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Sliding Mode Control of Second Order  
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Technical University of Łódź, Institute of Automatic Control 

18/22 Stefanowskiego St. 90-924 Łódź, 
Poland 

1. Introduction  

In recent years much of the research in the area of control theory focused on the design of 
discontinuous feedback which switches the structure of the system according to the 
evolution of its state vector. This control idea may be illustrated by the following example. 
Example 1. Let us consider the second order system 

 1 2

2 2 i

x = x

x = x + u i = 1,2 ,

$
$

 (1) 

where x1(t) and x2(t) denote the system state variables, with the following two feedback 
control laws 

 ( )1 1 1 2 2 1u = f x ,x = -x - x  (2) 

 ( )2 2 1 2 2 1u = f x ,x = -x - 4x  (3) 

The performance of system (1) controlled according to (2) is shown in Fig. 1, and Fig. 2 
presents the behaviour of the same system with feedback control (3). It can be clearly seen 
from those two figures that each of the feedback control laws (2) and (3) ensures the system 
stability only in the sense of Lyapunov. 
However, if the following switching strategy is applied 

 
{ }
{ }

1 2

1 2

1 for min x ,x < 0
i =

2 for min x ,x 0

⎧⎪
⎨

≥⎪⎩
 (4) 

then the system becomes asymptotically stable. This is illustrated in Fig. 3. Moreover, it is 
worth to point out that system (1) with the same feedback control laws may exhibit 
completely different behaviour (and even become unstable). For example, if the switching 
strategy (4) is modified as 

 
{ }
{ }

1 2

1 2

1 for min x ,x 0
i =

2 for min x ,x < 0

⎧ ≥⎪
⎨
⎪⎩

 (5) 
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then the system output increases to infinity. The system dynamic behaviour, in this 
situation, is illustrated in Fig. 4. 
 

 

Fig. 1. Phase portrait of system (1) with controller (2). 

 

 

Fig. 2. Phase portrait of system (1) with controller (3). 

This example presents the concept of variable structure control (VSC) and stresses that the 
system dynamics in VSC is determined not only by the applied feedback controllers but 
also, to a large extent, by the adopted switching strategy. VSC is inherently a nonlinear 
technique and as such, it offers a variety of advantages which cannot be achieved using 
conventional linear controllers. Our next example shows one of those favourable features – 
namely it demonstrates that VSC may enable finite time error convergence.  
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Fig. 3. Phase portrait of system (1) when switching strategy (4) is applied. 
 

 

Fig. 4. Phase portrait of system (1) when switching strategy (5) is applied. 

Example 2. In this example, again we consider system (1), however now we apply the 
following controller 

 ( ) ( )2 1 2u = -x - a sgn x - b sgn x  (6) 

where a > b > 0. Closer analysis of the behaviour of system (1) with control law (6) 
demonstrates that, in this example, the system error converges to zero in finite time which 
can be expressed as 

 
10

a 1 1
T = 2 x +

b a - b a + b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (7) 
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where x10 and x20 = 0 represent initial conditions of system (1). Even though the error 
converges to zero in finite time, the number of oscillations in the system tends to infinity, 
with the period of the oscillations decreasing to zero. This is illustrated in Figs. 5 and 6. In 
the simulation example presented in the figures, the following parameters are used a = 7, 
b = 3, x10 = 20 and x20 = 0. Consequently, the system error is nullified at the time instant 
T = 12.045 and remains equal to zero for any time greater than T. Clearly these favourable 
properties are achieved using finite control signal. This controller, due to the way the phase 
trajectory – shown in Fig. 5 – is drawn, is usually called “twisting controller”. It also serves 
as a good, simple example of the second order sliding mode controllers. 
The two examples presented up to now demonstrate the principal properties of VSC 
systems. However, the main advantage of the systems is obtained when the controlled plant 
exhibits the sliding motion (DeCarlo et al., 1988;   Hung et al., 1993;  Slotine & Li, 1991; 
Utkin, 1977). The idea of sliding mode control (SMC) is to employ different feedback 
controllers acting on the opposite sides of a predetermined surface in the system state space. 
Each of those controllers pushes the system representative point (RP) towards the surface, 
so that the RP approaches the surface, and once it hits the surface for the first time it stays on 
it ever after. The resulting motion of the system is restricted to the surface, which 
graphically can be interpreted as “sliding” of the system RP along the surface. This idea is 
illustrated by the following example. 
Example 3. Let us consider another second order plant 

