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1. Introduction

Employing multiple antennas at both the transmitter and the receiver linearly boosts
the channel capacity by min (nT , nR), where nT and nR are the number of transmit and
receive antennas, respectively A. Telatar (1999). Multiple-Input Multiple-Output (MIMO)
technologies are classified into three categories: (i) MIMO diversity, (ii) MIMO Spatial
Multiplexing (MIMO-SM) and (iii) beamforming that will not be addressed here since it
particularly deals with transmitter algorithms. MIMO diversity techniques are deployed
to increase the reliability of communications by transmitting or receiving multiple copies
of the same signal at different resource entities of the permissible dimensions, i.e., time,
frequency, or space. In contrast, the target of MIMO-SM is to increase the capacity of the
communication channel. To this end, independent symbols are transmitted simultaneously
from the different transmit antennas. Due to its attracting implementation advantages, Vertical
Bell Laboratories Layered Space-Time (V-BLAST) transmitter structure is often used in the
practical communication systems P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela
(1998).
In 3GPP Long Term Evolution-Advanced (3GPP LTE-A) 3GPP (2009), the challenge of
de-multiplexing the transmitted symbols via SM techniques, i.e. detection techniques,
stands as one of the main limiting factors in linearly increasing system’s throughput
without requiring additional spectral resources. The design of detection schemes with high
performance, low latency, and applicable computational complexity is being a challenging
research topic due to the power and latency limitations of the mobile communication
systems M. Mohaisen, H.S. An, and K.H.Chang (2009).

1.1 System model and problem statement

We consider a MIMO-SM system employing nT transmit antennas and nR receive antennas,
where nT ≤ nR P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela (1998). The
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simultaneously transmitted symbols given by the vector x ∈ Ω
nT

C
are drawn independently

from a Quadrature Amplitude Modulation (QAM) constellation, where ΩC indicates the
constellation set with size |ΩC |.
Under the assumption of narrow-band flat-fading channel, the received vector r ∈ CnR is
given by:

r = Hx + n, (1)

where n ∈ CnR is the Additive White Gaussian Noise (AWGN) vector whose elements are
drawn from i.i.d. circularly symmetric complex Gaussian processes with mean and variance
of zero and σ2

n , respectively. H ∈ CnR×nT denotes the complex channel matrix whose element
Hi,j ∼ CN (0, 1) is the channel coefficient between the j-th transmit antenna and the i-th
receive antenna.
Working on the transmitted vector x, H generates the complex lattice

L(H) =
{

z = Hx|x ∈ Ω
nT

C

}
=

{
x1H1 + x2H2 + · · · + xnT HnT |xi ∈ Ω

nT

C

}
, (2)

where the columns of H, {H1, H2, · · · , HnT}, are known as the basis vectors of the lattice
L ∈ CnR L. Lovász (1986). Also, nT and nR refer to the rank and dimension of the lattice L,
respectively, where the lattice is said to be full-rank if nT = nR.

(a) (b)

Fig. 1. Examples of 2-dimensional real lattices with orthogonal bases (a) and correlated bases
(b).

Figure 1(a) shows an example of a 2-dimensional real lattice whose basis vectors are H1 =
[0.39 0.59]T and H2 = [−0.59 0.39]T , and Figure 1(b) shows another example of a lattice with
basis vectors H1 = [0.39 0.60]T and H2 = [0.50 0.30]T . The elements of the transmitted vector
x are withdrawn independently from the real constellation set {−3,−1, 1−, 3}. Herein we
introduce the orthogonality defect od which is usually used as a measure of the orthogonality of
the lattice basis:

od =
∏

nT

i=1 ‖Hi‖
|det{H} | , (3)

where det{·} refers to determinant and od ≥ 1. The od of the lattices depicted in Figure 1(a)
and Figure 1(b) are 1 and 2.28, respectively. This indicates that the first set of basis vectors is
perfectly orthogonal while the second set is correlated, which implies inter-layer interferences
and induces the advantage of joint detectors among others. The form of the resulting Voronoi
regions of the different lattice points, an example is indicated in gray in Figure 1, also indicates
the orthogonality of the basis; when the basis vectors are orthogonal with equal norms, the
resulting Voronoi regions are squares, otherwise different shapes are obtained.
In light of the above and from a geometrical point of view, the signal detection problem is
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Fig. 2. Block diagram of the linear detection algorithms.

defined as finding the lattice point ẑ = Hx̂, such that ‖r − ẑ‖2 is minimized, where ‖·‖ is the
Euclidean norm and x̂ is the estimate of the transmitted vector x.

1.2 Maximum-likelihood detection

The optimum detector for the transmit vector estimation is the well-known
Maximum-Likelihood Detector (MLD) W. Van Etten (1976). MLD employs a brute-force search
to find the vector xk such that the a-posteriori probability P {xk | r} , k = 1, 2, · · · , |ΩC |nT , is
maximized; that is,

x̂ML = arg max
x∈Ω

nT
C

(P {xk|r}) . (4)

After some basic probability manipulations, the optimization problem in (4) is reduced to:

x̂ML = arg max
x∈Ω

nT
C

(p (r|xk)) , (5)

where p (r|xk) is the probability density function of r given xk. By assuming that the elements
of the noise vector n are i.i.d. and follow Gaussian distribution, the noise covariance matrix
becomes Σn = σ2

nInR . As a consequence, the received vector is modelled as a multivariate
Gaussian random variable whose mean is (Hxk) and covariance matrix is Σn. The optimization
problem in (5) is rewritten as follows:

x̂ML = arg max
x∈Ω

nT
C

(
1

πnR det (Σ)
exp−(r−Hxk)

H
Σ−1

n (r−Hxk)
)

= arg min
x∈Ω

nT
C

(
‖r − Hxk‖2

)
. (6)

This result coincides with the conjuncture based on the lattice theory given in section 1.1.
The computational complexity of the MLD is known to be exponential in the modulation
set size |ΩC | and the number of transmit antennas nT . For mobile communications systems,
which are computational complexity and latency limited, MLD becomes infeasible. In the
following Sections, we review the conventional sub-optimal detection algorithms J. Wang,
and B. Daneshrad (2005), and analyse their advantages and inconveniences.

2. Linear detection algorithms

The idea behind linear detection schemes is to treat the received vector by a filtering matrix
W, constructed using a performance-based criterion, as depicted in Figure 2 A. Paulraj, R.
Nabar, and D. Gore (2003), C. Windpassenger (2004), B. Schubert (2006). The well known
Zero-Forcing (ZF) and Minimum-Mean Square Error (MMSE) performance criteria are used
in the Linear ZF (LZF) and MMSE (LMMSE) detectors.
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Fig. 3. Geometrical representation of the linear zero-forcing detection algorithm.

