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1. Introduction

One of the biggest problems for space manipulators are to cope with flexibility. If manipula-
tor links undergo deflection during the course of operation, it may prove difficult to reach a
desired position or to avoid obstacles. Furthermore, once the manipulator has reached a set
point, the residual vibration may degrade positioning accuracy and may cause a delay in task
execution. At the same time the flexible manipulators has the advantages of high payload to
weight ratio, which make them superior in the space exploration and orbital operation. The
high payload to weight ration is not the only merits of using flexible manipulators in space
application. Lower power consumption, smaller actuators and speedy operation make the
flexible manipulators the optimum choice for space manipulators. Since Cannon et al. (Can-
non & Schmitz, 1984) started initial experiments using the linear quadratic approach methods
to control flexible link manipulators, much researches on the usage of flexible manipulator
had been developed.
Using the approach of enhancement the measurements of the vibration variables was studied
by (Ge et al., 1999; Sun et al., 2005) while Etxebarria et al. (Etxebarria et al., 2005) gives attention
to the algorithms used in controlling the flexible manipulators. The enhancement of the tra-
ditional PD controller by adding a vibration control term is one of the most effective methods
for the flexible manipulators. Lee et al. proposed PDS (proportional-derivative strain) control
for vibration suppression of multi-flexible-link manipulators and analysed the Liapunov sta-
bility of the PDS control (Lee et al., 1988). Maruyama et al. (Maruyama et al., 2006) developed
a golf robot whose swing simulates human motion. They presented model accounting for golf
club flexibility with all parameters identified in experiments and generated and implemented
trajectories for different criterion such as minimizing total consumed work, minimizing sum-
mation of the squared derivative of active torque and maximizing impact speed. Matsuno and
Hayashi applied the PDS control to a cooperative task of two one-link flexible arms (Matsuno
& Hayashi, 2000). They aimed to accomplish the desired grasping force for a common rigid
object and the vibration absorption of the flexible arms.
A neural network is a data modelling tool that is able to capture and represent complex in-
put/output relationships. The motivation for the development of neural network technology
stemmed from the desire to develop an artificial system that could perform “intelligent" tasks
similar to those performed by the human brain. Neural Networks resemble the human brain
in the following two ways:

8
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• A neural network acquires knowledge through learning.

• A neural network knowledge is stored within inter neuron connection strengths known
as weights.

The true power and advantages of neural networks lies in their ability to represent both linear
and non-linear relationships and in their ability to learn these relationships directly from the
data being modelled. Traditional linear models are simply inadequate when it comes to mod-
elling data that contains non-linear characteristics. Some researchers tried to use the neural
network (herein after abbreviated as NN) as a main controller like (Talebi et al., 1998). In their
research the controllers are designed by utilizing the modified output re-definition approach.
The modified output re-definition approach requires only a priori knowledge about the lin-
ear model of the system but does not require a priori knowledge about the payload mass.
Various NN schemes have been proposed so far such as a modified version of the “feedback
error-learning" approach to learn the inverse dynamics of the flexible manipulator (Kawato et
al., 1987). On the other proposed NN structure the controller is designed based on tracking
the reference joint angle while controlling the elastic deflection at the tip. Isogai et al. (Isogi
et al., 1999) proposed a fault-tolerant system using inverse dynamics constructed by NN for
sensor fault detection and NN adaptive control for the actuator fault to reconfigure control to
compensate for parameter changes due to actuator faults.
Other researches like Lianfang (Lianfang et al., 2004) use the neural network as a correction
for the main control signal coming from the main feed-back controller. In his research the neu-
ral network approach is presented for the motion control of constrained flexible manipulators
where both the contact forces exerted by the flexible manipulator and the position of the end-
effectors contacting with a surface are controlled. Cheng and Patel in (Cheng & Patel, 2003)
tried to made stable tracking control of a flexible macro-micro manipulator utilizing two layer
neural network to approximate the non-linear robot dynamic behavior. A learning algorithm
for the neural network using Lyapunov stability is derived. Yazdizadeh et al. proposed two
neuro-dynamic identifiers to identify the input-output relationship of two-link flexible manip-
ulator. They provided in (Yazdizadeh et al., 2000) a selection criterion for specifying the fixed
structural parameters as well as the adaptation laws for updating the adjustable parameters
of the networks.
A Modified PID control (MPID) is proposed to control a single-link flexible manipulator by
Mansour et al. (Mansour et al., 2008). The MPID control depends mainly on vibration feed-
back to improve the response of the flexible arm without the massive need of measurements.
The advantage of the MPID is that it is not affected by residual strain due to material defect
and/or static deformation. The residual strain and material defect may lead to inaccurate
movement. The difficulty with the MPID is that it includes nonlinear terms and so the stan-
dard gain tuning method can not be used for the controller. The motivation for this research is
to find a fast and simple way to tune the MPID controller, which is able to achieve final accu-
rate tip position for the flexible arm and at the same time reduce resulting vibration. The NN
is used to solve this problem. In this research a NN is used to find an optimum vibration gain
of MPID controller. The main advantage of the NN approach to tune the vibration control
gain of the MPID control is the considerable low computational cost to find an optimal tuned
gain with different tip payload.
The neural network is used to estimate a result of the dynamic simulation when the simulation
condition is given. As a result of the dynamic simulation, integral of the squared tip deflection