 
( )

1 2

2 1

x = x

x = b cos m x + u b < 1,

$
$

 (8) 

where b and m are possibly unknown constants. We select the following line in the state 
space 

 2 1s = x + cx = 0  (9) 

(c = const.) and apply the controller 

 ( )2u = - c x - sgn s  (10) 

In this equation sgn(.) function represents the sign of its argument, i.e. sgn(s < 0) = –1 and 
sgn(s > 0) = +1. With this controller the system representative point moves towards line (9) 
always when it does not belong to the line. Then, once it hits the line, the controller switches 
the plant input (in the ideal case) with infinite frequency. Therefore, line (9) is called the 
switching line. Furthermore, since after reaching the line, the system RP slides along it, then 
the line is also called the sliding line. This example is illustrated in Fig. 7. The system 
parameters used in the presented simulation are c = 0.5, b = 0.75, m = 10 and the simulation 
is performed for the following initial conditions x10 = 5 and x20 = 1. Notice that when the 
plant remains in the sliding mode, its dynamics is completely determined by the switching 
line (or in general the switching hypersurface) parameters. This implies that neither model 
uncertainty nor matched external disturbance affects the plant dynamics (Draženović, 1969) 
which is a highly desirable system property. This property can also be justified 
geometrically, if one notices that in our example the slope of line (9) fully governs the plant 
motion in the sliding mode. Therefore, in SMC systems we usually make the distinction 
between two phases: the first one – called the reaching phase – lasts until the controlled 
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plant RP hits the switching surface, and the second one – the sliding phase – begins when 
the RP reaches the surface. In the latter phase the plant insensitivity to a class of modeling 
inaccuracies and external disturbances is ensured. Let us stress that the system robustness 
with respect to unmodeled dynamics, parameter uncertainty and external disturbances is 
guaranteed only in the sliding mode. Therefore, shortening or (if possible) even complete 
elimination of the reaching phase is an important and timely research issue (see for example 
Bartoszewicz & Nowacka-Leverton, 2009; Pan & Furuta, 2007; Sivert, 2004; Utkin & Shi, 
1996) in the field of SMC. 
 

 

Fig. 5. Phase portrait of system (1) controlled according to (6). 

 

 

Fig. 6. State variables of system (1) controlled according to (6). 
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Fig. 7. Phase trajectory of system (1) controlled according to (10). 

Another immediate consequence of the fact that in the sliding mode, the system RP is 
restricted to the switching hypersurface (which is a subset of the state space) is reduction of 
the system order. If the system of the order n has m independent inputs, then the sliding 
mode takes place on the intersection of m hypersurfaces and the reduced order of the 
system is equal to the difference n – m. To be more precise, in multi-input systems the 
sliding mode may take place either independently on each switching hypersurface or only 
on the intersection of the surfaces. In the first case the system RP approaches each surface at 
any time instant and once it hits any of the surfaces it stays on this surface ever after. In the 
latter case, however, the system RP does not necessarily approach each of the surfaces, but it 
always moves towards their intersection. In this case the system RP may hit a surface and 
move away from it (might possibly cross a switching surface), but once it reaches the 
intersection of all the surfaces, then the RP never leaves it. 
One of the major tasks in the SMC system design is the selection of an appropriate control 
law. This can be achieved either by assuming a certain kind of the control law (usually 
motivated by some previous engineering experience) and proving that this control satisfies 
one of the so-called reaching conditions or by applying the reaching law approach. The 
reaching conditions (Edwards & Spurgeon, 1998) ensure stability of the sliding motion and 
therefore they are naturally derived using Laypunov stability theory. On the other hand, if 
the reaching law approach is adopted for the purpose of a sliding mode controller 
construction (Bartoszewicz, 1998; Bartoszewicz, 1996;  Gao et al, 1995;  Golo & Milosavljević, 
2000;  Hung et al., 1993), then a totally different design philosophy is employed. In this case 
the desired evolution of the switching variable s is specified first, and then a control law 
ensuring that s changes according to the specification is determined. 
Sliding mode controllers guarantee system insensitivity with respect to matched disturbance 
and model uncertainty (Draženović, 1969), and cause reduction of the plant order. 
Moreover, they are computationally efficient, and may be applied to a wide range of 
various, possibly nonlinear and time-varying plants. However, often they also exhibit a 
serious drawback which essentially hinders their practical applications. This drawback – 
high frequency oscillations which inevitably appear in any real system whose input is 
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supposed to switch infinitely fast – is usually called chattering. If system (8) exhibits any, 
even arbitrarily small, delay in the input channel, then control strategy (10), will cause 
oscillations whose frequency and amplitude depend on the delay. With the decreasing of 
the delay time, the frequency rises and the amplitude is getting smaller. This is a highly 
undesirable phenomenon, because it causes serious wear and tear on the actuator 
components. Therefore, a few methods to eliminate chattering have been proposed. The 
most popular of them uses function 