2.1 Linear Zero-Forcing detector

LZF detector treats the received vector by the pseudo-inverse of the channel matrix, resulting
in full cancellation of the interference with colored noise. The detector in matrix form is given
by:

WZF =
(

HHH
)−1

HH , (7)

where (·)H is the Hermitian transpose.
Figure 3 depicts a geometrical representation of the LZF detector. Geometrically, to obtain the
k-th detector’s output, the received vector is processed as follows:

x̃k = wkr =

(
H⊥

k

)H

∥∥H⊥
k

∥∥2
r = xk + µk, (8)

where wk is the k-th row of W, H⊥
k is the perpendicular component of Hi on the interference

space, and µk equals wkn. Note that H⊥
k equals

(
Hk − H

||
k

)
, where H

||
k is the parallel

component of Hk to the interference subspace. Then, the mean and variance of the noise µk at

the output of the LZF detector are 0 and ‖wk‖2 σ2
n , respectively. When the channel matrix is

ill-conditioned, e.g., if a couple or more of columns of the channel matrix are correlated, H
||
k

becomes large, and the noise is consequently amplified.

2.2 Linear minimum-mean square error detector

To alleviate the noise enhancement problem induced by the ZF equalization, the LMMSE
can be used. The LMMSE algorithm optimally balances the residual interference and noise
enhancement at the output of the detector. To accomplish that, the filtering matrix WMMSE is
given by:

WMMSE = arg min
G

(
E

[
‖Gr − x‖2

])
, (9)

where E[·] denotes the expectation. Due to the orthogonality between the received vector and
the error vector given in (9), we have:

E
[
(WMMSEr − x) rH

]
= 0, (10)
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Fig. 4. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel, LZF,
LMMSE and ML detectors, QPSK modulations at each layer.

and by extending the left side of (10), it directly follows that:

WMMSE =
(

Φ−1
xx + HHΦ−1

nn H
)−1

HHΦ−1
nn =

(
HHH +

σ2
n

σ2
x

InT

)−1

HH , (11)

where Φnn equals σ2
nI and Φxx equals σ2

x I are the covariance matrices of the noise and
the transmitted vectors, respectively. Theoretically, at high Signal-to-noise Ratio (SNR), the
LMMSE optimum filtering converges to the LZF solution. However, we show in M. Mohaisen,
and K.H. Chang (2009b) that the improvement by the LMMSE detector over the LZF detector
is not only dependent on the plain value of the noise variance, but also on how close σ2

n
is to the singualr values of the channel matrix. Mathematically, we showed that the ratio
between the condition number of the filtering matrices of the linear MMSE and ZF detectors
is approximated as follows:

cond(WMMSE)

cond(WZF)
≈ 1 + σ2

n/σ2
1 (H)

1 + σ2
n/σ2

N(H)
, (12)

where σ1 and σN are the maximal and minimal singular values of the channel matrix H, and
σ2

n is the noise variance. Also, cond(A) = (σ1(A)/σN(A)) is the condition number that attains
a minimum value of one for orthogonal A.
Figure 4 shows the Bit Error Rate (BER) of the linear detection algorithms in 4 × 4 MIMO
multiplexing system, using 4-QAM signalling. Although the BER performance of LMMSE is
close to that of MLD for low Eb/N0 values, the error rate curves of the two linear detection
algorithms have a slope of −1, viz., diversity order equals one, whereas the diversity order of
the MLD equals nR = 4.

3. Decision-feedback detection

3.1 Introduction

Although linear detection approaches are attractive in terms of computational complexity,
they lead to degradation in the BER performance, due to independent detection of x

components. Superior performance can be obtained if non-linear approaches are employed,
as in the Decision-Feedback Detection (DFD) algorithms. In DFD approach, symbols are
detected successively, where already-detected components of x are subtracted out from the
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Fig. 5. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel,
Assorted ZF-VB, Sorted ZF-VB, Assorted MMSE-VB, Sorted MMSE-VB and ML detectors,
QPSK modulations at each layer.

received vector. This leads to a system with fewer interferers. In the following two sections,
we introduce two categories of DFD algorithms.

3.2 The V-BLAST detection algorithm

In V-BLAST, symbols are detected successively using the aforementioned linear detection
approaches. At the end of each iteration, the already-detected component of x is subtracted
out from the received vector P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela
(1998), S. Haykin, and M. Moher (2005). Also, the corresponding column of the matrix H is
removed. When decision-feedback approach is used, error propagation becomes a challenging
issue. Therefore, the order in which symbols are detected has a great impact on the system
performance.
The idea behind the ZF-based V-BLAST (ZF-VB) algorithm is to detect the components of x

that suffer the least noise amplification at first. For the first decision, the pseudo-inverse, i.e.,
W equals H†, of the matrix H is obtained. By assuming that the noise components are i.i.d and
that noise is independent of x, then the row of W with the least Euclidean norm corresponds

to the required component of x. That is k1 = arg minj (‖wj‖2) and x̃k1
= wk1

r(1), where r(1)

= r, the superscript indicates the iteration number, and x̂k1
= QΩC

(x̃k1
) is the decision for the

k1-th component of x. The interference due to the k1-th symbol is then cancelled out as follows:

r(2) = r(1) − x̂k1
Hk1

and H(2) =
[
· · · , Hk1−1, Hk1+1, · · ·

]
. This strategy is repeated up to the

last component of x.
In analogy with the linear detection approaches, MMSE-based V-BLAST (MMSE-VB)
improves the BER performance, by alleviating the noise enhancement problem. Therefore,

the filtering matrix G(i) at the i-th iteration is given by:

G(i) =

(
HH(i)

H(i) +
σ2

n

σ2
x

I

)−1

HH(i)
, (13)

rather than H(i)† in the case of ZF-VB.
Figure 5 shows the BER performance of the V-BLAST for several detection algorithms.
In the assorted V-BLAST schemes, the symbols are detected in an ascending order, i.e.,
x1, x2, · · · , xnT , without considering their noise conditions. Obviously, signal ordering leads to
improvements for both the ZF-VB and MMSE-VB algorithms, and the improvement is larger
in the case of the MMSE-VB algorithm. We note also that the diversity order of the MMSE-VB
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is larger than 1, unlike the other V-BLAST algorithms which have a diversity order close to
1. This indicates less error propagation in the case of MMSE-VB, compared to other V-BLAST
detection algorithms.
The computational complexity of the BLAST detection algorithm, both ZF-VB and
MMSE-VB, is O(n4), which is infeasible due to power and latency limitations of the
mobile communication systems. Although several techniques were proposed to reduce the
complexity of the BLAST detection algorithm, it is still complex B. Hassibi (2000); H. Zhu, Z.
Lei, and F. Chin (2004); J. Benesty, Y. Huang, and J. Chen (2003).

