
More formally, we arrange the states of H′ in the order (0, 0), (0, 1), . . . , (0, |Q| −
1), (1, 0), (1, 1), . . . , (1, |Q| − 1), . . . , (Lz + 1, 0), (Lz + 1, 1), . . . , (Lz + 1, |Q| − 1), qin. Let πH ′ [0]
be a vector with |QH ′ | entries, each of which represents the initial probability of a

102 Hidden Markov Models, Theory and Applications

www.intechopen.com

corresponding state of H′. We are interested in the stationary probability distribution of H′

denoted by
πH ′ = lim

n→∞
πH ′ [n] = lim

n→∞
An

H ′ · πH ′ [0],

where the state transition matrix AH ′ of H′ is in its canonical form given by

AH ′ =

[

AH 0
R I

]

. (1)

Here AH captures the behavior of the transient states of H′, the (|Q| + 1) × |QH | matrix
R captures the transitions from the transient states to the absorbing states, 0 is a matrix
of appropriate dimensions with all zero entries, and I is the identity matrix of appropriate
dimensions. Note that since H′ is an absorbing Markov chain, the limit limn→∞ An

H ′ exists
and it is given by

lim
n→∞

An
H ′ =

[

0 0

(I −AH)−1R I

]

, (2)

where (I −AH)
−1 is called the fundamental matrix (Kemeny et al., 1976).

The only nonzero entries of πH ′ are those that correspond to the consistent and inconsistent
states. In fact, the probability that H′ ends up in a consistent state is equal to the complement
of the probability that H′ ends up in the inconsistent state and it is equal to the probability of

the observed sequence zLz
1 given the FSM model S, i.e.,

P(zLz

1 | S) =
|QH|−1

∑
j=Lz·|Q|

πH ′ (j) = 1 − πH ′ (|QH ′ |).

Note that the above approach for the posterior probability calculation is consistent with the
one obtained in (Athanasopoulou et al., 2010) using the notion of the observation FSM and its
composition with S.

5.3 Iterative posterior probability calculation with corrupted observations

In this section we exploit the structure of matrix AH ′ which captures the transition
probabilities of H′ to perform the posterior probability calculations in an efficient manner.
We first define the following submatrices which will be used to express AH ′ .

• Matrices Bm,m+1, m = 0, 1, ..., Lz, capture the transitions from any state of H′ at stage
m to any state of H′ at stage m + 1. They can be obtained from AH ′ as Bm,m+1(k, j) =
AH ′ ((m + 1) · |Q|+ k, m · |Q|+ j), where k, j = 0, 1, ..., |Q| − 1.

• Matrices Bm, m = 0, 1, ..., Lz, capture the vertical transitions and account for deletions.
They can be obtained from AH ′ as Bm(k, j) = AH ′ (m · |Q|+ k, m · |Q| + j), where k, j =
0, 1, ..., |Q| − 1. (Note that if deletions occur at each observation step with the same
probability, then Bm = B, m = 0, 1, ..., Lz.)

• CT is a row vector with entries CT(j) = 1 − ∑
|QH|
k=1 AH(k, j), for j = 1, 2, ..., |QH |, i.e., CT

ensures that the sum of each column of AH ′ is equal to 1.

103Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

We should note here that an alternative way to compute the block matrices Bm,m+1 and Bm

directly, without the help of the modified trellis diagram, is by using the following equations:

Bm(k, j) = ∑
∀d

σ′∈D s.t.

δ(j,out(d
σ′))=k

(pdσ′
[m] · Aσ′(k, j)),

Bm,m+1(k, j) = (1 − ∑
∀d

σ′
∈D s.t.

δ(j,out(d
σ′
)) 	=∅

pdσ′
[m]) · Az[m+1](k, j),

where k, j = 0, 1, ..., |Q| − 1 and pdσ′
[m], Aσ were defined earlier.

Using the above notation, we can decompose the matrix AH ′ in blocks and express it as

AH ′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B0 0 0 ... 0 0 0 0
B0,1 B1 0 ... 0 0 0 0

0 B1,2 B2 ... 0 0 0 0
...

...
... ...

...
...

...
...