 ( )

- 1 for  s < -ρ
1

sat s = s for  s ρ
ρ

1 for  s > ρ

⎧
⎪
⎪ ≤⎨
⎪
⎪⎩

 (11) 

instead of sgn(s) in the definition of the discontinuous control term. With this modification 

the term becomes continuous and the switching variable does not converge to zero but to 

the closed interval [–ρ, ρ]. Consequently, the system RP after the reaching phase 

termination, belongs to a layer around the switching hyperplane and therefore this strategy 

is called boundary layer controller (Slotine & Li, 1991). 

Other approaches to the chattering elimination include: 

• introduction of other nonlinear approximations of the discontinuous control term, for 
example the so called fractional approximation defined as  

 ( ) s
approx s =

+ sε
 (12) 

where ε  is a small positive constant (Ambrosino et al., 1984;  Xu et al., 1996); 

• replacing the boundary layer with a sliding sector (Shyu et al., 1992;  Xu et al., 1996); 

• using dynamic sliding mode controllers (Sira-Ramirez, 1993a; Sira-Ramirez, 1993b;  
Zlateva, 1996); 

• using fuzzy sliding mode controllers (Palm, 1994; Palm et al., 1997); 

• using second (or higher) order sliding mode controllers (Bartolini et al., 1998;  
Levant, 1993). 

The phenomenon of chattering has been extensively analyzed in many papers using 

describing function method and various stability criteria (Shtessel & Lee, 1996). 

As it has already been mentioned, the switching surface completely determines the plant 

dynamics in the sliding mode. Therefore, selecting this surface is one of the two major tasks 

in the process of the SMC system design. In order to stress this issue let us point out that the 

same controller which has been considered in the last example may result in a very different 

system performance, if the sliding line slope c is selected in another way. This can be easily 

noticed if one takes into account any negative c. Then, controller (10) still ensures stability of 

the sliding motion on line (9), i.e. the system RP still converges to the line, however the 

system is unstable since both state variables x1 and x2 tend to (either plus or minus) infinity 

while the system RP slides away from the origin of the phase plane along line (9). 

Since sliding mode control is well known to be a robust and computationally efficient 
regulation technique which may be applied to nonlinear and possibly time-varying plants, 
then the proper design of the sliding mode controllers has recently become one of the most 
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extensively studied research topics within the field of control engineering. This design 
process usually breaks into two distinct parts: in the first part the switching surface is 
selected, and in the second one the control signal which always makes the system 
representative point approach the surface is chosen. Once the representative point hits the 
surface, then under the same control signal, the point remains on the surface. Thus, the 
switching surface fully determines the system dynamics in the sliding mode and should be 
carefully selected by the system designer.  
In this chapter we consider the second order, nonlinear, time-varying system subject to the 
acceleration and velocity constraints. We introduce a continuously time-varying switching 
line adaptable to the initial conditions of the system which guarantees the existence of a 
sliding mode on this line. At the time t = t0 the line passes through the representative point, 
specified by the initial conditions of the system, in the error state space. Afterwards, the line 
moves smoothly, with a constant deceleration and a constant angle of inclination, to the 
origin of the space and having reached the origin the line remains fixed. Thus the proposed 
control algorithm eliminates the reaching phase and forces the representative point of the 
system to always stay on the switching line. Consequently, our control is robust with respect 
to the external disturbance and model uncertainty from the very beginning of the control 
action. Furthermore, in order to obtain good dynamic performance of the considered 
system, the switching line is designed in such a way that the integral absolute error (IAE) 
over the whole period of the control action is minimised and state constraints are satisfied at 
the same time. The presented method is verified by the simulation example.   
The control algorithm proposed in this chapter may be regarded as an alternative solution to 
the elegant and currently widely accepted integral sliding mode control technique (Utkin & 
Shi, 1996). The main advantage of our approach is explicit consideration of state constraints 
in the controller design process. Furthermore, the novelty of our work demonstrates itself 
also in the IAE optimal performance and error convergence without oscillations or 
overshoots.  