3.3 QR Decomposition-based detection-feedback detection

The DFD scheme, that lies in the QR Decomposition (QRD) of the channel matrix S. Aubert,
M. Mohaisen, F. Nouvel, and K.H. Chang (2010), requires only a fraction of the computational
efforts required by the V-BLAST detection algorithm D. Shiu, and J. Kahn (1999). This is
why QRD-based DFD (QRD-DFD) is preferable for power and latency limited wireless
communication systems.
In QRD-DFD, the channel matrix is decomposed into the multiplication of a unitary matrix
Q ∈ CnR×nT , i.e., QHQ = InT , and an upper triangular matrix R ∈ CnT×nT ; that is H = QR.
Then, the received vector is multiplied by the Hermitian transpose of Q, we have

y = Rx + v = (D + B) x + v, (14)

where y = QHr and v = QHn. Note that the noise statistics does not changeable due to
the orthogonality of Q. The matrix D is a diagonal matrix whose diagonal elements are the
diagonal elements of R, and B is strictly upper triangular matrix. As a consequence, the MIMO
system becomes spatially causal which implies that:

yk = Rk,k x̃k +
nT

∑
i=k+1

Rk,j x̂i, (15)

where x̃k is a candidate symbol and x̂k is the estimate, both for the k−th component of x.
Therefore,

x̂k = QΩC

(
yk − ∑

nT

i=k+1 Rk,j x̂i

Rk,k

)
. (16)

Note that due to the structure of the matrix R, the last component of x, i.e., xnT , is
interference-free, hence, it can be detected first. Already-detected component of x is cancelled
out to detect the following component. This technique is repeated up to the first component of
x, i.e., x1 D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K.-D. Kammeyer (2001); D. Wübben,
R. Böhnke, V. Kühn, and K.-D. Kammeyer (2003); M. Mohaisen, and K.H. Chang (2009a).
Fig. 6 depicts the detailed QRD-based detection algorithm (ZF-QRD). Note that the feedback

loop is equivalent to (D + B)−1 = R−1. Figure 7 depicts the BER performance of the the
QRD-based DFD algorithms. The MMSE-SQRD algorithm has the best performance but its
diversity order converges to unity for high Eb/N0 values.
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Fig. 7. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel,
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4. Tree-search detection

Several tree-search detection algorithms have been proposed in the literature that achieve
quasi-ML performance while requiring lower computational complexity. In these techniques,
the lattice search problem is presented as a tree where nodes represent the symbols’
candidates. In the following, we introduce three tree-search algorithms and discuss their
advantages and drawbacks.

4.1 Sphere Decoder

The Sphere Decoder (SD) was proposed in the literature to solve several lattice search
problems J. Boutros, N. Gresset, L. Brunel, and M. Fossorier (2003). Based on Hassibi and
Vikalo analysis, SD achieves quasi-ML performance with polynomial average computational
complexity for large range of SNR B. Hassibi, and H. Vikalo (2001). Hence, instead of testing all
the hypotheses of the transmitted vector, SD restricts the search in (6) to the lattice points that
reside in the hypersphere of radius d and implicitly centred at the unconstrained ZF estimate.
Therefore,

x̂SD = arg min
x∈Ω

nT
C

(
‖r − Hx‖2 ≤ d2

)
. (17)

The order in which hypotheses are tested at each detection level is defined by the employed
search strategy, namely Fincke-Pohst (FP) U. Fincke, and M. Pohst (1985) or Schnorr-Euchner
(SE) C. Schnorr, and M. Euchner (1994) strategies. SE strategy orders, and then examines,
the hypotheses based on their Euclidean distance from the unconstrained ZF solution; closer
hypothesis is tested first. On the other hand, FP strategy tests the hypotheses at each layer
without considering the distance from the unconstrained ZF solution. That is why FP strategy
leads to higher computational complexity. Figure 8 shows the details of these two strategies for
6-Pulse Amplitude Modulation (PAM) constellation where ẑi is the unconstrained ZF solution
of the i−th transmitted symbol and the numbers under the constellation points represent the
order in which hypotheses are tested. It is clear that employing SE strategy leads to reduction
in the complexity since the most probable hypothesis for any considered layer, independently
of others, is tested first.

It could be shown that the BER performance of the SD coincides with that of the optimum
detector. However, some drawbacks remain. In particular, the complexity of SD is variable
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Fig. 8. Search strategies employed by the sphere decoder FP strategy (a) and SE strategy (b).

and depends on the conditionality of the channel matrix and the noise variance, where the
worst-case complexity of SD is consequently comparable with that of MLD. That is, the
worst-case complexity of SD is exponential. In fact, Jalden and Otterson have shown in J.
Jaldén, and B. Ottersten (2005) that even the average complexity of SD is exponential for a
fixed SNR value. Also, the SD has a sequential nature because it requires the update of the
search radius at every time a new lattice point with smaller accumulative metric is found.
This limits the possibility of parallel processing and hence reduces the detection throughput,
i.e., increases the detection latency.
To fix the complexity of the detection stage and allow a parallel processing, the QRD
with M-algorithm (QRD-M) has been proposed. The QRD-M algorithm and several related
complexity reduction techniques are introduced in the following sections. Also, it is
equivalently denoted as the K-Best.

4.2 QRD-M detection algorithm

In the QRD-M detection algorithm, only a fixed number, M, of symbol candidates is retained
at each detection level J. Anderson, and S. Mohan (1984); K.J. Kim, J. Yue, R.A. Iltis, and
J.D. Gibson (2005). At the first detection level, the root node is extended to all the possible
candidates of xnT , the accumulative metrics of the resulting branches are calculated and
the best M candidates with the smallest metrics are retained for the next detection level.
At the second detection level, the retained M candidates at the previous level are extended
to all possible candidates. The resulting (|ΩC | × M) branches are sorted according to their
accumulative metrics where the M branches with the smallest accumulative metrics are
retained for the next detection level. This strategy is repeated down to the last detection level.
By employing the QRD-M strategy, near-ML BER performance are reached for a sufficient M
value, as depicted in Figure 9, while the computational complexity of the detection algorithm
becomes fixed and only dependent on the size of the modulation set |ΩC | and the number of
transmit antennas nT . It also makes a parallel implementation possible. Note that the overall
number of visited nodes by the QRD-M algorithm = (|ΩC | + (nT − 1) × |ΩC | × M).
Although the conventional QRD-M has a fixed complexity which is an advantage, it does not
take into consideration the noise and channel conditions. Thus, unnecessary computations are
usually done when the channel is well-conditioned and the signal to noise ratio is high. Also,
for high |ΩC | and nT , the computational complexity of the QRD-M algorithm becomes high,
where as a consequence the detection latency increases.
In order to solve this point, several algorithms have been proposed in the literature. A
solution that lies on applying a variable M has been widely studied and is denoted as
the dynamic QRD-M algorithm. It offers promising performance results in the case of a
SQRD pre-processing step. These algorithms reduce the number of retained candidates at
each detection level with tolerable degradation in the performance H. Kawai, K. Higuchi, N.
Maeda, and M. Sawahashi (2006); K. Jeon, H. Kim, and H. Park (2006); M. Mohaisen, and K.H.
Chang (2010) and references therein. In M. Mohaisen, K.H. Chang, and B.T. Koo (2009), two
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Fig. 9. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel,
QRD-M algorithm for multiple M values and ML detectors, QPSK modulations at each layer.

algorithms have been proposed, that in addition of reducing the computational complexity of
the QRD-M algorithm, they either reduce the processing delay by parallelizing the detection
stage or reduce the hardware requirements by iteratively processing the QRD-M algorithm.
While a variable M also implies a variable computational complexity, a particular case has to
be introduced.