0 0 0 ... BLz−1 0 0 0
0 0 0 ... BLz−1,Lz

BLz
0 0

0 0 0 ... 0 I − BLz
I 0

CT 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Recall that the matrix AH ′ is in its canonical form (see (1)), where the submatrices AH and R
are given by

AH =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

B0 0 0 ... 0 0
B0,1 B1 0 ... 0 0

0 B1,2 B2 ... 0 0
...

...
... ...

...
...

0 0 0 ... BLz−1 0
0 0 0 ... BLz−1,Lz

BLz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

R =

[

0 ... 0 I − BLz

CT

]

.

In the initial probability distribution vector πH ′ [0] the only nonzero entries are its first |Q|
entries, i.e., πH [0] = (ρ[0] 0 ... 0)T , where ρ[0] denotes the initial probability distribution of
S (i.e., it is a |Q|-dimensional vector, whose jth entry denotes the probability that S is initially
in state j). Recall that πH ′ denotes the stationary probability distribution vector of H′ and
has nonzero entries only in the absorbing states, i.e., its last |Q| + 1 states. Hence, given

the observed sequence zLz
1 , we can express πH ′ as πH ′ = (0 ... 0 ρ[Lz + 1] pin[Lz + 1])T ,

where ρ[Lz + 1] captures the probabilities of the consistent states and pin[Lz + 1] denotes the
probability of the inconsistent state. The following equations hold:

πH ′ = lim
n→∞

An
H ′ · πH ′ [0]

(0 ... 0 ρ[Lz + 1] pin[Lz + 1])T = lim
n→∞

An
H ′ · (ρ[0] ... 0)T

ρ[Lz + 1] = lim
n→∞

An
H ′(Lz + 2, 1) · ρ[0].

Therefore, in order to calculate the probability of the consistent states we only need the initial
distribution of S and the (Lz + 2, 1)st block of the matrix limn→∞ An

H ′ .

104 Hidden Markov Models, Theory and Applications

www.intechopen.com

Next, we argue that we can compute the limn→∞ An
H(Lz + 2, 1) with much less complexity

than the standard computation in (2). For simplicity, we illustrate this for the case where the
observed sequence is of length 2, i.e., Lz = 2. The state transition matrix AH ′ is given by

AH ′ =

⎡

⎢

⎢

⎢

⎢

⎣

B0 0 0 0 0
B0,1 B1 0 0 0
0 B1,2 B2 0 0
0 0 I − B2 I 0

CT 0 1

⎤

⎥

⎥

⎥

⎥

⎦

.

We can compute by induction the matrix AH ′ raised to the power n and consequently find the
limit of An

H ′ (4, 1) as n tends to infinity as follows:

lim
n→∞

An
H(4, 1) = lim

n→∞
∑

j1+j2+j3+j4=n−3

I j4 I B
j3
2 B1,2B

j2
1 B0,1B

j1
0

= (I + B2 + B2
2 + ...)B1,2(I + B1 + B2

1 + ...)B0,1(I + B0 + B2
0 + ...)

=

⎛

⎝

∞

∑
j=0

B
j
2

⎞

⎠ B1,2

⎛

⎝

∞

∑
j=0

B
j
1

⎞

⎠ B0,1

⎛

⎝

∞

∑
j=0

B
j
0

⎞

⎠

= (I − B2)
−1B1,2(I − B1)

−1B0,1(I − B0)
−1 .

(The detailed proof is omitted due to space limitations; it can be found in (Athanasopoulou,
2007).)
As explained earlier, we are interested in the state probabilities of the consistent states, which
will be given by the entries of the vector ρ[3] = lim

n→∞
An

H(4, 1) ρ[0]. From the above equation,

we get

ρ[3] = ((I − B2)
−1B1,2(I − B1)

−1B0,1(I − B0)
−1)ρ[0].

To simplify notation let us define B′
m,m+1 = (I − Bm+1)

−1Bm,m+1, m = 0, 1, 2. Hence, ρ[3] =

B′
1,2B′

0,1(I − B0)
−1ρ[0].

Generalizing the above computation for any number of observations Lz, the vector that

describes the probabilities of the consistent states given the observed sequence zLz

1 satisfies

ρ[Lz + 1] =

(

Lz−1

∏
i=0

B′
m,m+1

)

(I − B0)
−1

ρ[0], (3)

where B′
m,m+1 = (I − Bm+1)

−1Bm,m+1, m = 0, 1, ..., Lz.

