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Optoelectronic Chaotic Circuits 

M.P. Hanias, H.E. Nistazakis and G.S. Tombras 
Department of Electronics, Computers, Telecommunications and Control,  

Faculty of Physics, National and Kapodistrian University of Athens, Athens, 15784 
Greece 

1. Introduction 

Deterministic chaotic systems exhibit great efficiency, since they react sensitively to small 
perturbations and thus it is feasible to be controlled and produce signals with small 
amounts of energy. Moreover, these systems, have the potential for great information-
bearing capacity, since the complex signals and the variety of the produced states offers 
more possibilities for compact conventional encoding of information signals. One of the 
major application of deterministic chaotic systems is the field of optical communications 
(Argyris et al., 2005). The significant advantage chaotic optoelectronic systems is that there 
are not the restrictions of the standard spectra of sinusoidal frequency bands and thus, the 
number of available communication channels could be larger than the ones of linear systems 
and the only limit by the ability of receivers to distinguish between different chaotic states 
(Rizomiliotis et al., 2010). Due to the significant benefits which can offer this scientific area 
the research direction of dynamical chaos is gradually moving towards practical 
applications and thus, there is a growing interest for chaotic signal generation sources. In 
this frame, various circuits have been proposed, among which active chaotic oscillators are 
preferably considered due to their relative simplicity and energy efficiency. Such a circuit 
may be externally triggered, i.e. externally driven to chaotic oscillation and it can typically 
consist of only one active and a few passive components (Argyris et al., 2010). In this 
respect, it is reasonable to expect that optoelectronic elements, such as a light emitting diode 
(LED) and optocoupler devices, will provide for the nonlinear characteristics required 
towards chaos. 
The optoelectronic circuits of the chaotic oscillators must be as simply as they can so in 

order to be possible to synchronize them. Chaos, in this case, is created by the way that the 

components of the circuits are connected in order to operate in a non linear manner and not 

by the specific characteristic that each item has (Romeira et al., 2009). The advantage of such 

an operation is that in this way we avoid the inherent and unpredictable instabilities in the 

operation of optical devices (i.e. impurities concentration, rate of carrier recombination, 

crystal defects, e.t.c.). 

In this chapter, we present simple chaotic circuits that can be utilized as chaotic signal 

generation, sources, main transmitters, as well as nonlinear observer-based main receivers 

for chaos based communication systems. These circuits are classified as Resistor-Inductor-

LED optoelectronic chaotic circuits, single optocoupling device and optoelectronic 

Simulation of the Duffing-Holmes Equation.  
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The operational characteristics of these circuits are studied, by simulations, using circuit 

simulation software (e.g. Multisim). Following that, we investigate the influence of various 

circuit parameters to the complexity of the so generated strange attractors. From the 

obtained -calculated and recorded- time series, we estimate, with non-linear analysis, the 

invariant parameters, as correlation, embedding dimension, Kolmogorov entropy and 

Lyapunov exponents, of the corresponding strange attractors as function of the control 

parameters. 

2. RL-LED optoelectronic circuits 

2.1 Circuit’s description 

A non autonomous chaotic circuit driven RL-LED circuit (Hanias et al., 2008) is shown in 

Figure 1. It consists of a series connection of an ac-voltage source, a linear resistor R1, a linear 

inductor L1 and a typical LED. The value of R1 100 Ω and inside the circuits has been placed 

in series with the LED. In the circuit’s input has been applied a sinusoidal voltage with 

amplitude V1 as applied through an inductor L1 with value 47mH. The simulated circuit 

operation is monitored by checking the voltage value across resistor R1. In Figure 2 is shown 

the, obtained by the simulation, chaotic time series at the output for input signal’s amplitude 

V1,rms = 7V and frequency f=10 KHz. 
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Fig. 1. RL-LED chaotic circuit in Multisim circuits simulation software 
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Fig. 2. Chaotic signal V=V(t) across resistor R1 for the RL-LED circuit of Figure 1 

2.2 Non-linear analysis 

Next, we proceed to the analysis of the obtained chaotic time series following the method 

proposed by Grassberger and Procaccia (Grassberger & Procaccia, 1983) and successfully 

applied in similar cases (Hanias & Anagnostopoulos, 1993). Additionally, according the 

