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1. Introduction

The use of multiple input multiple output (MIMO) is an efficient method to improve the
error performance of wireless communications. Tarokh et al. (1998) propose the space-time
trellis codes (STTCs) which use trellis-coded modulations (TCM) over MIMO channels. STTCs
combine diversity gain and coding gain leading to a reduction of the error probability.
In order to evaluate the performance of STTCs in slow fading channels, the rank and
determinant criteria are proposed by Tarokh et al. (1998). In the case of fast fading channels,
Tarokh et al. (1998) also present two criteria based on the Hamming distance and the distance
product. Ionescu (1999) shows that the Euclidean distance can be used to evaluate the
performance of STTCs. Based on the Euclidean distance, Chen et al. (2001) present the trace
criterion which governs the performance of STTCs in both slow and fast fading channels,
in the case of a great product between the number of transmit and receive antennas. This
configuration corresponds to a great number of independent single input single output
sub-channels. Liao & Prabhu (2005) explain that the repartition of determinants or Euclidean
distances optimizes the performance of STTCs.
Based on these criteria, many codes have been proposed in the previous publications. The
main difficulty is a long computing-time to find the best STTCs. Liao & Prabhu (2005) and
Hong & Guillen i Fabregas (2007) use an exhaustive search to propose new STTCs, but only
for 2 transmit antennas. To reduce the search-time, Chen et al. (2002a;b) advance a sub-optimal
method to design STTCs. Thereby, the first STTCs with 3 and 4 transmit antennas are designed.
Besides, another method is presented by Abdool-Rassool et al. (2004) where the first STTCs
with 5 and 6 transmit antennas are given.
It has been remarked by Ngo et al. (2008; 2007) that the best codes have the same property:
the used points of the MIMO constellation are generated with the same probability when the
binary input symbols are equiprobable. The codes fulfilling this property are called balanced
codes. This concept is also used by set partitioning proposed by Ungerboeck (1987a;b).
Thus, to find the best STTCs, it is sufficient to design and to analyze only the balanced codes.
Hence, the time to find the best STTCs is significantly reduced. A first method to design
balanced codes is proposed by Ngo et al. (2008; 2007) allowing to find 4-PSK codes with
better performance than the previous published STTCs. Nevertheless, this method has been
exploited only for the 4-PSK modulation.
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The main goal of this chapter is to present a new efficient method to create 2n-PSK balanced
STTCs and thereby to propose new STTCs which outperform the previous published STTCs.
The chapter is organized as follows. The next section reminds the representation of STTCs. The
existing design criteria is presented in section 3. The properties of the balanced STTCs and the
existing method to design these codes are given in section 4. In section 5, the new method is
presented and illustrated with examples. In the last section, the performance of new STTCs is
compared to the performance of the best published STTCs.

2. System model

In the case of 4-PSK modulation, i.e. n = 2, we consider the space-time trellis encoder
presented in Fig. 1.

xt
1 xt

2 xt−1

1 xt−1

2
xt−ν

2xt−ν
1

Input Memory

⊗ ⊗ ⊗ ⊗ ⊗ ⊗
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Fig. 1. 4ν states 4-PSK space-time trellis encoder

In general, a 2nν states 2n-PSK space-time trellis encoder with nT transmit antennas is
composed of one input block of n bits and ν memory blocks of n bits. At each time t ∈ Z,
all the bits of a block are replaced by the n bits of the previous block. For each block i, with
i = 1, ν + 1 where 1, ν + 1 = 1, 2, · · · , ν + 1, the lth bit with l = 1, n is associated to nT

coefficients gk
l,i ∈ Z2n with k = 1, nT . With these nT × n(ν + 1) coefficients, the generator

matrix G is obtained and given by

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g1
1,1 . . . g1

n,1 . . . g1
1,ν+1 . . . g1

n,ν+1
... . . .

...

gk
1,1 . . . gk

n,1 . . . gk
1,ν+1 . . . gk

n,ν+1
... . . .

...
gnT

1,1 . . . gnT

n,1 . . . gnT

1,ν+1 . . . gnT

n,ν+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (1)
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A state is defined by the binary values of the memory cells corresponding to no-null columns

of G. At each time t, the encoder output Yt =
[

yt
1yt

2 · · · yt
nT

]T
∈ Z

nT
2n is given by

Yt = GXt, (2)

where Xt = [xt
1 · · · xt

n · · · xt−ν
1 · · · xt−ν

n ]T is the extended-state at time t of the Lr = n(ν + 1)
length shift register realized by the input block followed by the ν memory blocks. The matrix
[·]T is the transpose of [·]. Thus, STTCs can be defined by a function

Φ : Z
Lr
2n → Z

nT
2n . (3)

The 2n-PSK signal sent to the kth transmit antenna at time t is given by st
k =exp(j π

2n−1 yt
k), with

j2 = −1. Thus, the MIMO symbol transmitted over the fading MIMO channel is given by

St =
[

st
1st

2 · · · st
nT

]T
.

For the transmission of an input binary frame of Lb ∈ N
∗ bits, where Lb is a multiple of n, the

first and the last state of the encoder are the null state. At each time t, n bits of the input binary

frame feed into the encoder. Hence, L = Lb
n + ν MIMO symbols regrouped in the codeword

S =
[

S1 · · · St · · · SL
]

(4)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

s1
1 · · · st

1 · · · sL
1

...
. . .

...
. . .

...

s1
k · · · st

k · · · sL
k

...
. . .

...
. . .

...

s1
nT

· · · st
nT

· · · sL
nT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

are sent to the MIMO channel.
The vector of the signals received at time t by the nR receive antennas Rt = [rt

1 · · · rt
nR

]T can be
written as

Rt = HtSt + Nt, (6)

where Nt = [n1
t · · · nt

nR
]T is the vector of complex additive white gaussian noises (AWGN)

at time t. The nR × nT matrix Ht representing the complex path gains of the SISO channels
between the transmit and receive antennas at time t is given by

Ht =

⎡

⎢

⎢

⎣

ht
1,1 . . . ht

1,nT

...
. . .