By inspection of (3) we notice that the computation of ρ[Lz + 1] can be performed iteratively
as follows:

ρ[1] = B′
0,1(I − B0)

−1 ρ[0],

ρ[m + 1] = B′
m,m+1 ρ[m], m = 1, 2, ..., Lz,

(4)

where ρ[m + 1] represents the probability of consistent states given the observed sequence

zm
1 . The probability that the observed sequence zLz

1 was produced by the particular FSM S
is equal to the sum of the elements of the state probability distribution vector ρ[Lz + 1], i.e.,

P(zLz
1 | S) = ∑

|Q|−1
j=0 ρ[Lz + 1](j).

The above algorithm is described in pseudocode below.

105Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

Algorithm
Input: Matrices {Bm}, {Bm,m+1}, where m = 0, 1, . . . , Lz; an observed (possibly corrupted)

output sequence zLz

1 = {z[1], z[2], ..., z[Lz]} and the initial probability distribution ρ[0].
1. Initialization. Let m = 0, z[m] = ∅,

compute B′
0,1 = (I − B1)

−1B0,1,

compute ρ[1] = B′
0,1(I − B0)

−1 ρ[0].
2. Let m = 1.
3. Consider the output z[m], do

compute B′
m,m+1 = (I − Bm+1)

−1Bm,m+1,

compute ρ[m + 1] = B′
m,m+1ρ[m].

4. m = m + 1.
5. If m = Lz + 1, Goto 6; else Goto 3.

6. Compute P(zLz
1 | S) =

|Q|−1

∑
j=0

ρ[Lz + 1](j). ✷

To gain some intuition regarding the iteration, let us consider for now the case of reliable
sensors. This case corresponds to matrices Bm in AH ′ being equal to zero, which means that
there are no vertical transitions (transitions within the same stage) in the trellis diagram. In
this case, iteration (4) becomes

ρ[m + 1] = Bm,m+1 ρ[m], m = 0, 1, . . . , Lz.

This latter equation is the same as the iterative equation that appeared in Section 3 for the case
of reliable sensors (where we denoted Bm,m+1 by Ay[m+1]). Intuitively, every time we get a new
observation we update the current probability vector by multiplying it with the state transition
matrix of S that corresponds to the new observation. With the above intuition at hand, we now
return to the case of sensor failures. Here, we also need to take into consideration the fact that
any number of vertical transitions may occur. Therefore, every time we get a new observation
z[m + 1], we multiply the current probability vector with the state transition matrix of S that

corresponds to the new observation (as before) and also with (I − Bm+1)
−1 = ∑

∞
j=0 B

j
m+1

thereby taking into account the vertical transitions at stage m + 1.
The matrices Bm,m+1 have dimension |Q| × |Q|, while the matrix AH has dimension |QH | ×
|QH |, where |QH | = (Lz + 2) · |Q|. If we calculate πH without taking advantage of the
structure of AH , the computational complexity is proportional to O(((Lz + 2) · |Q|)3) =
O(L3

z · |Q|3). If we use the iterative approach instead, the computational complexity reduces
significantly to O((Lz + 2) · (|Q|2 + |Q|3)) = O(Lz · |Q|3) (each stage requires the inversion
of a new |Q| × |Q| matrix which has complexity O(|Q|3) and dominates the computational
complexity associated with that particular stage). If sensor failure probabilities remain
invariant at each stage, then matrix Bm at stage m only needs to be inverted once and the
complexity of the iterative approach is O((Lz + 2) · |Q|2 + |Q|3) = O(Lz · |Q|2 + |Q|3). In
addition to complexity gains, the iterative nature of the calculations allows us to monitor the
system under classification online and calculate the probability of the observed sequence at
each observation step by first updating the state probability vector and then summing up its
entries.