Takens theory (Takens, 1981), the measured time series can be used to reconstruct the 

original phase space. At first, we calculate the correlation integral C(r) for the simulated 

output signal, for lim(r)=0 and lim(N)=∞ (Ν represents the number of the corresponding 

time series points), as defined by Kantz and Schreiber (Kanz & Schreiber, 1997): 

 ( )
=
= +

= − −∑
f f

1,

1
( )

N

l j
lpairs
j l W

C r H r X X
N

 (1) 

where W is the Theiler window (Kanz and Schreiber, 1997), Η is the Heaviside function, and 

Npairs is given as: 
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with m being the embedding dimension. It is clear that the summation in (1) counts the 

number of pairs ( )f f
,l jX X  for which the distance, i.e. the Euclidean norm −

f f
l jX X  is less 

than r in an m dimensional Euclidean space. Here, the number of the experimental points is 

N=10896, while, considering the m dimensional space, each vector 
f

lX  will be given as, 

 ( ) ( ) ( ){ }τ τ τ= + + … + −
f

, , 2 , , ( ( 1) )l i i i iX V t V t V t V t m  (3) 

and represents a point of the m dimensional phase space in which the attractor is embedded 

each time. In equation (3), Ǖ is the delay time factor determined by the first minimum of the 

mutual information function I(Ǖ) and defined as Ǖ=`Ʀt with `=1,2,…,N where Ʀt=6.25μs is 

the sample rate. As shown in Figure 3, in our case, the mutual information function I(Ǖ) 
exhibits a local minimum at Ǖ=5 time steps and thus we consider this value as the optimum 

one. 
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Fig. 3. Average mutual information I(Ǖ) versus delay time Ǖ 

Next, we investigate the parameter W which is the Theiler window. As Theiler pointed out 

if temporally correlated points are not neglected, spuriously low dimension estimate may be 
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obtained (Stelter & Pfingsten, 1991). However, since there is no concrete rule of how to 

choose W, it may take the first zero-crossing value of the correlation function CR(Ǖ) (Kanz & 

Schreiber, 1997), as suggested by Kantz and Schreiber (Kanz & Schreiber, 1997). This means 

that we can use the correlation length as a starting value for W. As shown in Figure 4, the 

correlation length is equal to 5 and thus, W= 5 time lags. Figure 4 also depicts a strong 

correlation between the data indicating the way past states affect the system’s current state. 

Hence, we can use these values for phase space reconstruction. 
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Fig. 4. Correlation function CR(Ǖ) versus delay time Ǖ 

It has been proven (Grassberger & Procaccia, 1983) that if the attractor is a strange one, the 

correlation integral will be proportional to rν, where v is a measure of the attractor’s 

dimension called correlation dimension. By definition, the correlation integral C(r) is the 

limit of correlation sum of equation (1) and is numerically calculated as a function of r, 

from equation (1), for embedding dimensions m=1,...,10. Figure 5, depicts the relation 

between the logarithms of correlation integral C(r) and r for different embedding 

dimensions m. As seen in Figure 6, the slopes v of the lower linear parts of these log-log 

curves provide all necessary information for characterizing the attractor. Then, in Figure 

7, the corresponding average slopes v are given as functions of the embedding dimension 

m, indicating that for high values of m, v tends to saturate at the non integer value of 

v=2.23. For this value, the minimum embedding dimension can be 3 (Kanz and Schreiber, 

1997) and thus the minimum embedding dimension of the attractor for one to one 

embedding will be equal to 3. 
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Fig. 5. Relation between log(C(r)) and log(r) for different embedding dimensions m 
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Fig. 6. The corresponding slopes and scaling region of Figure 5 
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Fig. 7. Correlation dimension v versus embedding dimension m 
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Fig. 8. Kolmogorov entropy versus log(r) for embedding dimensions m=2,…10 
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Following the above, in order to get accurate measurements of the strength of the chaos 

present in the oscillations of the simulated output signal, we introduce the Kolmogorov 

entropy. According to Kanz and Schreiber (Kanz & Schreiber, 1997), the method followed so 

far, also leads to an estimation of the Kolmogorov entropy, i.e. the correlation integral C(r) 

scales with the embedding dimension m, since: 

 τ− 2( ) ~ dm KC r e  (4) 

where K2 represents a lower bound to the Kolomogorov entropy. In figure 8 is shown the 

relation between K2 and the logarithm of r for different embedding dimensions m. It is clear 

from figure 8 that around K2=0.52 bit/s the trajectories appear a “plateau”, a red line marks 

the region, which indicates that there is a steady loose of information at a constant rate given 

by K2. 