...
ht

nR ,1 . . . ht
nR ,nT

⎤

⎥

⎥

⎦

. (7)

In this chapter, only the case of Rayleigh fading channels is considered. The path gain ht
k′ ,k of

the SISO channel between the kth transmit antenna and (k′)th
receive antenna is a complex

random variable. The real and the imaginary parts of ht
k′ ,k are zero-mean Gaussian random

variables with the same variance. Two types of Rayleigh fading channels can be considered:

• Slow Rayleigh fading channels: the complex path gains of the channels do not change
during the transmission of the symbols of the same codeword.

• Fast Rayleigh fading channels: the complex path gains of the channels change
independently at each time t.
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3. Performance criteria

The main goal of this design is to reduce the pairwise error probability (PEP) which is the
probability that the decoder selects an erroneous codeword E while a different codeword S
was transmitted. We consider a codeword of L MIMO signals starting at t = 1 by a nT × L
matrix S = [S1S2 · · · SL] where St is the tth MIMO signal. An error occurs if the decoder
decides that another codeword E = [E1E2 · · · EL] is transmitted. Let us define the nT × L
difference matrix

B = E − S =

⎡

⎢

⎣

e1
1 − s1

1 . . . eL
1 − sL

1
...

. . .
...

e1
nT

− s1
nT

. . . eL
nT

− sL
nT

⎤

⎥

⎦
. (8)

The nT × nT product matrix A = BB∗ is introduced, where B∗ denotes the hermitian of B. The
minimum rank of A r = min(rank(A)), computed for all pairs (E, S) of different codewords
is defined. The design criteria depend on the value of the product rnR.
First case: rnR ≤ 3:
In this case, for slow Rayleigh fading channels, two criteria have been proposed by Tarokh
et al. (1998) and Liao & Prabhu (2005) to reduce the PEP:

• A has to be a full rank matrix for any pair (E, S). Since the maximal value of r is nT , the
achievable spatial diversity order is nTnR.

• The coding gain is related to the inverse of η = ∑
d

N(d)d−nR , where N(d) is defined as the

average number of error events with a determinant d equal to

d = det(A) =
nT

∏
k=1

λk

=
nT

∏
k=1

(

L

∑
t=1

∣

∣et
k − st

k

∣

∣

2

)

.

(9)

The best codes must have the minimum value of η.

In the case of fast Rayleigh fading channels, different criteria have been obtained by Tarokh
et al. (1998). They define the Hamming distance dH(E, S) between two codewords E and S as
the number of time intervals for which |Et − St| �= 0. To maximize the diversity advantage,
the minimal Hamming distance must be maximized for all pairs of codewords (E, S). In this
case, the achieved spatial diversity order is equal to dH(E, S)nR. In the same way, Tarokh et al.
introduce the product distance d2

p(E, S) given by

d2
p(E, S) =

L

∏
t=1

Et �=St

d2
E(Et, St), (10)

where d2
E(Et, St) =

nT

∑
k=1

∣

∣et
k − st

k

∣

∣

2
is the squared Euclidean distance between the MIMO signals

Et and St at time t. In order to reduce the number of error events, min
{

d2
p(E, S)

}

must be

maximized for all pairs (E, S).
Second case: rnR ≥ 4:
Chen et al. (2001) show that for a large value of rnR, which corresponds to a large number
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of independent SISO channels, the PEP is minimized if the sum of all the eigenvalues of the
matrices A is maximized. Since A is a square matrix, the sum of all the eigenvalues is equal to
its trace

tr(A) =
nT

∑
k=1

λk =
L

∑
t=1

d2
E(Et, St). (11)

For each pair of codewords, tr(A) is computed. The minimum trace (which is the minimum
value of the squared Euclidean distance between two codewords) is the minimum of all these
values tr(A). The concept of Euclidean distance for STTCs has been previously introduced by
Ionescu (1999). The minimization of the PEP amounts to using a code which has the maximum
value of the minimum Euclidean distance between two codewords. Liao & Prabhu (2005) state
also that to minimize the frame error rate (FER), the number of error events with the minimum
squared Euclidean distance between codewords has to be minimized.
In this paper, we consider only the case rnR ≥ 4 which is obtained when the rank of the STTCs
is greater than or equal to 2 and there are at least 2 receive antennas.

4. Balanced STTCs

4.1 Definitions

The concept of "balanced codes" proposed by Ngo et al. (2008; 2007) is based on the
observation that each good code has the same property given by the following definition.

Definition 1 (Number of occurrences). The number of occurrences of a MIMO symbol is the
number of times where the MIMO symbol is generated when we consider the entire set of the
extended-states.

Definition 2 (Balanced codes). A code is balanced if and only if the generated MIMO symbols have
the same number of occurrences n0 ∈ N

∗, if the binary input symbols are equiprobable.

Definition 3 (Fully balanced code). A code is fully balanced if and only if the code is balanced and
the set of generated MIMO symbols is Λ = Z

nT
2n .

Definition 4 (Minimal length code). A code is a minimal length code if and only if the code is fully
balanced and the number of occurrences of each MIMO symbol is n0 = 1.

To check that a code is balanced, the MIMO symbols generated by all the extended-states must
be computed. Then, the number of occurrences of each MIMO symbol can be obtained.

For example, let us consider two generator matrices

G1 =

[

0 0 2 1
2 1 0 0

]

(12)

and

G2 =

[

0 0 2 1
3 1 0 0

]

. (13)

Remark: G1 is the generator matrix of the code proposed by Tarokh et al. (1998).
The repartition of MIMO symbols in function of extended-states is given in Tables 1 et 2 for
the generator matrices G1 and G2 respectively. The decimal value of the extended-state Xt =

[xt
1 xt

2 xt−1
1 xt−1

2 ]T ∈ Z
4
2 is computed by considering xt

1 the most significant bit. The number
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of occurrences of each generated MIMO symbol is also given in these tables. The generator
matrix G1 corresponds to a minimal length code, whereas G2 corresponds to a no balanced
code.