106 Hidden Markov Models, Theory and Applications

www.intechopen.com

5.4 Discussion

We discuss here how the presented iterative algorithm relates to other known algorithms.
As mentioned earlier, the techniques that we use relate to the evaluation problem in HMMs
or the parsing problem in probabilistic automata with vertical loops in the resulting trellis
diagram. The forward algorithm is used to evaluate the probability that a given sequence
of observations is produced by a certain HMM. To do that, the standard forward algorithm
uses the HMM to build a trellis diagram based on the given sequence of observations and
performs the likelihood calculation online. However, the standard forward algorithm cannot
handle the existence of vertical cycles in the trellis diagram. Ways around vertical cycles in
the trellis diagram have been suggested in speech recognition applications, where HMMs are
used to model speech patterns (Rabiner, 1989), (Ephraim and Merhav, 2002), (Jelinek, 1998),
(Poritz, 1988) and may include null transitions (i.e., the HMM may move from the current
state to the next state without producing any output (Jelinek, 1998), (Bahl and Jelinek, 1975)),
as well as in the area of pattern recognition, where one may have to deal with null transitions
when solving the parsing problem for a given probabilistic finite state automaton (Vidal et al.,
2005).
While in most HMM formulations one deals with state observations, several authors have
also studied the evaluation problem in HMMs with transition observations, including null
transitions (i.e., transitions with no outputs). For instance, the authors of (Bahl and Jelinek,
1975), (Bahl et al., 1983), (Jelinek, 1998), develop HMMs that capture the generation of
codewords in speech recognition applications via observations that are associated with
transitions rather than states. These HMMs also include null transitions, i.e., transitions that
change the state without producing outputs. To avoid loops in the resulting trellis diagram,
the authors of (Bahl and Jelinek, 1975) eliminate them via an appropriate modification of the
underlying HMM before constructing the trellis diagram. In (Vidal et al., 2005), an algorithm is
presented to solve the parsing problem in pattern recognition applications for the case where
null transitions exist in a probabilistic finite-state automaton (PFSA) model (as pointed out in
(Dupont et al., 2005), HMMs are equivalent to PFSAs with no final probabilities). The authors
evaluate recursively the probability that a sequence is produced by a λ-PFSA (i.e., a PFSA that
includes null transitions) and their approach can be shown, after some manipulation, to be a
special case of the algorithm we described here.
Also related to the described likelihood computation algorithm is the well-known
Viterbi algorithm (Forney, 1973), (Viterbi, 1967), which solves the related problem of
maximum-likelihood decoding of convolutional codes by choosing the most likely state
sequence based on a given sequence of observations. In fact, the Viterbi algorithm is a
dynamic programming algorithm amenable to online use with applications in various fields;
for example, in HMMs it finds the most likely (hidden) state sequence corresponding to the
observed output sequence (Rabiner, 1989). Note that, in contrast to the Viterbi algorithm, the
maximum likelihood approach in this work considers the total probability of all paths (rather
than the cost of the most likely path) which can be generated from the initial state(s) to the final
state(s). As a consequence of this requirement, the Viterbi algorithm (or variations of it) do
not obtain a solution for the problem considered here. However, it is worth pointing out that
the Viterbi algorithm has been frequently suggested as a suboptimal alternative for likelihood
evaluation in some applications (Rabiner, 1989). Also note that a modified Viterbi algorithm
was proposed in (Bouloutas et al., 1991) to identify the correct strings of data given an FSM
representation of a possibly erroneous output sequence; in (Hart and Bouloutas, 1993) the
same authors proposed a channel inversion algorithm for correcting symbol sequences that

107Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

have been corrupted by errors (associated with costs) which can be described in terms of finite
state automata. The work in (Amengual and Vital, 1998) proposes an efficient implementation
of the Viterbi algorithm to perform error-correcting parsing using an FSM and an error model.
The Viterbi algorithm can handle the case where vertical cycles exist by unwrapping cycles so
that each state on the cycle is visited at most once (to avoid adding cost or decreasing the
probability of the path — recall that the Viterbi algorithm only searches for the most likely
path).
Before closing this discussion, it is worth pointing out that the techniques used to solve
our problem also relate to maximum a posteriori (MAP) decoding of variable length codes
(VLC). In MAP decoding of VLC, symbols that are generated by a source may give rise to
a different number of output bits and, given an observed bit sequence, one has to recover
the symbols that are transmitted according to the source codewords. The authors in (Bauer
and Hagenauer, 2000), (Guyader et al., 2001) constructed a two-dimensional (symbol and
bit) trellis diagram representation of the variable length coded data and then applied the
BCJR algorithm (Bahl et al., 1974) to do either symbol or bit decoding. This setup resembles
the setup described here when only a finite number of sensor failures exist in the observed
sequence (in such case, one can appropriately enlarge the underlying model since no vertical
cycles are present). In our formulation, however, deletions may cause vertical loops in
the associated trellis diagram resulting in an infinite number of possible output sequences
matching a given sequence of observations. As a consequence, the standard BCJR algorithm
is insufficient for solving our problem and the techniques that we describe are crucial in
obtaining the probabilities needed for our trellis-based analysis.
To summarize, the approach presented here is more general than the aforementioned
approaches because it can handle different kinds of loops at different stages of the trellis
diagram (loops in our setup are not introduced by null transitions in the underlying model but
rather by errors in the observed sequence which can occur with time-varying probabilities).
Thus, the associated probabilities in the trellis diagram can be changing with time (which
cannot be handled as effectively using the techniques in (Vidal et al., 2005) or in (Bahl and
Jelinek, 1975)). The problem is that the modification of the underlying model so as to match
the requirements of these earlier approaches results in a quite complex HMM (in which the
evaluation problem can still benefit from the techniques we describe here). Therefore, the
attractive feature of the described iterative algorithm for likelihood calculation is that it can
handle time-varying and infinite number of sensor failures (or, equivalently, vertical cycles in
the trellis diagram) with reduced complexity.

6. Conclusions

In this chapter we considered the problem of optimal classification of HMMs in order
to minimize the probability of error. Given two candidate HMMs along with their prior
probabilities, a classifier that aims to minimize the probability of error (misclassification)
needs to determine which candidate model has most likely produced the observation
sequence of the system under classification. In order to find the a priori probability that
the classifier makes an incorrect decision as a function of the observation step, one could in
principle calculate all possible observation sequences (of that length), find their probabilities,
and determine their contribution to the probability of misclassification. Since the complexity
for calculating the exact probability of error can be prohibitively high, we described ways
to obtain an upper bound on this probability, as well as necessary and sufficient conditions
for the bound to go exponentially to zero as the number of observation steps increases.

108 Hidden Markov Models, Theory and Applications

www.intechopen.com

Additionally, we presented an iterative methodology to calculate the probability of a given
HMM under possibly erroneous observations. Our goal was to determine which of two
candidate HMMs has most likely produced the observed sequence under sensor failures
which can corrupt the observed sequence. Using the trellis diagram which includes all
possible sequences consistent with both the observations and the given HMMs, we described
an iterative algorithm that efficiently computes the total probability with which each HMM,
together with a combination of sensor failures, can generate the observed sequence. The
described algorithm can deal with vertical loops in the trellis diagrams which can be caused
by output deletions.
As examples we considered the classification of CpG islands in DNA sequences and a failure
diagnosis scenario where a system is classified as faulty or non-faulty depending on the
observation sequence. The described techniques can be easily extended to classification of
several hidden Markov models with applications in various fields such as document or image
classification, pattern recognition, and bioinformatics.

7. Acknowledgement

The authors would like to thank Christoforos Keroglou for help with Example 1.b and for
proof reading several parts of this chapter.

8. References

J. C. Amengual and E. Vidal. (1998). Efficient error-correcting Viterbi parsing, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 20, no. 10, pp. 1109–1116.

E. Athanasopoulou, L. Li, and C. N. Hadjicostis. (2010). Maximum likelihood failure diagnosis
in finite state machines under unreliable observations, IEEE Trans. Automatic Control,
vol. 55, no. 3, pp. 579–593.

E. Athanasopoulou and C. N. Hadjicostis. (2008). Probability of error bounds for failure
diagnosis and classification in hidden Markov models, IEEE Proc. of the 47th IEEE
Conf. on Decision and Control, pp. 1477-1482.

E. Athanasopoulou. (2007). Diagnosis of finite state models under partial or unreliable observations.
Ph.D. Thesis, Department of Electrical and Computer Engineering, University of
Illinois, IL.

L. R. Bahl, F. Jelinek and R. L. Mercer. (1983). A maximum likelihood approach to continuous
speech recognition, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-5,
no. 2, pp. 179–190.

L. R. Bahl and F. Jelinek. (1975). Decoding for channels with insertions, deletions and
substitutions with applications to speech recognition,” IEEE Trans. Information Theory,
vol. IT-21, no. 4, pp. 404–411.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. (1974). Optimal decoding of linear codes for
minimizing label error rate, IEEE Trans. Information Theory, vol. IT-20, pp. 284–287.