3. Single chaotic optocoupling device 

3.1 Description of the circuit 

There is a growing interest for non-autonomous chaotic signal generation circuits. Such a 

circuit may be externally driven and it can typically consist of only one active and a few 

passive components. Here, we consider a particularly simple circuit based on a single 

optocoupling device. Its complete layout is shown in figure 9 and it consists of a 4N25 

optocoupler, in a typical common emitter configuration, along with an emitter degeneration 

resistor R2=3.3KΩ, a collector resistor R=33Ω, and a DC power supply VSS=12V. The circuit 

is driven by an input sinusoidal voltage ǖIN(t) with amplitude Vin=13V and frequency f=800 

Hz, which is applied through an inductor L=1mH connected in series to the driver LED and 

a resistor R1, the value of which, as we will see, plays a crucial role in the circuit’s operation 

and the generation of chaotic voltage time series across R1 and R2. In this respect, we use the 

MultiSim circuit simulation software in order to examine the complete circuit operation by 

monitoring the voltages ǖD(t) and ǖE(t) across R1 and R2, respectively. 

 

 

Fig. 9. The optocoupling circuit and its MultiSim simulation environment 
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Here, we must note that the considered circuit layout resembles the resistor-inductor-diode 

(RLD) and the resistor-inductor-transistor (RLT) circuits, whose chaotic operation details 

have been presented and discussed in (Hanias & Tombras, 2009). More specifically, 

following the conclusions derived in (Hanias & Tombras, 2009), we use various values for R1 

in order to achieve chaotic operation in both, if it is possible, the input LED loop and the 

emitter output loop, i.e. across R1 and R2, respectively. Then, as mentioned above, the 

simulated circuit operation is monitored by checking the voltages ǖD(t), across R1, and ǖE(t), 

across R2, since both of these voltage signals depend on the chosen value of the LED resistor 

RD.  

3.2 Simulation results 

For the considered circuit operation simulation, we use ǖIN(t)=Vinsin(2πft) with Vin=13 Volts 
and f=800 Hz. It is known that, chaotic operation may be generated under various operation 

conditions and parameters’ values. In this chapter, we choose to keep Vin and f constant, 
while varying the value of R1. Our goal is to first examine whether chaos can be achieve for 
a specific R1 value and then to examine whether variation of that value of R1 may 
strengthen, weaken, or even destroy the achieved chaos, by returning the circuit to its 

typically expected operation.  
Under these conditions and after some try-and-error selections for the value of R1, we 

conclude that if R1 is set equal to 5Ω then the circuit will exhibit a fully chaotic operation, 

meaning that both voltage signals ǖD(t) across R1, and ǖƧ(t) across R2, are chaotic. This is 

readily shown in figure 10. Then, using this as starting point, we see that an increase of R1 

weakens the already obtained chaotic signals and this continues up to a value of R1=500Ω, 

for which a weak chaotic signal can still be seen across R1, but not across R2. This is shown in 

figure 11. Finally, further increase of R1 leads to the total destruction of the remaining 

chaotic signal across R1. This is shown in figure 12 where, for R1=1KΩ, both voltage signals 

ǖD(t) and ǖE(t) are not chaotic. 

 

  
 

 (a) (b) 

Fig. 10. For R1=5Ω: both voltage signals, (a) ǖD(t) across R1 and (b) ǖE(t) across R2, are chaotic 
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 (a)  (b) 

Fig. 11. For R1=500Ω, (a) ǖD(t) is a weak chaotic signal across R1 and (b) ǖE(t), across R2, is 
non chaotic 

 

 

  
 

 (a)  (b) 

Fig. 12. For R1=1KΩ, both voltage signals (a) ǖD(t) across R1 and (b) ǖE(t) across R2, are non 
chaotic 

3.3 Nonlinear analysis 

In this section, we proceed to the analysis of the obtained chaotic signals time series when 