2. Problem formulation 

In this chapter we consider the time-varying and nonlinear, second order system described 
by the following equations 

 1 2

2

x = x

x = f(x, t) +Δf(x, t) + b(x,t)u + d(t)

$
$

 (13) 

where x1, x2 are the state variables of the system and x(t) = [x1(t) x2(t)]T is the state vector, t 
denotes time, u is the input signal, b, f – are a priori known, bounded functions of time and 
the system state, Δf and d are functions representing the system uncertainty and external 
disturbances, respectively. Further in this chapter, it is assumed that there exists a strictly 
positive constant δ which is the lower bound of the absolute value of b(x, t), i.e. 
0 < δ = inf{|b(x, t)|}. Furthermore, functions Δf and d are unknown and bounded. 
Therefore, there exists a constant μ which for every pair (x, t) satisfies the following 
inequality |Δf (x, t) + d(t)| ≤ μ. The initial conditions of the system are denoted as x10 , 
x20 where x10 = x1(t0), x20 = x2(t0). System (13) is supposed to track the desired trajectory given 
as a function of time xd (t) = [x1d (t)   x2d (t)]T where 2d 1dx (t) = x (t)$  and x2d (t) is a 
differentiable function of time. The trajectory tracking error is defined by the following 
vector 
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 e(t) = [e1(t)  e2(t)]T = x(t) – xd(t) (14) 

Hence, we have e1(t) = x1(t) – x1d (t) and e2 (t) = x2(t) – x2d (t). 
In this chapter it is assumed that at the initial time t = t0, the tracking error and the error 
derivative can be expressed as  

 ( ) ( )1 0 0 2 0e t = e 0, e t = 0≠  (15) 

where e0 is an arbitrary real number different from zero. This condition is indeed satisfied in 
many practical applications such as position control or set point change of second order 
systems. An example of these applications is point to point (PTP) control of robot 
manipulators, that is moving the manipulator arm from its initial location where it is 
originally at a halt, to another predefined position at which the arm stops and again is 
expected to remain at rest. 
Further in this chapter, we present a detailed description of the sliding mode control 
strategy which ensures optimal performance of the system and its robustness with respect to 
both the system uncertainty Δf (x, t) and external disturbance d(t). 

3. Sliding mode controller 

In order to effectively control system (13), i.e. to eliminate the reaching phase and to obtain 
system insensitivity with respect to both external disturbance d(t) and the model uncertainty 
Δf (x, t) from the very beginning of the system motion, we introduce a time-varying 
switching line. The line slope does not change during the control process, which implies that 
the line moves on the phase plane without rotating. In other words, the line is shifted in the 
state space with a constant angle of inclination. At the beginning the line moves with a 
constant deceleration in the state space and then it stops at a time instant tf > t0 . 
Consequently, the switching line can be described by the following equation 

 s(e, t) = 0  where ( )2
2 1s(e, t) = e (t) + ce (t) + Ct + Bt + A ǅ  (16) 

where  

 
[ )
[ )

f

f

1 for t 0, t
ǅ =

0 for t t ,

⎧ ∈⎪
⎨

∈ ∞⎪⎩
 (17) 

and c, A and B are constants. The selection of these constants will be considered further in 
this chapter.  
In order to ensure system (13) stability in the sliding motion on the line described by 
equations (16) parameter c in this equation must be strictly positive, i.e. c > 0.  Furthermore, 
in order to actually eliminate the reaching phase, and consequently to ensure insensitivity of 
the considered system from the very beginning of its motion, constants A, B, C and c should 
be chosen in such a way that the representative point of the system at the initial time t = t0 
belongs to the switching line. For that purpose, the following condition must be satisfied  

 ( ) ( ) ( ) 2
0 0 2 0 1 0 0 0s e t , t = e t + ce t + Ct + Bt + A = 0⎡ ⎤⎣ ⎦  (18) 