4.3 Fixed-complexity sphere decoder

Fixed-complexity Sphere Decoder (FSD) was proposed by Barbero et al. to overcome the
aforementioned drawbacks of SD. FSD achieves a quasi-ML performance by performing the
following two-stage tree search L. Barbero, and J. Thompson (2008a;b):

• Full expansion: In the first p levels, a full expansion is performed, where all symbols
replicas candidates are retained to the following levels;

• Single expansion: A single expansion of each retained branch is done in the remaining
(nT − p) levels, where only the symbol replica candidate with the lowest accumulative
metric is considered for next levels.

Because all possible symbols candidates are retained in the first p levels, the reliability of
signals detected in these levels does not affect the final detection performance compared to
MLD. Therefore, signals with the least robustness are detected in the full expansion stage. On
the other hand, in the remaining (nT − p) levels, signals are sorted based on their reliability,
where signals with the least noise amplification are detected first. In the conventional FSD, the
V-BLAST algorithm is employed to obtain the required signal ordering by the FSD.
Figure 10 depicts the BER performance of the FSD for p = 1 in 4×4 MIMO-SM system using
4-QAM. Results show that the ordering has a crucial effect on the the performance of the FSD.
For instance, both the performance and the attained diversity order are degraded when the
ordering stage is skipped or when a non-optimal signal ordering is used. A low complexity
FSD ordering scheme that requires a fraction of the computations of the V-BLAST scheme was
proposed in M. Mohaisen, and K.H. Chang (2009a), where a close to optimum performance
was achieved by embedding the sorting stage in the QR factorization of the channel matrix.

4.4 MMSE-centred sphere decoder

The SD principle may be extended. By defining the Babai point - only in the case of a
depth-first search algorithm - as the first obtained solution by the algorithm, the induced
Babai point in this case is implicitly a ZF-QRD. In the case of a QRD-M algorithm, this

80 Vehicular Technologies: Increasing Connectivity

www.intechopen.com



0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

10−1

Eb/N0

U
n

co
d

ed
B

E
R

FSD - no ordering

FSD - norm ordering

FSD - FSD-VBLAST

ML

Fig. 10. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel, FSD
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definition is extended and is considered as the solution that would be directly reached,
without neighborhood study. Another useful notation that has to be introduced is the sphere
search around the center search xC, namely the signal in any equation of the form ‖xC − x‖2 ≤
d2, where x is any possible hypothesis of the transmitted vector x, which is consistent with the
equation of an (nT − 1)− sphere.
Classically, the SD formula is centred at the unconstrained ZF solution and the corresponding
detector is denoted in the sequel as the naïve SD. Consequently, a fundamental optimization
may be considered by introducing an efficient search center that results in an already
close-to-optimal Babai point. In other words, to obtain a solution that is already close to the
ML solution. This way, it is clear that the neighborhood study size can be decreased without
affecting the outcome of the search process. In the case of the QRD-M algorithm, since the
neighborhood size is fixed, it will induce a performance improvement for a given M or a
reduction of M for a given target BER.
The classical SD expression may be re-arranged, leading to an exact formula that has been
firstly proposed by Wong et al., aiming at optimizations for a VLSI implementation through
an efficient Partial Euclidean distance (PED) expression and early pruned nodes K.-W. Wong,
C.-Y. Tsui, S.-K. Cheng, and W.-H. Mow (2002):

xZF−DFD = argmin
x∈Ω

nT
C

‖ReZF‖2, (18)

where eZF = xZF − x and xZF = (HHH)−1HHr. Equation (18) clearly exhibits the point that
the naïve SD is unconstrained ZF-centred and implicitly corresponds to a ZF-QRD procedure
with a neighborhood study at each layer.
The main idea proposed by B.M. Hochwald, and S. ten Brink (2003); L. Wang, L. Xu, S. Chen,
and L. Hanzo (2008); T. Cui, and C. Tellambura (2005) is to choose a closer-to-ML Babai point
than the ZF-QRD, which is the case of the MMSE-QRD solution. For sake of clearness with
definitions, we say that two ML equations are equivalent if the lattice points argument outputs
of the minimum distance are the same, even in the case of different metrics. Two ML equations
are equivalent iff:

argmin
x∈Ω

nT
C

{‖r − Hx‖2} = argmin
x∈Ω

nT
C

{‖r − Hx‖2 + c}, (19)

where c is a constant.
In particular, Cui et al. T. Cui, and C. Tellambura (2005) proposed a general equivalent
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minimization problem: x̂ML = argmin
x∈Ω

nT
C

{‖r − Hx‖2 + αxHx}, by noticing that signals x have

to be of constant modulus. This assumption is obeyed in the case of QPSK modulation and is
not directly applicable to 16-QAM and 64-QAM modulations, even if this assumption is not
limiting since a QAM constellation can be considered as a linear sum of QPSK points T. Cui,
and C. Tellambura (2005).
This expression has been applied to the QRD-M algorithm by Wang et al. in the case of the
unconstrained MMSE-center which leads to an MMSE-QRD procedure with a neighborhood
study at each layer L. Wang, L. Xu, S. Chen, and L. Hanzo (2008). In this case, the equivalent
ML equation is rewritten as:

x̂ML = argmin
x∈Ω

nT
C

(xC − x)H
(

HHH + σ2I
)

(xC − x) . (20)

Through the use of the Cholesky Factorization (CF) of HHH + σ2I = UHU in the MMSE case
(HHH = UHU in the ZF case), the ML expression equivalently rewrites:

x̂ML = argmin
x∈Ω

nT
C

(x̃ − x)H UHU (x̃ − x) , (21)

where U is upper triangular with real elements on diagonal and x̃ is any (ZF or MMSE)
unconstrained linear estimate.

5. Lattice reduction

For higher dimensions, the ML estimate can be provided correctly with a reasonable
complexity using a Lattice Reduction (LR)-aided detection technique.

5.1 Lattice reduction-aided detectors interest

As proposed in H. Yao, and G.W. Wornell (2002), LR-Aided (LRA) techniques are used
to transform any MIMO channel into a better-conditioned (short basis vectors norms and
roughly orthogonal) equivalent MIMO channel, namely generating the same lattice points.
Although classical low-complexity linear, and even (O)DFD detectors, fail to achieve full
diversity as depicted in D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004), they
can be applied to this equivalent (the exact definition will be introduced in the sequel)
channel and significantly improve performance C. Windpassinger, and R.F.H. Fischer (2003). In
particular, it has been shown that LRA detectors achieve the full diversity C. Ling (2006);
M. Taherzadeh, A. Mobasher, and A.K. Khandani (2005); Y.H. Gan, C. Ling, and W.H. Mow
(2009). By assuming i < j, Figure 11 depicts the decision regions in a trivial two-dimensional
case and demonstrates to the reader the reason why LRA detection algorithms offer better
performance by approaching the optimal ML decision areas D. Wübben, R. Böhnke, V. Kühn,
and K.-D. Kammeyer (2004). From a singular value theory point of view, when the lattice basis
is reduced, its singular values becomes much closer to each other with equal singular values
for orthogonal basis. Therefore, the power of the system will be distributed almost equally
on the singular values and the system become more immune against the noise enhancement
problem when the singular values are inverted during the equalization process.
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(a) ML (b) LD (c) DFD (d) LRA-LD (e) LRA-DFD

Fig. 11. Undisturbed received signals and decision areas of (a) ML, (b) LD, (c) DFD, (d)
LRA-LD and (e) LRA-DFD D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004).