R1=5Ω. Using our data, with value of R1=5Ω we construct a vector 
f

iX , i=1..N, where N=5000 

data values in the m dimensional phase space given in the following form: 
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 ( ){ }ι τ τ τυ υ υ υ− − − −= …
f

2 1
, , ,i i i i m

X  (5) 

This vector, represents a point of the m dimensional phase space in which the attractor is 
embedded each time, where Ǖ is the time delay Ǖ=iƦt and Ʀt=0.1μs is the sample rate. The 
element ǖi represents a value of the examined scalar time series in time, i.e. here a voltage 
value ǖ*, across R1 or R2, corresponds to the i-th component of the time series. The use of this 
method reduces phase space reconstruction to a problem of proper determination of suitable 
values of m and Ǖ. The choice of these values is not always simple, especially when there is 
no additional information about the original system and the only source of data is a simple 
sequence of scalar values as acquired from that system.  
The dimension, where a time delay reconstruction of the phase space provides for the 
necessary number of coordinates to unfold the dynamics from overlaps on itself caused by 
projection is called embedding dimension m. Using the average mutual information, we can 
then obtain Ǖ as being less associated with a linear point of view, and thus, more suitable for 
dealing with nonlinear problems. The average mutual information I(Ǖ), expresses the 
amount of information (in bits), which may be extracted from the value in time ǖi about the 
value in time ǖi+Ǖ. As optimum Ǖ, suitable for the phase space reconstruction, the position of 
the first minimum of I(τ) is usually used. In this case Ǖ =77 time steps for chaotic signal 
across emitter resistor R2 and Ǖ=38 steps for chaotic signal across LED resistor R1 as shown 
in figure 13.  
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Fig. 13. Mutual information I versus time delay Ǖ for both chaotic signals across (a) R1=5Ω 
and (b) R2 

Next, we use the method of False Nearest Neighbors (FNN), [Hanias et al., 2010], in order to 
estimate the minimum embedding dimension. This method is based on the fact that when 
the embedding dimension is too small, the trajectory in the phase space will cross itself. 
Hence, if we are in position to detect these crossings, we may decide whether the used m is 
large enough for correct reconstruction of the original phase space [i.e. when no 
intersections occur] or not. If, however, intersections are present for a given m, then the 
embedding dimension must be considered too small and it must be increased by one at 
least. Then, again, we test the eventual presence of self-crossings. 
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The practical realization of the described method is based on testing the neighboring points 
in the m-dimensional phase space. Typically, we take a certain amount of points in the phase 
space and find the nearest neighbor to each of them. Then we compute distances for all 

these pairs and also their distances in (m+1)-dimensional phase space. The rate of these 
distances is given by 

 
( ) ( )

( ) ( )
+ − +

=
−

f f

f f
( )

( )

1 1i n i

i n i

X m X m
P

X m X m
 (6) 

where ( )
f

iX m  represents the reconstructed vector as described in (1), belonging to the i-th 

point in the m-dimensional phase space and index n(i) denotes the nearest neighbor to the i-

th point. If P is greater than some value Pmax, we call this pair of points false nearest 

neighbors (i.e. neighbors, which arise from trajectory self-intersection and not from the 

closeness in the original phase space. The dimension m will then be found when the false 

nearest neighbors percentage falls below some limit, typically set to 1%, [Kennel et al.,1992]. 

Thus, by choosing Pmax=10, we finally calculate the quantity m. The so obtained results are 

shown in figure 14 indicating that the application of the FNN method yields a minimum 

embedding equal to value 5 for both chaotic signals. 
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Fig. 14. False nearest neighbor ratio as a function of the embedding dimension. The false 
nearest neighbors become negligible after m = 5 for the chaotic signals (a) across LED 
resistor R1=5Ω and (b) across emitter resistor R2 