Notice that the input signal 
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 ( ) ( ){ }2 2du = -f(x, t) - ce (t) + x (t) - 2Ct + B ǅ - Ǆsgn s e,t b(x, t)⎡ ⎤⎣ ⎦$  (19) 

where Ǆ = η + μ and η is a strictly positive constant, ensures the stability of the sliding 
motion on the switching line (16). In order to verify this property we consider the product 

[ ]2 2s(e, t)s(e, t) = s(e, t) e (t) + ce (t) + (2Ct + B)ǅ$ $ . Taking into account (13) and (19), we obtain  

 
[ ]

( ){ } ( )
2 2s(e, t)s(e, t) = s(e, t) f(x, t) +Δf(x, t) + b(x,t)u + d(t) - x (t) + ce (t) + (2Ct + B)

                         = s(e, t) Δf(x, t) - Ǆsgn s e,t + d(t) η s e, t

ǅ =

⎡ ⎤ ≤ −⎣ ⎦

$ $
 (20) 

which proves the stability of the sliding motion on the switching line (16). In order to find 
the system tracking error we solve equation (16).  First we consider the following equation 

 2
2 1e (t) + ce (t) + Ct + Bt + A = 0  (21) 

which determines the considered switching line for any time t ≤ tf, i.e. when the line moves 
and ǅ=1. Solving equation (21) with initial condition (15) and assuming for the sake of 

clarity that t0 = 0, we can calculate the tracking error and its derivative for the time t∈〈0, tf). 
Furthermore, taking into account condition (18) and the assumption that t0 = 0 we obtain 

 0A = - ce  (22) 

Then, the tracking error and its derivative can be written as 

 -ct 2
1 02 3 2 2 3

B 2C C 2C - cB B 2C
e (t) = - +  e - t + t + e + -

cc c c c c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (23) 

 -ct
2 2 2

B 2C 2C 2C - cB
e (t) = -  e - t +

c cc c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (24) 

Now we solve equation  

 2 1e (t) + ce (t) = 0  (25) 

which determines the considered switching line for any time t > tf i.e. for the time when the 
line does not move which is equivalent to the case ǅ=0. For this purpose we calculate values 
of (23) and its derivative (24) for t = tf 

 f-ct 2
1 f f f 02 3 2 2 3

B 2C C 2C - cB B 2C
e (t ) = - +  e - t + t + e + -

cc c c c c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (26) 

 f-ct
2 f f2 2

B 2C 2C 2C - cB
e (t ) = -  e - t +

c cc c

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (27) 

Then, after some calculations, we obtain the evolution of the tracking error 

 fct2 -ct
1 f f 02 3 2 2 3

B 2C C 2C - cB B 2C
e (t) = - + + - t + t + e + - e  e

cc c c c c

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (28) 
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 fct2 -ct
2 f f 02 2

B 2C 2C - cB B 2C
e (t) = - + Ct - t - ce - + e  e

c c cc c

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (29) 

Notice that the error described by (23) and (28) converges to zero monotonically. Next, we 
show the procedure for finding the optimal switching line. 

4. Switching line design 

Now we present how to choose the optimal switching line under the assumption that the line 
moves with a constant deceleration to the origin of the error state space. It means that we 
consider the line defined by (16) where C≠ 0. Notice that for the time t>tf , switching line (16) is 
fixed and passes through the origin of the error state space. This leads to the condition 

 2
f fCt + Bt + A = 0  (30) 

Furthermore, in order to avoid rapid input changes, the velocity of the introduced line 
should change smoothly. Thus, the following condition should hold 

 f2Ct + B = 0  (31) 

Using relations (30), (31) and (22), we obtain the formula expressing the time when the line 
stops moving 

 0
f

2e c
t =

B
 (32) 

In order to choose the switching line parameters, the integral of the absolute error (IAE)  

 
10

J = e (t) dt
∞

∫  (33) 

is minimised subject to the system velocity  

 2 maxe (t) v≤  (34) 

and the system acceleration 

 2 maxe (t) a≤$  (35) 

constraints, where vmax, amax represent the maximum admissible velocity and maximum 
admissible acceleration of the considered system, respectively. In order to facilitate further 
minimisation procedure, we define the following positive constant  

 
2

0e c
k =

B
 (36) 