Xt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Yt

[

0
0

] [

1
0

] [

2
0

] [

3
0

] [

0
1

] [

1
1

] [

2
1

] [

3
1

] [

0
2

] [

1
2

] [

2
2

] [

3
2

] [

0
3

] [

1
3

] [

2
3

] [

3
3

]

occurrences 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1. MIMO symbols generated by G1

Xt 0
12

1
13

2
14

3
15

4 5 6 7 8 9 10 11

Y

[

0
0

] [

1
0

] [

2
0

] [

3
0

] [

0
1

] [

1
1

] [

2
1

] [

3
1

] [

0
3

] [

1
3

] [

2
3

] [

3
3

]

Nb occurrences 2 2 2 2 1 1 1 1 1 1 1 1

Table 2. MIMO symbols generated by G2

4.2 Properties of Z
nT
2n

We define the subgroup C0 of Z
nT
2n by

C0 = 2n−1
Z

nT
2 . (14)

Property 1. ∀V ∈ C0, V = −V with V + (−V) = [0 · · · 0]T.

Proof. Let us consider V ∈ C0. As C0 = 2n−1
Z

nT
2 ,

V = 2n−1q ∈ C0 with q ∈ Z
nT
2 . (15)

Therefore
V + V = 2nq = 0 ∈ Z

nT
2n (mod 2n). (16)

Thus, it exists V′ = V such as V + V′ = 0 ∈ Z
nT
2n . Hence, −V = V, ∀V ∈ C0.

Besides, it is possible to make a partition of the group Z
nT
2n into 2nT(n−1) cosets, as presented

by Coleman (2002) such as

Z
nT
2n =

⋃

P∈Z
nT
2n

CP, (17)

where P is a coset representative of the coset CP = P + C0. Based on these cosets, another
partition can be created and given by

Z
nT
2n =

n−1
⋃

q=0

Eq, (18)

where E0 = C0. For q = 1, n − 1, the other Eq are defined by

Eq =
⋃

Pq

(Pq + C0) =
⋃

Pq

CPq
, (19)

where Pq ∈ 2n−q−1
Z

nT
2q \2n−q

Z
nT

2q−1 . The set Z
nT

1 contains only the nul element of Z
nT
2n .
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Definition 5. Let us consider a subgroup Λ of Z
nT
2n . A coset CP = P + Λ with P ∈ Z

nT
2n is relative

to Q ∈ Λ if and only if 2P = Q.

Thus, for q = 2, n − 1, each coset CPq
= Pq + C0 ⊂ Eq is relative to R = 2Pq ∈ Eq−1.

For example, it is possible to make a partition of the group Z
nT
2n which is the set of 4-PSK

MIMO symbols with 2 transmit antennas. This partition is represented in Table 3.

E0 : C0

[

0
0

] [

0
2

] [

2
0

] [

2
2

]

E1 :

C[0
1

]

[

0
1

] [

0
3

] [

2
1

] [

2
3

]

C[1
0

]

[

1
0

] [

1
2

] [

3
0

] [

3
2

]

C[1
1

]

[

1
1

] [

1
3

] [

3
1

] [

3
3

]

Table 3. Partition of Z
2
4

The red coset C[ 0
1

] =

[

0
1

]

+ C0 is relative to the red element

[

0
2

]

∈ C0. The green coset C[ 1
0

] =
[

1
0

]

+ C0 is relative to the green element

[

2
0

]

∈ C0. The yellow coset C[ 1
1

] =

[

1
1

]

+ C0 is relative

to the yellow element

[

2
2

]

∈ C0.

Property 2. If Λl is a subgroup of Z
nT
2n given by

Λl =

{

l

∑
m=1

xmVm mod 2n/xm ∈ {0, 1}

}

, l ∈ {1, 2, · · · , nnT} (20)

with Vm ∈ Z
nT
2n and if the number of occurrences of each MIMO symbol V ∈ Λl is n (V) = n0 = 1

i.e. card(Λl) = 2l , then there is at least one element Vm which belongs to C∗0 .

Proof. The Lagrange’s theorem states that for a finite group Λ, the order of each subgroup
Λl of Λ divides the order of Λ. In the case of 2n-PSK, card(Λ) = card(Z

nT
2n ) = 2nnT , then

card(Λl) = 2l . Hence, card(Λl) is a even number. The null element belongs to Λl and the
opposite of each element is included in Λl . Thus, in order to obtain an even number for
card(Λl), there are at least one element Vm �= 0 which respects Vm = −Vm. Only the elements
of C0 respect Vm = −Vm. Therefore, there is at least one element Vm ∈ C∗0 .

Definition 6 (Linearly independent vectors). If card(Λl) = 2l , the vectors V1, V2, · · ·Vl are
linearly independent. Hence, they form a base of Λl .
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Remarks :

1. min
{

l ∈ N\Λl = Z
nT
2n

}

= nnT = Lmin = dim
(

Z
nT
2n

)

i.e. nnT is a minimal number of
vectors giving a fully balanced code.

2. nnT is the maximal number of vectors to obtain a number of occurrences n (V) = n0 = 1,
∀V ∈ Λl .

Property 3. To generate a subgroup Λl =

{

l
∑

m=1
xmVm mod 2n/xm ∈ {0, 1}

}

with Vm ∈ Z
nT
2n ,

l ∈ {1, 2, · · · , nnT} and card(Λl) = 2l , the elements Vm must be selected as follows:

• The first element V1 must belong to C∗0 .

• If m − 1 elements V1, V2, · · ·Vm−1 have been already selected with m ∈ {2 · · · l}, the mth element
Vm must not belong to

Λm−1 =

{

m−1

∑
m′=1

xm′Vm′ mod 2n/xm′ ∈ {0, 1}

}

(21)

and must belong to C∗0 or to the cosets relative to an element of Λm−1.

Proof. As shown by property 2, there is at least one element which belongs to C∗0 . Thus, if
V1 ∈ C∗0 , Λ1 = {0, V1} is a subgroup of Z

nT
2n .

We consider that m − 1 elements have been selected to generate a subgroup Λm−1 with m =
{2, · · · nnT}.
If we select Vm ∈ Z

nT
2n \Λm−1 such as 2Vm = Q ∈ Λm−1, a set Λm is defined by

Λm = Λm−1

⋃

CVm
(22)

where CVm
is the coset defined by

CVm
= Vm + Λm−1. (23)

In order to show that Λm is a subgroup of Z
nT
2n , the following properties must be proved:

1. 0 ∈ Λm. Proof: As Λm = Λm−1
⋃

(Λm−1 + Vm) and 0 ∈ Λm−1, we have 0 ∈ Λm.