4. Optoelectronic simulation of the Duffing-Holmes equation 

4.1 Description of the circuit 

It is well known that the extremely simple analogue electrical circuit dedicated for 

simulation the Duffing-Holmes (DH) equation (Holmes, 1979). Our approach is to modify 

the circuit E (Tamaseviciute et al., 2008), by adding a LED component and finding the 

various operation conditions and parameters’ values that enhanced or not the chaotic 
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operation of LED component. The suggested circuit is shown in figure 15. It is an externally 

driven damped RLC oscillator with all elements linear. The nonlinearity is involved by the 

positive feedback loop consisting of the resistor R3 and two diodes D1 and D2. The 

operational amplifier OA plays the role of both, the buffer for the external sinusoidal force 

and the amplifying stage for the positive nonlinear feedback. The electrical circuit resembles 

the Young-Silva oscillator (Lai et al., 2005), but is essentially simpler. It includes a single 

operational amplifier, two diodes, and four resistors only, in contrast to the Young-Silva 

circuit containing four operational amplifiers, four diodes, and nine resistors 

 

 

Fig. 15. The considered optoelectronic Duffing-Holmes circuit and its MultiSim simulation 
environment 

The circuit in figure 15 has been simulated using the “Electronics Workbench Professional” 

package which is based on the SPICE software. The following circuit element values have 

been used: L=20mH, C=470nF, R1=6.34KΩ, R2=9KΩ, R3=9KΩ, R4=20Ω. The operational 

amplifier OA is virtual one but the circuit works the same way with a LM741 type chip, the 

diodes D1 and D2 are general-purpose 1N4148 or similar type silicon devices. Simulation 

results are shown in figure 16 and figures 17–18. The circuit is driven by an input sinusoidal 

voltage with amplitude Vin=200mV and frequency f=1.5kHz 

4.2 Simulation results  

It is known that, chaotic operation may be generated under various operation conditions 

and parameters’ values. In this work, we keep Vin and f constant, while varying the value of 

R1. Our aim is to first examine whether chaos can be achieve for a specific R1 value and then 

to examine whether variation of that value R1 may strengthen, weaken, or even destroy the 

achieved chaos, by returning the circuit to its typically expected operation. Under these 

conditions and after some try-and-error selections for the value of R1, we conclude that if R1 

is set equal to 5.76KΩ then the circuit will exhibit a periodic operation. This is readily shown 

in figure 16. Then, using this as a starting point, we see that an increase of R1 the circuit will 

exhibit a fully chaotic operation. This is shown in figure 17 for R=6KΩ and in figure 18 for 

R=6.81KΩ. 
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Fig. 16. For R1=5.76KΩ the voltage signal and LED response are periodic 

 

 

 

Fig. 17. For R1=6KΩ, the voltage signal and LED response are chaotic 
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Fig. 18. For R1=6.81KΩ the voltage signal and LED response are chaotic 

4.3 Nonlinear analysis 
We apply the analysis as we did in section 2.2. For R1=6.8 kΩ we examine the signal across 
the LED while the LED is in operation mode The signal is shown in figure 18. We record 
N=13454 points with sample rate Ʀt=6.66μs. As shown in figure 19, the mutual information 
function exhibits a local minimum at Ǖ=26 time steps and, thus, we shall consider Ǖ=26 as the 
optimum delay time. 
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Fig. 19. Average Mutual Information I(Ǖ) versus time delay Ǖ 
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Fig. 20. Correlation function CR(Ǖ) versus time delay τ 
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Fig. 21. Relation between ln(C(r)) and ln(r) for different embedding dimensions m 

Next we calculate the autocorrelation function as we did in section 2.2 As shown in figure 
20, the first zero crossing is at Ǖ=107, then the correlation length is equal to 
 107 and thus, W= 107 time lags. Hence, we can use these values for phase space 
reconstruction. 
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Fig. 22. Correlation dimension v versus embedding dimension m 
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Fig. 23. Kolmogorov entropy versus ln(r) for embedding dimensions m=2,…10 

Figure 21 depicts the relation between the natural logarithms of correlation integral C(r) and 
r for different embedding dimensions m. In figure 22, the corresponding average slopes v 
are given as a function of the embedding dimension m indicating that for high values of m, v 
tends to saturate at the non integer value of v=2.9. For this value of v, the minimum 
embedding dimension can be mmin=3 and thus, the minimum embedding dimension of the 
attractor for one to one embedding will be equal to 3. 
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The Kolmogorov entropy is calculates as in section 2.2. Figure 23 shows the relation between 
K2 and the logarithm of r for different embedding dimensions m, while the plateau, indicates 
that K2=0.281 bit/s, meaning that there is a steady loose of information at a constant rate 
given by K2. 
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Fig. 24. Estimation of the largest Lyapunov exponent after the Rosenstein method. The 
portion of the curve used for the least-squares line fits the starting point up to the saturation 
point. The straight line, represents the resulting least-squares line fit with slope of 0.00101 
for m=3 