R. Bauer and J. Hagenauer. (2000). Symbol-by-symbol MAP decoding of variable length codes,
in Proc. 3rd ITG Conf. on Source and Channel Coding, pp. 111–116.

A. Bouloutas, G. W. Hart, and M. Schwartz. (1991). Two extensions of the Viterbi algorithm,
IEEE Trans. Information Theory, vol. 37, no. 2, pp. 430–436.

P. Dupont, F. Denis, and Y. Esposito. (2005). Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms, Pattern Recognition, vol. 38, no. 9, pp. 1349–1371.

109Classification of Hidden Markov Models:
Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations

www.intechopen.com

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. (1998). Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge, UK.

Y. Ephraim and N. Merhav. (2002). Hidden Markov processes, IEEE Trans. Information Theory,
vol. 48, no. 6, pp. 1518–1569.

M. Fatemi, M. M. Pao, S. Jeong, E. N. Gal-Yam, G. Egger, D. J. Weisenberger, and P. A. Jones.
(2005). Footprinting of mammalian promoters: use of a CpG DNA methyltransferase
revealing nucleosome positions at a single molecule level, Nucleic Acids Research, vol.
33, no. 20, pp. e176.

G. D. Forney, Jr.. (1973). The Viterbi algorithm, Proc. IEEE, vol. 61, pp. 268–278.
K. S. Fu. (1982). Syntactic Pattern Recognition and Applications. Prentice-Hall, New York, NY.
M. Gardiner-Garden and M. Frommer (1987). CpG Islands in vertebrate genomes, Journal of

Molecular Biology, vol. 196, no. 2, pp. 261-282.
A. Guyader, E. Fabre, C. Guillemot, and M. Robert. (2001). Joint source-channel turbo

decoding of entropy-coded sources,” IEEE Journal on Selected Areas in Communications,
vol. 19, no. 9, pp. 1680–1696.

G. W. Hart and A. T. Bouloutas. (1993). Correcting dependent errors in sequences generated
by finite-state processes, IEEE Trans. Information Theory, vol. 39, no. 4, pp. 1249–1260.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. (2001). Introduction to Automata Theory, Languages,
and Computation, Addison Wesley, Reading, MA.

F. Jelinek. (1998). Statistical Methods for Speech Recognition, The MIT Press, Cambridge, MA.
J. G. Kemeny, J. L. Snell, and A. W. Knapp. (1976). Denumerable Markov Chains. 2nd ed.,

Springer-Verlag, New York, NY.
T. Koski. (2001). Hidden Markov Models of Bioinformatics. Kluwer Academic Publishers, Boston,

MA.
A. M. Poritz. (1998). Hidden Markov models: A guided tour, Proc. 1988 IEEE Conf. Acoustics,

Speech, and Signal Processing, vol. 1, pp. 7–13.
L. R. Rabiner. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition, Proc. IEEE, vol. 77, no. 2, pp. 257–286.
E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco. (2005). Probabilistic

finite-state machines–part I, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
27, no. 7, pp. 1013–1025.

A. D. Viterbi. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm, IEEE Trans. Inform. Theory, vol. IT-13, pp. 260–269.

110 Hidden Markov Models, Theory and Applications

www.intechopen.com

Hidden Markov Models, Theory and Applications

Edited by Dr. Przemyslaw Dymarski

ISBN 978-953-307-208-1

Hard cover, 314 pages

Publisher InTech

Published online 19, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still

in state of development. This book presents theoretical issues and a variety of HMMs applications in speech

recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology,

environment protection and engineering. I hope that the reader will find this book useful and helpful for their

own research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eleftheria Athanasopoulou and Christoforos N. Hadjicostis (2011). Classification of Hidden Markov Models:

Obtaining Bounds on the Probability of Error and Dealing with Possibly Corrupted Observations, Hidden

Markov Models, Theory and Applications, Dr. Przemyslaw Dymarski (Ed.), ISBN: 978-953-307-208-1, InTech,

Available from: http://www.intechopen.com/books/hidden-markov-models-theory-and-

applications/classification-of-hidden-markov-models-obtaining-bounds-on-the-probability-of-error-and-dealing-

with

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