2. ∀V1, V2 ∈ Λm, V1 + V2 ∈ Λm. Three cases must be considered.

1rd case: V1, V2 ∈ Λm−1. In this case, as Λm−1 is a subgroup V1 + V2 ∈ Λm−1 ⊂ Λm.

2st case: V1, V2 ∈ CVm
. In this case, V1 = Vm + Q1 and V2 = Vm + Q2 with Q1, Q2 ∈ Λm−1.

Thus, V1 + V2 = 2Vm + Q1 + Q2. As 2Vm ∈ Λm−1 and Λm−1 is a subgroup, V1 + V2 ∈
Λm−1 ⊂ Λm.

3nd case: V1 ∈ Λm−1 and V2 ∈ CVm
, In this case, V2 = Vm + Q2, with Q2 ∈ Λm−1. We have

V1 + V2 = V1 + Vm + Q2 = Vm + (V1 + Q2) ∈ CVm
⊂ Λm because V1 + Q2 ∈ Λm−1 (Λm−1

is a subgroup).

Thus, Λm is a closed set under addition.

3. ∀V ∈ Λm, ∃ − V ∈ Λm such as V + (−V) = 0.

Proof : Two cases must be considered.

1st case: V ∈ Λm−1.

In this case, as Λm−1 is a subgroup, so −V ∈ Λm−1 ⊂ Λm.
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2nd case: V ∈ Cm−1.

In this case, V = Vm + Q with Q ∈ Λm−1. Because Λm−1 is a subgroup, −Q = −Vm +
(−Vm) = −2Vm ∈ Λm−1 with Vm + (−Vm) = 0 and Q + (−Q) = 0. Thus, we have

− Vm = Vm + (−2Vm) = Vm + (−Q) ∈ CVm
⊂ Λm. (24)

Hence −V = −Vm + (−Q) = Vm + (−Q) + (−Q) ∈ Cm ⊂ Λm because (−Q) + (−Q) ∈
Λm−1.

Thus, the opposite of each element of Λm belongs to Λm.

In conclusion, if each new element is selected within a coset relative to a generated element,
the created set Λm is also a subgroup.

4.3 Properties of balanced STTCs

Each MIMO symbol belongs to Z
nT
2n . At each time t, the generated MIMO symbol is given by

the value of extended-state Xt and the generator matrix G. In this section, several properties
of the generator matrix are given in order to reduce the search-time.

Property 4. For a fully balanced code, the number of columns of the generator matrix G is Lr ≥
Lmin = nnT . As shown by the definition (4), if G has Lmin columns, then the code is a minimal length
code.

Proof. Let us consider the generator matrix G of a 2n-PSK 2Lr−n states STTC with nT transmit
antennas. The extended-state can use 2Lr binary value. The maximal number of generated
MIMO symbols is given by

∑
Y∈Z

nT
2n

n(Y) = 2Lr . (25)

G is the generator matrix of a fully balanced code, ∀Y ∈ Z
nT
2n , n(Y) = n0. The number of

possible MIMO symbols is card(Z
nT
2n ) = 2nnT . Thus, the previous expression is

n02nnT = 2Lr . (26)

The number of occurrences of each Y ∈ Z
nT
2n , n(Y) ≥ 1, so 2Lr ≥ card(Z

nT
2n ) = nnT . Therefore

Lr ≥ Lmin = nnT .

Property 5. If G is the generator matrix with Lr columns of a fully balanced code, for any additional
column GLr+1 ∈ Z

nT
2n , the resulting generator matrix G′ = [G GLr+1] corresponds to a new fully

balanced code.

Proof. For a fully balanced code, the generated MIMO symbols belong to ΛLr
= Z

nT
2n . If

a new column GLr+1 ∈ Z
nT
2n is added to G, the new set of columns generates ΛLr+1 =

ΛLr

⋃

(ΛLr
+ GLr+1). As GLr+1 ∈ Z

nT
2n and Z

nT
2n is a group, ΛLr

+ GLr+1 = ΛLr
. Thereby,

ΛLr+1 = Z
nT
2n . The number of occurrences of the elements belonging to ΛLr

is n0. The number
of occurrences of the elements belonging to ΛLr

+ GLr+1 is also n0. Thus, for each new column
of the fully balanced code, the number of occurrences of the elements of the new code is
2n0.

Property 6. If G is the matrix of a balanced code, each permutation of columns or/and lines generates
the generator matrix of a new balanced code.
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Proof. The set of MIMO symbols belongs to a subgroup of the commutative group Z
nT
2n .

Therefore, the permutations between the columns of the generator matrix generate the same
MIMO symbols. So, the new codes are also balanced.
A permutation of lines of the generator matrix corresponds to a permutation of the transmit
antennas. If the initial code is balanced, the code will be balanced.

5. New method to generate the balanced codes

5.1 Generation of the fully balanced codes

The property 5 states that the minimal length code is the first step to create any fully balanced
code. In fact, for each column added to the generator matrix of a fully balanced code, the new
code is also fully balanced. Thus, only the generation of minimal length codes is presented.
To create a minimal length STTC, the columns Gi with i = 1, nnT must be selected with the
following rules.

Rule 1. The first column G1 must be selected within C∗0 . This first selection creates the subgroup
Λ1 = {0, G1}.

Rule 2. If the first m ∈ {1, 2, · · · , Lmin − 1} columns of the generator matrix have been selected

to generate a subgroup Λm =

{

m
∑

m′=1
xm′ Gm′ mod 2n/xm′ ∈ {0, 1}

}

of Z
nT
2n , the add of next column

Gm+1 create a new subgroup Λm+1 of Z
nT
2n with card(Λm+1) = 2card(Λm). Hence, the column

Gm+1 of G must be selected in Z
nT
2n \Λm in a coset relative to an element of Λm or in C∗0 .

If this algorithm is respected, the new generated set

Λm+1 = Λm

⋃

(Λm + Gm) (27)

is a subgroup of Z
nT
2n .

Thereby, as presented by Forney (1988), a chain partition of Z
nT
2n

Λ1/Λ2 · · · /Λm/ · · · /ΛLmin
(28)

is obtained with card(Λm+1) = 2card(Λm). Since card(Λ1) = 2, then the Lmin columns
generate a subgroup ΛLmin

with card(ΛLmin
) = 2Lmin .