5.2 Summary of the lattice reduction algorithms

To this end, various reduction algorithms, namely the optimal (the orthogonality is
maximized) but NP-hard Minkowski B.A. Lamacchia (1991), Korkine-Zolotareff B.A.
Lamacchia (1991) algorithms E. Agrell , T. Eriksson, A. Vardy, and K. Zeger (2002),
the well-known LLL reduction A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982), and
Seysen’s B.A. Lamacchia (1991); M. Seysen (1993) LR algorithm have been proposed.

5.3 Lattice definition

By interpreting the columns Hi of H as a generator basis , note that H is also referred to as the
lattice basis whose columns are referred to as ”basis vectors”, the lattice Λ(H) is defined as all
the complex integer combinations of Hi, i.e.,

Λ(H) �

{
nT

∑
i=1

aiHi | ai ∈ ZC

}
, (22)

where ZC is the set of complex integers which reads: ZC = Z + jZ, j2 = −1.
The lattice Λ(H̃) generated by the matrix H̃ and the lattice generated by the matrix H are
identical iff all the lattice points are the same. The two aforementioned bases generate an
identical lattices iff H̃ = HT, where the nT × nT transformation matrix is unimodular E. Agrell
, T. Eriksson, A. Vardy, and K. Zeger (2002), i.e., T ∈ Z

nT×nT

C
and such that |det(T)| = 1.

Using the reduced channel basis H̃ = HT and introducing z = T−1x, the system model given
in (1) can be rewritten D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004):

r = H̃z + n. (23)

The idea behind LRA equalizers or detectors is to consider the identical system model above.
The detection is then performed with respect to the reduced channel matrix (H̃), which is
now roughly orthogonal by definition, and to the equivalent transmitted signal that still
belongs to an integer lattice since T is unimodular D. Wübben, R. Böhnke, V. Kühn, and
K.-D. Kammeyer (2004). Finally, the estimated x̂ in the original problem is computed with
the relationship x̃ = Tẑ and by hard-limiting x̃ to a valid symbol vector. These steps are
summarized in the block scheme in Figure 12.

The following Subsections briefly describe the main aspects of the LLL Algorithm (LA) and
the Seysen’s Algorithm (SA).
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x T−1 H̃ +

n

z Detector x̂
H̃zz r

Fig. 12. LRA detector bloc scheme.

5.4 LLL algorithm

The LA is a local approach that transforms an input basis H into an LLL-reduced basis H̃ that
satisfies both of the orthogonality and norm reduction conditions, respectively:

|ℜ{µi,j}|, |ℑ{µi,j}| ≤ 1
2 , ∀ 1 ≤ j < i ≤ nT , (24)

where µi,j �
<Hi , H̃j>

‖H̃j‖2 , and:

‖H̃i‖2 = (δ − |µi,i−1|2)‖H̃i−1‖2, ∀ 1 < i ≤ nT , (25)

where δ, with 1
2 < δ < 1, is a factor selected to achieve a good quality-complexity

trade-off A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982). In this book chapter, δ is assumed

to be δ = 3
4 , as commonly suggested, and H̃i = H̃i − ∑

i−2
j=1{⌈µi,j⌋Hj}. Another classical result

consists of directly considering the Complex LA (CLA) that offers a saving in the average
complexity of nearly 50% compared to the straightforward real model system extension with
negligible performance degradation Y.H. Gan, C. Ling, and W.H. Mow (2009).
Let us introduce the QR Decomposition (QRD) of H ∈ CnR×nT that reads H = QR, where
the matrix Q ∈ CnR×nT has orthonormal columns and R ∈ CnT×nT is an upper-triangular
matrix. It has been shown D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004)
the QRD of H = QR is a possible starting point for the LA, and it has been introduced L.G.
Barbero, T. Ratnarajah, and C. Cowan (2008) that the Sorted QRD (SQRD) provides a better
starting point since it finally leads to a significant reduction in the expected computational
complexity D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004) and in the
corresponding variance B. Gestner, W. Zhang, X. Ma, and D.V. Anderson (2008).
By denoting the latter algorithm as the SQRD-based LA (SLA), these two points are depicted
in Figure 13 (a-c) under DSP implementation-oriented assumptions on computational
complexities (see S. Aubert, M. Mohaisen, F. Nouvel, and K.H. Chang (2010) for details).
Instead of applying the LA to the only basis H, a simultaneous reduction of the basis H and
the dual basis H# = H(HHH)−1 D. Wübben, and D. Seethaler (2007) may be processed.

5.5 Seysen’s algorithm

At the beginning, let us introduce the Seysen’s orthogonality measure M. Seysen (1993)

S(H̃) �
nT

∑
i=1

∥∥H̃i

∥∥2
∥∥∥H̃#

i

∥∥∥
2
, (26)

where H̃#
i is the i-th basis vector of the dual lattice, i.e., H̃#HH̃ = I.

The SA is a global approach that transforms an input basis H (and its dual basis H#) into
a Seysen-reduced basis H̃ that (locally) minimizes S and that satisfies, ∀ 1 ≤ i �= j ≤ nT D.
Seethaler, G. Matz, and F. Hlawatsch (2007)

λi, j �

⌊
1
2

(
H̃#H

j H̃#
i

‖H̃#
i ‖2

−
H̃H

j H̃i

‖H̃#
j ‖2

)⌉
= 0. (27)
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average and maximum total number of equivalent MUL of the LA, SLA and SA as a function
of the number of antennas n (c).

SA computational complexity is depicted in Figure 13 (a-c) as a function of the number of
equivalent real multiplication MUL, which allow for some discussion.

5.5.1 Concluding remarks

The aforementioned LR techniques have been presented and both their performances
(orthogonality of the obtained lattice) D. Wübben, and D. Seethaler (2007) and computational
complexities L.G. Barbero, T. Ratnarajah, and C. Cowan (2008) have been compared when
applied to MIMO detection in the Open Loop (OL) case. In Figure 14 (a-f), the od, cond, and
S of the reduced basis provided by the SA compared to the LA and SLA are depicted. These
measurements are known to be popular measures of the quality of a basis for data detection C.
Windpassinger, and R.F.H. Fischer (2003). However, this orthogonality gain is obtained at the
expense of a higher computational complexity, in particular compared to the SLA. Moreover, it
has been shown that a very tiny uncoded BER performance improvement is offered in the case
of LRA-LD only D. Wübben, and D. Seethaler (2007). In particular, in the case of LRA-DFD
detectors, both LA and SA yield almost the same performance L.G. Barbero, T. Ratnarajah,
and C. Cowan (2008).
According to the curves depicted in Figure 13 (a), the mean computational complexities
of LA, SLA and SA are 1, 6.104, 1, 1.104 and 1, 4.105 respectively in the case of a 4 × 4
complex matrix. The variance of the computational complexities of LA, SLA and SA are 3.107,
2, 3.107 and 2, 4.109 respectively, which illustrates the aforementioned reduction in the mean
computational complexity and in the corresponding variance and consequently highlights the
SLA advantage over other LR techniques.
In Figure 14, the Probability Density Function (PDF) and Cumulative Density Function