From (36), we get  

 
0

Bk
c =

e
 (37) 

We begin the procedure for finding optimal switching line parameters with calculating the 
IAE criterion. Substituting equations (23) and (28) into (33), calculating appropriate integrals 
and considering relation (37), we obtain  
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3 2

0e 1 2
J(k,B) = + k

3kB

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (38) 

This criterion will be minimised with constraints (34) and (35). Since the considered criterion 
decreases with increasing value of B, the minimisation procedure of two variable function 
J(k, B) can be replaced by the minimisation of a single variable function. This remark will be 
very useful further in the chapter. Considering constraints, firstly we take into account each 
of the two constraints separately, and then we require both of them to be satisfied 
simultaneously.  

4.1 Velocity constraint 

In this section we will consider system (13) subject to velocity constraint (34). For any time 
t ≤ tf the system velocity is described by equation (24) and for the time t ≥ tf by relation (29). 
Calculating the maximum value of 2e (t)  we get 

 ( )
2

ln 1 + 2kB
max e (t) = - 1

c 2k

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (39) 

Then using relations (34), (39) and taking into account condition (37), we obtain the 
following inequality 

 ( ) -22
max

0

ln 1 + 2kv k
B - 1

e 2k

⎡ ⎤
≤ ⎢ ⎥

⎣ ⎦
 (40) 

As it was mentioned, because criterion (38) decreases with increasing value of |B| the 
minimisation of criterion J as a function of two variables (k, B) with the velocity constraint 
may be replaced by the minimisation of the following single variable function  

 ( )2
0

v
max

ln 1 + 2ke 1 2
J (k) = - 1 +

v 2k k 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (41) 

This function, for any fixed k expresses the minimum value of criterion J(k, B) which can be 
achieved when the velocity constraint is satisfied. Closer analysis of this criterion as a single 
variable function shows that (41) reaches its minimum for numerically found argument 
kv opt ≈ 13.467. Then, the optimal parameter B can be calculated from  

 
( ) ( )

-22
max

0
0

ln 1 + 2kv k
B = - 1 sgn e

e 2k

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (42) 

Substituting kv opt into (42), we obtain  

 
( )

( )
-2

2
v optmax v opt

v opt 0
0 v opt

ln 1 + 2kv k
B = - 1 sgn e

e 2k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (43) 

The other switching line parameters can be derived from (22), (31), (32) and (37) , and they 
are given below 
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( ) 1

v opt

v opt max v opt 0
v opt

ln 1 + 2k
A = v k - 1 sgn(e )

2k

−

 (44) 

 
( )v opt0

f v opt
v optmax

ln 1 + 2k2 e
t = - 1

2kv
 (45) 

 
( )

( )
3

3
v optmax v opt

v opt 02
v opt0

ln 1 + 2kv k
C = - - 1 sgn e

2k4e

−

 (46) 

 
( )v optmax v opt

v opt
0 v opt

ln 1 + 2kv k
c = - 1

e 2k
 (47) 

That concludes the analysis of the velocity constraint taken into account separately. 

4.2 Acceleration constraint 

Now we consider the system acceleration constraint given by (35). Let us calculate the 
greatest value of 2e (t)$ . The maximum absolute value of this signal, achieved at the initial 
time t0 = 0 is equal to 2e (0) = B$ . Then, the acceleration constraint can be expressed as 
follows 

 maxB a≤  (48) 

Now we will analyse the criterion J minimisation task. Notice that for any given value of k, 
the minimum of criterion (38) is obtained for the greatest value of |B| satisfying constraint 
(48). Therefore, the solution of the considered minimisation task can be found as a minimum 
of the following single variable function J 

 
3 2

0
a

max

e 1 2
J (k) = + k

3a k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (49) 

In order to analyse the minimisation task we calculate the derivative of expression (49) with 
respect to k. Then, we conclude that function (49) reaches its minimum for ka opt = 1.5 and the 
optimal parameter B can be calculated from  

 ( )max 0B = a sgn e  (50) 

The other optimal switching line parameters can be calculated from relations   

 max 0
a opt 0

3a e
A = - sgn(e )

2
 (51) 

 0
f a opt

max

6 e
t =

a
 (52) 
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 ( )
3 2
max

a opt 0

0

a
C = - sgn e

2 6 e
 (53) 

 max
a opt

0

3a
c =

2 e
 (54) 

That ends our presentation of the algorithm for switching line design with the acceleration 
constraint.  