To obtain a fully balanced code with a generator matrix with Lr > Lmin, it is sufficient to add
new columns which belong to Z

nT
2n .

The main advantage of this method is to define distinctly the set where each new column
of G must be selected. In the first method presented by Ngo et al. (2008; 2007), the linear
combination of the generated and selected elements and their opposites must be blocked, i.e.
these elements must not be further selected. Due to the new method, there are no blocked
elements. This is a significant simplification of the first method.

5.2 Generation of the balanced codes

This section treats the generation of balanced STTCs (not fully balanced STTCs) i.e. the set of
the generated MIMO symbols is a subset of the group Z

nT
2n and not the entire set Z

nT
2n .

For the generation of these STTCs with the generator matrix constituted by Lr columns, the
algorithm which is presented in the previous section must be used for the selection of the first
m0 ≤ min(Lmin − 2, Lr) columns. Thus,
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• The m0 first columns G1, G2, · · · Gm0 must be selected with the Rules 1 and 2. Hence, the
set generated by the first m0 columns is the subgroup

Λm0 =

{

m0

∑
m=1

xmGm mod 2n/xm ∈ {0, 1}

}

. (29)

The number of occurrences of each MIMO symbol V ∈ Λm0 is 1.

• The columns Gm0+1 · · · GLr−1 must be selected in the subgroup Λm0 . Thus, the subgroup
created by the Lr − 1 first columns is ΛLr−1 = Λm0 , but the number of occurrences of each

MIMO symbol is 2Lr−m0−1, ∀Y ∈ Λm0 .

• The last column must be selected everywhere in Z
nT
2n . Two cases can be analyzed :

– If GLr
∈ ΛLr−1, then the number of occurrences of each element is multiplied by two.

The resulting code is also balanced. In this case, the set of generated MIMO symbols is
the subgroupΛLr−1.

– If GLr
∈ Z

nT
2n \ΛLr−1, the generated set ΛLr

= ΛLr−1
⋃

(ΛLr−1 + GLr
) is not necessarily

a subgroup of Z
nT
2n . Each element of the generated set has 2Lr−m0−1, ∀Y ∈ ΛLr

, but
card(ΛLr

) = 2card(ΛLr−1).

5.3 Example of the generation of a fully balanced 64 states 4-PSK STTC with 3 transmit

antennas

The generator matrix of the 64 states 4-PSK STTCs with 3 transmit antennas is

G = [G1G2|G3G4|G5G6|G7G8] (30)

with Gi ∈
[

G1
i G2

i G3
i

]T
∈ Z

3
4 for i = 1, 8. In order to create a fully balanced 64 states 4-PSK

STTC with 3 transmit antennas, 8 elements must be selected in Z
3
4. The first element must

belong to C∗0 = 2Z
3
2\{[0 0 0]T}. The element G1 =

[

0
2
2

]

can be selected. Thereby, the second

column of G must be selected either in C∗0 or in the coset relative to G1. In Table 4, the green
element represents the selected element and the blue element represent the generated element.

C0

⎡

⎣

0
0
0

⎤

⎦

⎡

⎣

0
0
2

⎤

⎦

⎡

⎣

0
2
0

⎤

⎦

⎡

⎣

0
2
2

⎤

⎦

⎡

⎣

2
0
0

⎤

⎦

⎡

⎣

2
0
2

⎤

⎦

⎡

⎣

2
2
0

⎤

⎦

⎡

⎣

2
2
2

⎤

⎦

C⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

⎡

⎣

0
3
1

⎤

⎦

⎡

⎣

0
3
3

⎤

⎦

⎡

⎣

2
1
1

⎤

⎦

⎡

⎣

2
1
3

⎤

⎦

⎡

⎣

2
3
1

⎤

⎦

⎡

⎣

2
3
3

⎤

⎦

Table 4. Selection of G1 of G

The next column G2 of G must be selected in the white set. If G2 is selected into C[ 0
1
1

], for

example
[

2
1
3

]

, the generated subgroup Λ2 is represented by the colored elements of Table 5.

No new element of C0 is generated. Thereby, G3 must belong to C∗0 or C[ 0
1
1

] and must not

belong to Λ2.
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C0

⎡

⎣

0
0
0

⎤

⎦

⎡

⎣

0
0
2

⎤

⎦

⎡

⎣

0
2
0

⎤

⎦

⎡

⎣

0
2
2

⎤

⎦

⎡

⎣

2
0
0

⎤

⎦

⎡

⎣

2
0
2

⎤

⎦

⎡

⎣

2
2
0

⎤

⎦

⎡

⎣

2
2
2

⎤

⎦

C⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

⎡

⎣

0
3
1

⎤

⎦

⎡

⎣

0
3
3

⎤

⎦

⎡

⎣

2
1
1

⎤

⎦

⎡

⎣

2
1
3

⎤

⎦

⎡

⎣

2
3
1

⎤

⎦

⎡

⎣

2
3
3

⎤

⎦

Table 5. Selection of G2 of G

The 3rd element can be G3 =
[

0
0
2

]

. As presented in Table 6, two new elements of C0 are

generated (or selected). Thus, G4 must be selected among the white elements of Table 6. If
G1 = 2P1 and G3 = 2P2, the set of white elements is C0

⋃

(C0 + P1)
⋃

(C0 + P2)
⋃

(C0 + P1 +
P2)\Λ2.