(CDF) of ln(cond), ln(od) and ln(S) for LA, SLA and SA are depicted and compared to the
performance without lattice reduction. It can be observed that both LA and SLA offer exactly
the same performance, with the only difference in their computational complexities. Also,
there is a tiny improvement in the od when SA is used as compared to (S)LA. This point will
be discussed in the sequel.
The LRA algorithm preprocessing step has been exposed and implies some minor
modifications in the detection step.
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5.6 Lattice reduction-aided detection principle

The key idea of the LR-aided detection schemes is to understand that the finite set of
transmitted symbols Ω

nT

C
can be interpreted as the De-normalized, Shifted then Scaled (DSS)

version of the infinite integer subset ZnT

C
⊂ Z

nT

C
C. Windpassinger, and R.F.H. Fischer (2003),

where Z
nT

C
is the infinite set of complex integers, i.e.,:

Ω
nT

C
= 2aZnT

C
+ 1

2 T−11nT

C
), (28)

and reciprocally

ZnT

C
= 1

2a Ω
nT

C
− 1

2 T−11nT

C
, (29)

where a is a power normalization coefficient (i.e., 1/
√

2, 1/
√

10 and 1/
√

42 for QPSK, 16QAM
and 64QAM constellations, respectively) and 1nT

C
∈ Z

nT

C
is a complex displacement vector (i.e.,

1nT

C
= [1 + j, · · · , 1 + j]T in the complex case).

At this step, a general notation is introduced. Starting from the system equation, it can be
rewritten equivalently in the following form, by de-normalizing, by dividing by two and
subtracting H1nT

C
/2 from both sides:

r

2a
− H1nT

C

2
=

Hx

2a
+

n

2a
− H1nT

C

2
⇔ 1

2

( r

a
− H1nT

C

)
= H

1

2

( x

a
− 1nT

C

)
+

1

2a
n, (30)

where H1nT

C
is a simple matrix-vector product to be done at each channel realization.

By introducing the DSS signal rZ = 1
2

(
r
a − H1nT

C

)
= dss {r} and the re-Scaled, re-Shifted then

Normalized (SSN) signal xZ = 1
2

(
x
a − 1nT

C

)
= ssn {x}, which makes both belonging to HZnT

C

and ZnT

C
, respectively, the expression reads:

rZ = HxZ +
n

2a
. (31)
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This intermediate step allows to define the symbols vector in the reduced transformed
constellation through the relation zZ = T−1xZ ∈ T−1ZnT ⊂ ZnT . Finally, the lattice-reduced
channel and reduced constellation expression can be introduced:

rZ = H̃zZ +
n

2a
. (32)

The LRA detection steps comprise the ẑZ estimation of zZ with respect to rZ and the mapping
of these estimates onto the corresponding symbols belonging to the Ω

nT

C
constellation through

the T matrix. In order to finally obtain the x̂ estimation of x, the DSS x̃Z signal is obtained
following the z̃Z quantization with respect to Z

nT

C
and re-scaled, re-shifted, then normalized

again.
The estimation for the transmit signal is x̂ = Q

Ω
nT
C

{x̃}, as described in the block scheme in

Figure 15 in the case of the LRA-ZF solution, and can be globally rewritten as

x̂ = Q
Ω

nT
C

{
a
(

2TQ
Z

nT
C

{z̃Z} + 1nT

C

)}
, (33)

where Q
Z

nT
C

{·} denotes the quantization operation of the nT-th dimensional integer lattice,

for which per-component quantization is such as Q
Z

nT
C

{x} = [⌊x1⌉ , · · · , ⌊xnT ⌉]T , where ⌊·⌉
denotes the rounding to the nearest integer.

Due to its performance versus complexity, the LA is a widely used reduction algorithm.

r dss {·} (H̃)† Q
Z

nT
C

{·} T ssn {·} Q
Ω

nT
C

{·} x̂
rZ z̃Z ẑZ x̃Z x̃

Fig. 15. LRA-ZF detector block scheme.

This is because SA requires a high additional computations compared to the LA to achieve
a small, even negligible, gain in the BER performance L.G. Barbero, T. Ratnarajah, and C.
Cowan (2008), as depicted in Figure 14. Based on this conjecture, LA will be considered as the
LR technique in the remaining part of the chapter.
Subsequently to the aforementioned points, the SLA computational complexity has been
shown J. Jaldén, D. Seethaler, and G. Matz (2008) to be unbounded through distinguishing
the SQRD pre-processing step and the LA related two conditions. In particular, while the
SQRD offers a polynomial complexity, the key point of the SLA computational complexity
estimation lies in the knowledge of the number of iterations of both conditions. Since
the number of iterations depends on the condition number of the channel matrix, it is
consequently unbounded J. Jaldén, D. Seethaler, and G. Matz (2008), which leads to the
conclusion that the worst-case computational complexity of the LA in the Open Loop
(OL) case is exponential in the number of antennas. Nevertheless, the mean number of
iterations (and consequently the mean total computational complexity) has been shown to
be polynomial J. Jaldén, D. Seethaler, and G. Matz (2008) and, therefore, a thresholded-based
version of the algorithm offers convenient results. That is, the algorithm is terminated when
the number of iterations exceeds a pre-defined number of iterations.

5.7 Simulation results

In the case of LRA-LD, the quantization is performed on z instead of x. The unconstrained
LRA-ZF equalized signal z̃LRA−ZF are denoted (H̃HH̃)−1H̃Hr and T−1x̃ZF, simultaneously D.
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Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004). Consequently, the LRA-ZF
estimate is x̂ = Q

Ω
nT
C

{TQZnT {z̃LRA−ZF}}. Identically, the LRA-MMSE estimate is given

as x̂ = Q
Ω

nT
C

{TQZnT {z̃LRA−MMSE}}, considering the unconstrained LRA-MMSE equalized

signal z̃LRA−MMSE = (H̃HH̃ + σ2THT)−1H̃Hr.
It has been shown D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004) that the
consideration of the MMSE criterion by reducing the extended channel matrix Hext =
[H; σInT ], leading to H̃ext, and the corresponding extended receive vector rext leads to both
an important performance improvement and while reducing the computational complexity
compared to the straightforward solution. In this case, not only the H̃ conditioning is
considered but also the noise amplification, which is particularly of interest in the case of
the LRA-MMSE linear detector. In the sequel, this LR-Aided linear detector is denoted as
LRA-MMSE Extended (LRA-MMSE-Ext) detector.
The imperfect orthogonality of the reduced channel matrix induces the advantageous use of
DFD techniques D. Wübben, R. Böhnke, V. Kühn, and K.-D. Kammeyer (2004). By considering
the QRD outputs of the SLA, namely Q̃ and R̃, the system model rewrites z̃LR−ZF−QRD = Q̃Hr

and reads simultaneously R̃z + Q̃Hn. The DFD procedure can than then be performed in
order to iteratively obtain the ẑ estimate. In analogy with the LRA-LD, the extended system
model can be considered. As a consequence, it leads to the LRA-MMSE-QRD estimate that
can be obtained via rewriting the system model as z̃LR−MMSE−QRD = Q̃H