4.3 Velocity and acceleration constraint 

Finally, we consider both of constraints, i.e. the system velocity and the system acceleration 
and we require that they are satisfied at the same time. In order to minimise the considered 
criterion with constraints (34) and (35), we will minimise the following function of a single 
variable k  

 ( ) ( ) ( )v a v aJ k = max J k , J k⎡ ⎤⎣ ⎦  (55) 

This minimisation task can be solved by considering three cases (which are illustrated in 
Figs. 8-10 ): 

1. ( ) ( )v a opt a a optJ k J k≤  

2. ( ) ( )v v opt a v optJ k J k≥  

3. ( ) ( )v a opt a a optJ k J k>  and ( ) ( )v v opt a v optJ k J k<  

 

0 5 10 15 20 25 30 35 40
60

80

100

120

140

160

180

200

220

240

260

k

J
(k

)

kopt

Ja(k)

Jv(k)

 

Fig. 8. Criteria  ( )vJ k  and ( )aJ k  - case 1. 

In the first case, the optimal value of k is given by opt a optk = k = 1.5 , and then parameter 

Bopt is given by formula (50). In the second case we obtain that opt v optk = k 13.467≈  and Bopt 

can be calculated from equation (42). In the last case, in order to find the optimal solution, 

we solve (numerically) equation ( ) ( )v aJ k - J k = 0  in the interval ( )a opt v optk ,k . Substituting 

numerically found value kopt into either (42) or (50), we get the optimal value of B. The other 
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optimal switching line parameters can be derived from (22), (31), (32) and (37). In this way 

we design the switching line which is optimal in the sense of the IAE criterion and 

guarantees that the state constraints are satisfied. 
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Fig. 9. Criteria  ( )vJ k  and ( )aJ k  - case 2. 
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Fig. 10. Criteria  ( )vJ k  and ( )aJ k  - case 3. 

5. Simulation examples 

In order to illustrate and verify the proposed method of the switching line design, we 
consider a suspended load described as follows 

 ( )1 2 2 2 1 2x = x , x = -0.15x + F - f x ,x m⎡ ⎤⎣ ⎦$ $  (56) 

where m = 1 kg and ( ) ( ) ( )1 2 2 2 2f x ,x = 0.1sgn x + 0.049x x + 0.1π  represents model 

uncertainty, i.e. unknown friction in the system. Consequently, Ǆ = 0.15. The initial condition 

x0 = 0.1 m. The demand position of system (56) is xd = 7 m. We require that vmax = 0.3  m/s 

and amax = 0.1 m/s2. Then, using the presented algorithm, we obtain that 
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( ) ( )v a opt a a optJ k J k>  and ( ) ( )v v opt a v optJ k J k< , and the optimal value of k can be found 

numerically. In the considered example it is equal to optk 4.0612≈  . Consequently, we 

obtain the following set of the optimal parameters Aopt ≈ 1.674 m/s, Bopt = – 0.1 m/s2, 

c opt ≈ 0.2426 1/s and C opt ≈  0.0015  m/s3. The line stops moving at the time instant tf opt 

equal to 33.48s. 
Simulation results for the system with this line are shown in Figures 11 – 14. From Figure 11 

it can be seen that the load reaches its demand position without oscillations or overshoots. 

Figure 12 presents the system velocity. The system acceleration is illustrated in Figure 13. 

The plots confirm that the required constraints are always satisfied. Furthermore, the system 

is insensitive from the very beginning of the control process. Figure 14 illustrates the phase 

trajectory of the controlled plant. 
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Fig. 11. System error evolution. 
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Fig. 12. System velocity. 
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Fig. 13. System acceleration. 
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Fig. 14. Phase trajectory. 

6. Conclusion 

In this chapter, we proposed a method of sliding mode control. This method employs the 
time-varying switching line which moves with a decreasing velocity and a constant angle of 
inclination to the origin of the error state space. Parameters of this line are selected in such a 
way that integral the absolute error (IAE) is minimised with the system acceleration and the 
system velocity constraints. Furthermore, the tracking error converges to zero monotonically 
and the system is insensitive with respect to external disturbance and the model uncertainty 
from the very beginning of the control action. 
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