C0

⎡

⎣

0
0
0

⎤

⎦

⎡

⎣

0
0
2

⎤

⎦

⎡

⎣

0
2
0

⎤

⎦

⎡

⎣

0
2
2

⎤

⎦

⎡

⎣

2
0
0

⎤

⎦

⎡

⎣

2
0
2

⎤

⎦

⎡

⎣

2
2
0

⎤

⎦

⎡

⎣

2
2
2

⎤

⎦

C⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

⎡

⎣

0
3
1

⎤

⎦

⎡

⎣

0
3
3

⎤

⎦

⎡

⎣

2
1
1

⎤

⎦

⎡

⎣

2
1
3

⎤

⎦

⎡

⎣

2
3
1

⎤

⎦

⎡

⎣

2
3
3

⎤

⎦

C⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
3

⎤

⎦

⎡

⎣

0
2
1

⎤

⎦

⎡

⎣

0
2
3

⎤

⎦

⎡

⎣

2
0
1

⎤

⎦

⎡

⎣

2
0
3

⎤

⎦

⎡

⎣

2
2
1

⎤

⎦

⎡

⎣

2
2
3

⎤

⎦

C⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
2

⎤

⎦

⎡

⎣

0
3
0

⎤

⎦

⎡

⎣

0
3
2

⎤

⎦

⎡

⎣

2
1
0

⎤

⎦

⎡

⎣

2
1
2

⎤

⎦

⎡

⎣

2
3
0

⎤

⎦

⎡

⎣

2
3
2

⎤

⎦

Table 6. Selection of G3 of G

Now, we select G4 =
[

2
2
3

]

. A new subgroup is created, as shown by the colored elements in

Table 7.

C0

⎡

⎣

0
0
0

⎤

⎦

⎡

⎣

0
0
2

⎤

⎦

⎡

⎣

0
2
0

⎤

⎦

⎡

⎣

0
2
2

⎤

⎦

⎡

⎣

2
0
0

⎤

⎦

⎡

⎣

2
0
2

⎤

⎦

⎡

⎣

2
2
0

⎤

⎦

⎡

⎣

2
2
2

⎤

⎦

C⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

⎡

⎣

0
3
1

⎤

⎦

⎡

⎣

0
3
3

⎤

⎦

⎡

⎣

2
1
1

⎤

⎦

⎡

⎣

2
1
3

⎤

⎦

⎡

⎣

2
3
1

⎤

⎦

⎡

⎣

2
3
3

⎤

⎦

C⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
3

⎤

⎦

⎡

⎣

0
2
1

⎤

⎦

⎡

⎣

0
2
3

⎤

⎦

⎡

⎣

2
0
1

⎤

⎦

⎡

⎣

2
0
3

⎤

⎦

⎡

⎣

2
2
1

⎤

⎦

⎡

⎣

2
2
3

⎤

⎦

C⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
2

⎤

⎦

⎡

⎣

0
3
0

⎤

⎦

⎡

⎣

0
3
2

⎤

⎦

⎡

⎣

2
1
0

⎤

⎦

⎡

⎣

2
1
2

⎤

⎦

⎡

⎣

2
3
0

⎤

⎦

⎡

⎣

2
3
2

⎤

⎦

Table 7. Selection of G4 of G
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If G5 is selected among to the white elements of Table 7, for example G5 =
[

2
2
2

]

, C0 is totally

generated. Hence, a new set to select the last element, which is represented by the white
elements of Table 8 is created.

C0

⎡

⎣

0
0
0

⎤

⎦

⎡

⎣

0
0
2

⎤

⎦

⎡

⎣

0
2
0

⎤

⎦

⎡

⎣

0
2
2

⎤

⎦

⎡

⎣

2
0
0

⎤

⎦

⎡

⎣

2
0
2

⎤

⎦

⎡

⎣

2
2
0

⎤

⎦

⎡

⎣

2
2
2

⎤

⎦

C⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

⎡

⎣

0
3
1

⎤

⎦

⎡

⎣

0
3
3

⎤

⎦

⎡

⎣

2
1
1

⎤

⎦

⎡

⎣

2
1
3

⎤

⎦

⎡

⎣

2
3
1

⎤

⎦

⎡

⎣

2
3
3

⎤

⎦

C⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
1

⎤

⎦

⎡

⎣

0
0
3

⎤

⎦

⎡

⎣

0
2
1

⎤

⎦

⎡

⎣

0
2
3

⎤

⎦

⎡

⎣

2
0
1

⎤

⎦

⎡

⎣

2
0
3

⎤

⎦

⎡

⎣

2
2
1

⎤

⎦

⎡

⎣

2
2
3

⎤

⎦

C⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
0

⎤

⎦

⎡

⎣

0
1
2

⎤

⎦

⎡

⎣

0
3
0

⎤

⎦

⎡

⎣

0
3
2

⎤

⎦

⎡

⎣

2
1
0

⎤

⎦

⎡

⎣

2
1
2

⎤

⎦

⎡

⎣

2
3
0

⎤

⎦

⎡

⎣

2
3
2

⎤

⎦

C⎡

⎣

1
0
0

⎤

⎦

⎡

⎣

1
0
0

⎤

⎦

⎡

⎣

1
0
2

⎤

⎦

⎡

⎣

1
2
0

⎤

⎦

⎡

⎣

1
2
2

⎤

⎦

⎡

⎣

3
0
0

⎤

⎦

⎡

⎣

3
0
2

⎤

⎦

⎡

⎣

3
2
0

⎤

⎦

⎡

⎣

3
2
2

⎤

⎦

C⎡

⎣

1
0
1

⎤

⎦

⎡

⎣

1
0
1

⎤

⎦

⎡

⎣

1
0
3

⎤

⎦

⎡

⎣

1
2
1

⎤

⎦

⎡

⎣

1
2
3

⎤

⎦

⎡

⎣

3
0
1

⎤

⎦

⎡

⎣

3
0
3

⎤

⎦

⎡

⎣

3
2
1

⎤

⎦

⎡

⎣

3
2
3

⎤

⎦

C⎡

⎣

1
1
0

⎤

⎦

⎡

⎣

1
1
0

⎤

⎦

⎡

⎣

1
1
2

⎤

⎦

⎡

⎣

1
3
0

⎤

⎦

⎡

⎣

1
3
2

⎤

⎦

⎡

⎣

3
1
0

⎤

⎦

⎡

⎣

3
1
2

⎤

⎦

⎡

⎣

3
3
0

⎤

⎦

⎡

⎣

3
3
2

⎤

⎦

C⎡

⎣

1
1
1

⎤

⎦

⎡

⎣

1
1
1

⎤

⎦

⎡

⎣

1
1
3

⎤

⎦

⎡

⎣

1
3
1

⎤

⎦

⎡

⎣

1
3
3

⎤

⎦

⎡

⎣

3
1
1

⎤

⎦

⎡

⎣

3
1
3

⎤

⎦

⎡

⎣

3
3
1

⎤

⎦

⎡

⎣

3
3
3

⎤

⎦

Table 8. Selection of G5 of G

If G6 is chosen among belong to the white elements of Table 8, the totality of Z
nT
2n is generated.