extrext and reads
simultaneously R̃extz + ñ, where ñ is a noise term that also includes residual interferences.
Figure 16 shows the uncoded BER performance versus Eb/N0 (in dB) of some well-established
LRA-(pseudo) LDs, for a 4 × 4 complex MIMO Rayleigh system, using QPSK modulation (a,
c) and 16QAM (b, d) at each layer. The aforementioned results are compared to some reference
results; namely, ZF, MMSE, ZF-QRD, MMSE-QRD and ML detectors. It has been shown that
the (S)LA-based LRA-LDs achieve the full diversity M. Taherzadeh, A. Mobasher, and A.K.
Khandani (2005) and consequently offer a strong improvement compared to the common
LDs. The advantages in the LRA-(Pseudo)LDs are numerous. First, they constitute efficient
detectors in the sense of the high quality of their hard outputs, namely the ML diversity is
reached within a constant offset, while offering a low overall computational complexity.Also,
by noticing that the LR preprocessing step is independent of the SNR, a promising aspect
concerns the Orthogonal Frequency-Division Multiplexing (OFDM) extension that would
offer a significant computational complexity reduction over a whole OFDM symbol, due to
both the time and coherence band. However, there remains some important drawbacks. In
particular, the aforementioned SNR offset is important in the case of high order modulations,
namely 16-QAM and 64-QAM, despite some aforementioned optimizations. Another point
is the LR algorithm’s sequential nature because of its iterative running, which consequently
limits the possibility of parallel processing. The association of both LR and a neighborhood
study is a promising, although intricate, solution for solving this issue. For a reasonable K,
a dramatic performance loss is observed with classical K-Best detectors in Figure 9. For a
low complexity solution such as LRA-(Pseudo) LDs, a SNR offset is observed in Figure 16.
Consequently, the idea that consists in reducing the SNR offset by exploring a neighborhood
around a correct although suboptimal solution becomes obvious.

6. Lattice reduction-aided sphere decoding

While it seems to be computationally expensive to cascade two NP-hard algorithms, the
promising perspective of combining both the algorithms relies on achieving the ML diversity
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Fig. 16. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel, ZF,
MMSE, LRA-ZF, LRA-MMSE, LRA-MMSE-Ext and ML detectors (a, c), ZF-QRD,
MMSE-QRD, LRA-ZF-QRD, LRA-MMSE-QRD and ML detectors (b, d), QPSK modulations
at each layer (a-b) and 16QAM modulations at each layer (c-d).

through a LRA-(Pseudo)LD and on reducing the observed SNR offset thanks to an additional
neighborhood study. This idea senses the neighborhood size would be significantly reduced
while near-ML results would still be reached.

6.1 Lattice reduction-aided neighborhood study interest

Contrary to LRA-(O)DFD receivers, the application of the LR technique followed by the K-Best
detector is not straightforward. The main problematic lies in the consideration of the possibly
transmit symbols vector in the reduced constellation, namely z. Unfortunately, the set of all
possibly transmit symbols vectors can not be predetermined since it does not only depend
on the employed constellation, but also on the T−1 matrix. Consequently, the number of
children in the tree search and their values are not known in advance. A brute-force solution
to determine the set of all possibly transmit vectors in the reduced constellation, Zall , is to
get first the set of all possibly transmit vectors in the original constellation, Xall , and then to
apply the relation Zall = T−1Xall for each channel realization. Clearly, this possibility is not
feasible since it corresponds to the computational complexity of the ML detector. To avoid this
problem, some feasible solutions, more or less efficient, have been proposed in the literature.

6.2 Summary of the lattice reduction-aided neighbourhood study algorithms

While the first idea of combining both the LR and a neighborhood study has been proposed
by Zhao et al. W. Zhao, and G.B. Giannakis (2006), Qi et al. X.-F. Qi, and K. Holt (2007)
introduced in detail a novel scheme-Namely LRA-SD algorithm-where a particular attention
to neighborhood exploration has been paid. This algorithm has been enhanced by Roger et
al. S. Roger, A. Gonzalez, V. Almenar, and A.M. Vidal (2009) by, among others, associating LR
and K-Best. This offers the advantages of the K-Best concerning its complexity and parallel
nature, and consequently its implementation. The hot topic of the neighborhood study size
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reduction is being widely studied M. Shabany, and P.G. Gulak (2008); S. Roger, A. Gonzalez,
V. Almenar, and A.M. Vidal (2009). In a first time, let us introduce the basic idea that makes
the LR theory appropriate for application in complexity - and latency - limited communication
systems. Note that the normalize-shift-scale steps that have been previously introduced, will
not be addressed again.

6.3 The problem of the reduced neighborhood study

Starting from Equation (32), both the sides of the lattice-reduced channel and reduced
constellation can be left-multiplied by Q̃H , where [Q̃, R̃] = QRD{H̃}. Therefore, a new
relation is obtained:

Q̃HrZ = R̃zZ + ñ, (34)

this makes any SD scheme to be introduced, and eventually a K-Best. At this moment, the
critical point of neighbours generation in the reduced constellation has to be introduced. As
previously presented, the set of possible values in the original constellation is affected by
the matrix T−1. In particular, due to T properties introduced in the LR step, the scaling,
rotating, and reflection operations may induce some missing (non-adjacent) or unbounded
points in the reduced lattice, despite the regularity and bounds of the original constellation.
In presence of noise, some candidates may not map to any legitimate constellation point in the
original constellation. Therefore, it is necessary to take into account this effect by discarding
vectors with one (or more) entries exceeding constellation boundaries. However, the vicinity
of a lattice point in the reduced constellation would be mapped onto the same signal point.
Consequently, a large number of solutions might be discarded, leading to inefficiency of any
additional neighborhood study. Also note that it is not possible to prevent this aspect without
exhaustive search complexity since T−1 applies on the whole ẑ vector while it is treated layer
by layer.
Zhao et al. W. Zhao, and G.B. Giannakis (2006) propose a radius expression in the reduced
lattice from the radius expression in the original constellation through the Cauchy-Schwarz
inequality. This idea leads to an upper bound of the explored neighborhood and accordingly
a reduction in the number of tested candidates. However, this proposition is not enough
to correctly generate a neighborhood because of the classical - and previously introduced -
problematic of any fixed radius.
A zig-zag strategy inside of the radius constraint works better S. Roger, A. Gonzalez, V.
Almenar, and A.M. Vidal (2009); W. Zhao, and G.B. Giannakis (2006). Qi et al. X.-F. Qi, and
K. Holt (2007) propose a predetermined set of displacement [δ1, · · · , δN ] (N > K) generating
a neighborhood around the constrained DFD solution [QZC

{z̃nT}+ δ1, · · · , QZC
{z̃nT}+ δN ].