In order to determine the strength of the observed chaotic behaviour, we calculate the 
largest Lyapunov exponent, which measures the divergence of nearby trajectories. As the 
system evolves, the sum of a series of attractor point values (in each dimension) will either 
converge or diverge. Lyapunov exponents measure this convergence/divergence rate in 
each dimension and a chaotic system will exhibit trajectory divergence in at least one 
dimension. Thus, a positive Lyapunov exponent is a strong indicator of chaos (Rosenstein 
et.al., 1993). The method used in calculating the largest Lyapunov exponent is based on 
averaging the local divergence rates or the local Lyapunov exponents. Rosenstein in 
(Rosenstein et.al., 1993) proposed a new method to calculate the largest Lyapunov exponent 
from an observed times series. Hence, after reconstructing the phase space using suitable 
values for Ǖ and m, we can compute the logarithm of the average distance of a point Xn0 in 
phase space with respect to all points Xn in its r-neighbourhood. This is repeated for N 
number of points along the orbit so as to calculate an average quantity S known as the 
stretching factor and given by 

 
=

⎡ ⎤
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⎣ ⎦

∑ ∑
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0
0 1

1 1
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N

n n
n X

S ln X X
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Where 
0nXu  is the number of neighbours found around point Xn0. In the case of chaotic 

dynamics, a plot of the stretching factor S against the number of points N will yield a curve 

with a linear increase at the beginning, followed by an almost flat region. The slope of the 

linear portion of the first part of this curve gives an estimate of the largest Lyapunov 

exponent. The value of r is taken as the data interval is divided by 200 and again, in order to 

avoid temporal correlations we use the Theiler window of 107. The magnitude ln(S) versus 

the number of points N shows the expected linear increase and then after a flat region. This 

is clearly shown in figure 9, where the slope value that corresponds to the largest Lyapunov 

exponent is obtained after the least-squares line fit and is found to be equal to λmax=0.0101 

for m=3. Moreover, the dependence of λmax on the embedding dimension m is shown in 

figure 24. 

5. Conclusion 

From the previous analysis, it is clear, that simple optoelectronic circuits can easily 

constructed and also be easily controlled via a control parameter as is the value of Resistor 

or the frequency of voltage source. For RL -LED circuits the result is that the scaling 

behaviour of the correlation integral and the saturation of correlation dimension ν with 

increasing embedding dimensions m reflect low dimensionality. The strange attractor that 

governs the phenomenon has a correlation dimension v=2.23 stretching and folding in a 3 

dimension phase space. Thus, the number of degrees of freedom of the whole domain 

structure is limited at 3 and these results in the low value of the correlation dimension. The 

LED exposes chaotic behaviour even if it works in its operation point. In this work, the 

obtained simulation results indicate that the proposed circuit can be used to generate chaotic 

signal, in a light emitting manner, useful in code and decode applications. The 

Optoelectronic simulation of the Duffing-Holmes Equation is governed by a strange 

attractor that stretching and folding in a 3 dimension phase space too. 

The higher value of its correlation dimension 2.9 instead of 2.23 of RL -LED circuit shows 

that this circuit is better for secure transmission of information using chaos while the loss of 

information is K2=0.281bit/s instead of 0.52bit/s of RL -LED circuit. 
For the optocoupler circuit the chaos is generated easily. It is clear that this simple externally 
triggered optoelectronic circuit can be used in order first to generate chaotic voltage signals 
and then to control the obtained chaotic signals by varying specific circuit parameters, for 
example, the value of a specific component. In the considered optoelectronic circuit, the 
crucial parameter is the input loop resistor R1, the value of which leads to the generation of a 
chaotic voltage signal ǖD(t) across the resistor R1. However, this chaotic voltage reflects a 
chaotic current through R1 and thus, through the optocoupler’s input driving LED. Hence, 
the so driven phototransistor will generate a chaotic voltage signal ǖE(t) across emitter 
resistor R2, according to the strength of the driving chaotic light signal as controlled by the 
value of the input loop resistor R1. 
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