For example, we can select G6 =
[

3
3
1

]

. The created code is a minimal length code with the

generator matrix

G =

⎡

⎣

0 2 0 2 2 3
2 1 0 2 2 3
2 3 2 3 2 1

⎤

⎦ . (31)

As stated by the property 5, if an additional column is added to the generator matrix, the
resulting code is also fully balanced. The number of occurrences of each MIMO symbol is
given by 2Lr−Lmin , where Lr − Lmin is the number of additional columns. Thus, the columns

G7 =
[

0
2
2

]

and G8 =
[

2
1
1

]

are added to the generator matrix. We obtain

G =

⎡

⎣

0 2 0 2 2 3 0 2
2 1 0 2 2 3 2 1
2 3 2 3 2 1 2 1

⎤

⎦ . (32)
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Table 9 shows the code proposed by Chen et al. (2002b) and the new generated code which
are both fully balanced. The minimal rank and the minimal trace of each code are also given.
The new code has a better rank and trace than the corresponding Chen’s code. The FER
and bit error rate (BER) of these two STTCs are presented respectively in Figs. 2 and 3.
For the simulation, the channel fading coefficients are independent samples of a complex
Gaussian process with zero mean and variance 0.5 per dimension. These channel coefficients
are assumed to be known by the decoder. Each codeword consists of 130 MIMO symbols. For
the simulation, 2 and 4 receive antennas are considered. The decoding is performed by the
Viterbi’s algorithm. We remark that the new code slightly outperforms the Chen’s code.

Name G Rank d2
E

min

Chen et al. (2002b)

⎡

⎣

0 2 3 2 3 0 3 2
2 2 1 2 3 0 2 0
2 0 0 2 2 3 1 1

⎤

⎦ 2 28

New

⎡

⎣

0 2 0 2 2 3 0 2
2 1 0 2 2 3 2 1
2 3 2 3 2 1 2 1

⎤

⎦ 3 32

Table 9. 64 states 4-PSK STTCs with 3 transmit antennas

0 2 4 6 8 10
10

 3

10
 2

10
 1

10
0

SNR (dB)

F
E

R

 

 

Chen 2Rx

New 2Rx
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Fig. 2. FER of 64 states 4-PSK STTCs with 3 transmit antennas

5.4 Example of the generation of a balanced 8 states 8-PSK STTC with 4 transmit antennas

This section presents a design of balanced 8 states 8-PSK STTCs with 4 transmit antennas. The
generator matrix is

G = [G1G2G3|G4G5G6] , (33)
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Fig. 3. BER of 64 states 4-PSK STTCs with 3 transmit antennas

with Gi =
[

G1
i G2

i G3
i G4

i

]T
∈ Z

4
8 for i = 1, 6. This code can not be fully balanced but just

balanced. In fact, a fully balanced 8-PSK STTC with 4 transmit antennas must have 12 columns
to be fully balanced (c.f. property 4).
The group Z

4
8 is divided into 3 sets E0, E1 and E2. Each set Ei is the union of several cosets.

Each coset included in Ei is relative to one vector of Ei−1 with i={ 1,2}.
In general, the first no null column of the generator matrix must belong to

C0 = 2n−1
Z

nT
2 . (34)

Thereby, for the design of 8 states 8-PSK STTCs with 4 transmit antennas, G1 ∈ 2Z
4
2 for

example G1 =

[ 4
0
4
4

]

= 2P1, with P1 =

[ 2
0
2
2

]

. The first generated subgroup is Λ1 = {0, G1}.

The next column of G must belong to

S2 =
(

C0

⋃

CP1

)

\Λ1, (35)

where CP1
⊂ E1 is the coset relative to G1. The second column of G can be G2 =

[ 2
4
2
2

]

. The

subgroup generated by the first two columns is

Λ2 = {0, G1, G2, G1 + G2} (36)

=

{[ 0
0
0
0

]

,

[ 4
0
4
4

]

,

[ 2
4
2
2

]

,

[ 6
4
6
6

]}

, (37)

with G1 + G2 = −G2. As G2 and −G2 ∈ E1, the next column must belong to the set

S3 =
(

C0

⋃

CP1

⋃

CP2

⋃

CP1+P2

)

\Λ2, (38)
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with G3 =

[ 7
6
3
3

]

∈ CP1+P2
. The next generated subgroup is

Λ3 = Λ2

⋃

(Λ3 + G3) =

{[ 0
0
0
0

]

,

[ 4
0
4
4

]

,

[ 2
4
2
2

]

,

[ 6
4
6
6

]

,

[ 7
6
3
3

]

,

[ 3
6
7
7

]

,

[ 1
2
5
5

]

,

[ 5
2
1
1

]}

. (39)

The new generated elements Λ3\Λ2 belong to E2. Since no coset is relative to the elements of
E2, the set using to select G4 is

S4 = S3\Λ3 =
(

C0

⋃

CP1

⋃

CP2

⋃

C(P1+P2)

)

\Λ3, (40)

It is possible to select G4 =

[ 0
4
4
0

]

. The new generated subgroup is

Λ4 = Λ3

⋃

(Λ3 + G4) (41)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[ 0
0
0
0

]

,

[ 4
0
4
4

]

,

[ 2
4
2
2

]

,

[ 6
4
6
6

]

,

[ 7
6
3
3

]

,

[ 3
6
7
7

]

,

[ 1
2
5
5

]

,

[ 5
2
1
1

]

,

[ 0
4
4
0

]

,

[ 4
4
4
4

]

,

[ 2
0
6
2

]

,

[ 6
0
2
6

]

,

[ 7
2
7
3

]

,

[ 3
2
3
7

]

,

[ 1
6
1
5

]

,

[ 5
6
5
1

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (42)

The 5th column of G must be selected either in C∗0 or in a coset relative to an element of the set

Λ4

⋂

(

E∗
0

⋃

E1

)

=

{[ 4
0
4
4

]

,

[ 2
4
2
2

]

,

[ 6
4
6
6

]

,

[ 0
4
4
0

]

,

[ 4
4
4
4

]

,

[ 2
0
6
2

]