The N neighbors are ordered according to their norms, by considering the current layer
similarly to the SE technique, and the K candidates with the least metrics are stored. The
problem of this technique lies in the number of candidates that has to be unbounded, and
consequently set to a very large number of candidates N for the sake of feasibility. Roger
et al. S. Roger, A. Gonzalez, V. Almenar, and A.M. Vidal (2009) proposed to replace the
neighborhood generation by a zig-zag strategy around the constrained DFD solution with
boundaries control constraints. By denoting boundaries in the original DSS constellation
xZ, min and xZ, max, the reduced constellation boundaries can be obtained through the relation

zZ = T−1xZ that implies zmax, l = max{T−1
l, : xZ} for a given layer l. The exact solution is

given in S. Roger, A. Gonzalez, V. Almenar, and A.M. Vidal (2009) for the real case and can be
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extended to the complex case:

zmax, l = xZ, max ∑
j∈Pl

T−1
l, j + xZ, min ∑

j∈Nl

T−1
l, j , zmin, l = xZ, min ∑

j∈Pl

T−1
l, j + xZ, max ∑

j∈Nl

T−1
l, j ,

(35)
where Pl and Nl stands for the set of indices j corresponding to positive and negative entries
(l, j) of T−1, respectively. By denoting the latter algorithm as the LRA-KBest-Candidate
Limitation (LRA-KBest-CL), note that this solution is exact and does not induce any
performance degradation.
The main advantages in the LRA-KBest are highlighted. While it has been shown that the
LRA-KBest achieves the ML performance for a reasonable K, even for 16QAM and 64QAM
constellations, as depicted in Figure 17, the main favorable aspect lies in the neighborhood
study size that is independent of the constellation order. So the SD complexity has been
reduced though the LR-Aid and would be feasible, in particular for 16QAM and 64QAM
constellations that are required in the 3GPP LTE-A norm 3GPP (2009). Also, such a detector
is less sensitive to ill-conditioned channel matrices due to the LR step. However, the detector
offers limited benefits with the widely used QPSK modulations, due to nearby lattice points
elimination during the quantization step, and the infinite lattice problematic in the reduced
domain constellation search has not been solved convincingly and is up to now an active field
of search.
Let us introduce the particular case of Zhang et al. W. Zhang, and X. Ma (2007a;b) that proposes
to combine both LR and a neighborhood study in the original constellation.

6.4 A particular case

In order to reduce the SNR offset by avoiding the problematic neighborhood study in
the reduced constellation, a by-solution has been provided W. Zhang, and X. Ma (2007a)
based on the unconstrained LRA-ZF result. The idea here was to provide a soft-decision
LRA-ZF detector by generating a list of solutions. This way, Log-Likelihood Ratios
(LLR) can be obtained through the classical max-log approximation, if both hypothesis
and counter-hypothesis have been caught, or through-among others-a LLR clipping B.M.
Hochwald, and S. ten Brink (2003); D.L. Milliner, E. Zimmermann, J.R. Barry and G. Fettweis
(2008).
The idea introduced by Zhang et al. corresponds in reality to a SD-like technique, allowing to
provide a neighborhood study around the unconstrained LRA-ZF solution: rLRA−ZF = H̃†r.
The list of candidates, that corresponds to the neighborhood in the reduced constellation, can
be defined using the following relation:

Lz = {z̃ : ‖z̃ − rLRA−ZF‖2
< dz}, (36)

where z̃ is a hypothetical value for z and
√

dz is the sphere constraint. However, a direct
estimation of x̂ may be obtained by left-multiplying by correct lines of T−1 at each detected
symbol:

Lx = {x̃ : ‖T−1x̃ − rLRA−ZF‖2
< dz}, (37)

where x̃ is a hypothetical value for x and by noting that the sphere constraint remains
unchanged.
The problem introduced by such a technique is how to obtain x̃ layer by layer, since it would
lead to non-existing symbols. A possible solution is the introduction of the QRD of T−1 in
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Fig. 17. Uncoded BER as a function of Eb/N0, Complex Rayleigh 4 × 4 MIMO channel,
QRD-based 2/4(8)-Best, SQRD-based 2/4(8)-Best, LRA-ZF 2/4(8)-FPA, LRA-2/4(8)-Best-CL
and ML detectors, QPSK modulations at each layer (a-c) and 16QAM modulations at each
layer (d-f).

order to make the current detected symbol within the symbols vector independent of the
remaining to-detect symbols. This idea leads to the following expression:

x̂ = argmin
x∈Ω

nT
C

∥∥∥QH
T−1 rLRA−ZF − RT−1 x

∥∥∥
2

< dz, (38)

where [QT−1 , RT−1 ] = QRD{T−1}. Due to the upper triangular form of RT−1 , x̂ can be
detected layer by layer through the K-Best scheme such as the radius constraint can be
eluded. Consequently, the problematic aspects of the reduced domain constellation study are
avoided, and the neighborhood study is provided at the cheap price of an additional QRD. By
denoting the latter algorithm as the LRA-ZF Fixed Point Algorithm (LRA-ZF-FPA), note that
the problem of this technique lies in the Euclidean Distance expression which is not equivalent
to the ML equation. The technique only aims at generating a neighborhood study for the
Soft-Decision extension. There will be no significant additional performance improvement for
larger K, as depicted in Figure 17.

6.5 Simulation results

In Figure 17 and in the case of a neighborhood study in the reduced domain, near-ML
performance is reached for small K values, in both QPSK and 16QAM cases.
It is obvious to the reader that K is independent of the constellation order, which can be
demonstrated. This aspect is essential for the OFDM extension since any SD-like detector has
to be fully processed for each to-be-estimated symbols vector. Also, the solution offered by
LRA-ZF-FPA is interesting in the sense that it allows to make profit of the LRA benefit with
an additional neighborhood study in the original constellation. However, it does not reach the
ML performance because of the non-equivalence of the metrics computation even in the case
of a large K.
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7. Conclusion

In this chapter, we have presented an up-to-date review, as well as several prominent
contributions, of the detection problematic in MIMO-SM systems. It has been shown
that, theoretically, such schemes linearly increase the channel capacity. However, in
practice, achieving such increase in the system capacity depends, among other factors, on
the employed receiver design and particularly on the de-multiplexing algorithms, a.k.a.
detection techniques. In the literature, several detection techniques that differ in their
employed strategies have been proposed. This chapter has been devoted to analyze the
structures of those algorithms. In addition to the achieved performance, we pay a great
attention in our analysis to the computational complexities since these algorithms are
candidates for implementation in both latency and power-limited communication systems.
The linear detectors have been introduced and their low performances have been outlined
despite of their attracting low computational complexities. DFD techniques improve the
performance compared to the linear detectors. However, they might require remarkably
higher computations, while still being far from achieving the optimal performance, even
with ordering. Tree-search detection techniques, including SD, QRD-M, and FSD, achieve
the optimum performance. However, FSD and QRD-M are more favorable due to their
fixed and realizable computational complexities. An attractive pre-detection process, referred
to as lattice-basis reduction, can be considered in order to apply any detector through a
close-to-orthogonal channel matrix. As a result, a low complexity detection technique, such
as linear detectors, can achieve the optimum diversity order. In this chapter, we followed
the lattice reduction technique with the K-best algorithm with low K values, where the
optimum performance is achieved. In conclusion, in this chapter, we surveyed the up-to-date
advancements in the signal detection field, and we set the criteria over which detection
algorithms can be evaluated. Moreover, we set a clear path for future research via introducing
several recently proposed detection methodologies that require further studies to be ready for
real-time applications.
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