,

[ 6
0
2
6

]}

. (43)

Thus, it is possible to select G5 =

[ 0
6
6
4

]

∈ C⎡

⎣

0
2
2
0

⎤

⎦

. The new generated subgroup is

Λ5 = Λ4

⋃

(Λ4 + G5) (44)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[ 0
0
0
0

]

,

[ 4
0
4
4

]

,

[ 2
4
2
2

]

,

[ 6
4
6
6

]

,

[ 7
6
3
3

]

,

[ 3
6
7
7

]

,

[ 1
2
5
5

]

,

[ 5
2
1
1

]

,

[ 0
4
4
0

]

,

[ 4
4
4
4

]

,

[ 2
0
6
2

]

,

[ 6
0
2
6

]

,

[ 7
2
7
3

]

,

[ 3
2
3
7

]

,

[ 1
6
1
5

]

,

[ 5
6
5
1

]

,

[ 0
6
6
4

]

,

[ 4
6
2
0

]

,

[ 2
2
0
6

]

,

[ 6
2
4
2

]

,

[ 7
4
1
7

]

,

[ 3
4
5
3

]

,

[ 1
0
3
3

]

,

[ 5
0
7
5

]

,

[ 0
2
2
4

]

,

[ 4
2
2
0

]

,

[ 2
6
4
6

]

,

[ 6
6
0
2

]

,

[ 7
0
5
7

]

,

[ 3
0
1
3

]

,

[ 1
4
7
1

]

,

[ 5
4
3
5

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (45)

To generate a balanced STTC, the last column of the generator matrix must be selected

anywhere in Z
nT
2n . Thus, G6 can be

[ 4
3
0
2

]

. The generator matrix is

G =

⎡

⎢

⎢

⎣

4 2 7 0 0 4
0 4 6 4 6 3
4 2 3 4 6 0
4 2 3 0 4 2

⎤

⎥

⎥

⎦

. (46)
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After the selection of the last column G6, the generated set Λ6 is not a subgroup.
Table 10 shows the code 8 states 8-PSK STTC with 4 transmit antennas presented by Chen
et al. (2002a) and the new generated code which are both balanced. The minimal rank and
the minimal trace d2

E
min

of each code are also presented. The new code has a better trace than

the corresponding Chen’s code. The FER and BER of these two STTCs with 2 and 4 receive
antennas are presented respectively in Figs. 4 and 5. We remark that the new code slightly
outperforms the Chen’s code.

Code G Rank d2
E

min

Chen et al. (2002a)

⎡

⎢

⎢

⎣

2 4 0 3 2 4
1 6 4 4 0 0
3 2 4 0 4 2
7 2 4 5 4 0

⎤

⎥

⎥

⎦

2 16.58

New

⎡

⎢

⎢

⎣

4 2 7 0 0 4
0 4 6 4 6 3
4 2 3 4 6 0
4 2 3 0 4 2

⎤

⎥

⎥

⎦

2 17.17

Table 10. 8 states 8-PSK STTCs with 4 transmit antennas

0 2 4 6 8 10 12 14
10

 3

10
 2

10
 1

10
0

SNR (dB)

F
E

R

 

 

Chen 2Rx

New 2Rx

Chen 4Rx

New 4Rx

Fig. 4. FER of 8 states 8-PSK STTCs with 4 transmit antennas

6. Other new 4-PSK STTCs

Via this new method, other STTCs have been generated. Example of balanced 4-PSK STTCs
are presented in Table 11. The performance of these STTCs is shown in Fig. 6. The codes noted
by ’B’ are balanced, those by ’FB’ are fully balanced and those noted by ’NB’ are not balanced.
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nT States Code G d2
E

min

3 32
Chen et al. Chen et al. (2002a)

⎡

⎣

0 2 2 1 1 2 0 2
2 2 3 2 2 3 0 0
2 0 2 2 2 1 0 0

⎤

⎦ FB 24

New

⎡

⎣

2 1 2 3 2 3 0 2
2 3 0 2 2 1 0 0
2 1 2 1 0 0 0 2

⎤

⎦ FB 26

4
32

Chen et al. Chen et al. (2002a)

⎡

⎢

⎢

⎣

0 2 2 1 1 2 0 2
2 2 3 2 2 3 0 0
2 0 3 2 2 1 0 0
2 1 2 0 1 0 0 2

⎤

⎥

⎥

⎦

NB 36

New

⎡

⎢

⎢

⎣

2 3 2 1 2 1 0 2
0 2 2 1 2 3 0 3
2 3 2 3 0 0 0 2
2 1 0 2 2 1 0 0

⎤

⎥

⎥

⎦

B 36

64
Chen et al. Chen et al. (2002a)

⎡

⎢

⎢

⎣

0 2 3 2 ” 0 3 2
2 2 1 2 3 0 2 0
2 0 0 2 2 3 1 1
1 2 2 0 2 1 3 3

⎤

⎥

⎥

⎦

NB 38

New

⎡

⎢

⎢

⎣

1 2 2 0 3 2 1 2
3 2 3 2 2 0 3 2
2 0 1 2 3 2 3 2
1 2 2 0 2 0 2 0

⎤

⎥

⎥

⎦

B 40

Table 11. 4-PSK STTCs

7. Conclusion

The use of STTCs is an efficient solution to improve the performance of wireless MIMO
systems. However, difficulties arise in terms of computational time to find the best codes
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especially for a great number of transmit antennas. In order to reduce the search-time, this
chapter presents a new and simple method to design balanced STTCs. A balanced STTC is a
STTC which generates the MIMO symbols with the same probability when the binary input
symbols are equiprobable. Each best STTC belongs to this class. Thereby, it is sufficient to
generate only the balanced STTCs to find those with the best performance. Consequently, the
search-time is considerably reduced.
The new method proposed in this chapter is simpler than the first method proposed by Ngo
et al. (2008; 2007) and used only for 4-PSK modulation. Besides, the new method is given for
2n-PSK STTCs and nT transmit antennas. It is based on the generation of the subgroup of Z

nT
2n

which determines a partition of Z
nT
2n in cosets.

Furthermore, several new 4-PSK and 8-PSK balanced STTCs have been proposed. These new
STTCs outperform slightly the best corresponding published codes.
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