2. Mathematical Model
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weighted by exponential function

Criterion function =
∫ ts

0
δ2etdt, ts : settling time (1)

is considered in this work. Therefore, the input to the neural network is the simulation con-
dition, while the output is the criterion function defined in 1. The mapping from the input
to the output is many-to-one. In order to train the neural network, the results of a dynamic
simulator for a given condition are used as teacher signals. In this shadow the feed-forward
neural network can be used as a mapping between the simulation conditions and the output

response all over the time span which is represented by
∫ ts

0 δ2etdt.
The powerful ability of the neural network to model nonlinear model is utilized to map the
relation between the vibration control gain of the MPID and the output response represented
by the criterion function. Once this relation is drawn, the optimum value of the vibration
control gain is corresponding to the minimum value of the criterion function.
The sequence of finding the optimum value for the vibration control gain for the single link
flexible manipulator is summarized in Fig. 1. This chapter is organized as follows: An intro-
duction to the control of flexible manipulator and using NN in the control process is high-
lighted in section 1. The mathematical model of the flexible manipulator is shown in section
2. The detailed of the controller structure and the simulatiom model are presented in sections
3 and 4. In section 5 the NN algorithm used in this research is explained, the structure of the
NN is also shown and the optimal vibration control gain finding procedure are highlighted.
The learning and training process of the NN is shown in section 6. The response results for the
flexible manipulator with the tuned gain using the NN is shown in section 7. Finally, section
8 concludes this chapter with some remarks.

2. Mathematical Model

Before discussing the NN based gain tuning method, the MPID controller (Mansour et al.,
2008) is briefly introduced in sections 2 and 3. From the analysis of the single-link flexible arm
shown in Fig. 2, the flexible link is approximated by a continuous clamped-free beam. The
flexible arm is rotating in the horizontal plane with a rotational angle θ(t) and the effect of
gravity is not taken into consideration. Frame O-XY is the fixed base frame and frame O-xy is
the local frame rotating with the hub. The tip deflection δ(L, t) is the difference between the
actual tip position and the rotating frame O-xy. The deflection δ(x, t) is assumed to be small
compared to the length of the arm. Let p(x, t) represents the tangential position of a point
on the flexible arm with respect to frame O-xy. From the assumption of the deflection of the
flexible arm, the tangential position is expressed as:

p(x, t) = xθ(t) + δ(x, t). (2)

The flexible arm is treated as Euler-Bernoulli beam with uniform cross-sectional area and con-
stant characteristics. Then, the Euler-Bernoulli equation for the link is given as follows :

EI
∂4 p(x, t)

∂x4
+ ρ

∂2 p(x, t)

∂t2
= 0, (3)

where ρ is the sectional density, E is the Young (elastic) modulus, and I is the second moment
of area. Substituting (2) into (3) the following equation is obtained :
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Collect experimental or simulation results

Specify the output and input of the neural network

Select criteria function to represent output response

Train the neural network to get minimum value of the criteria function

Input the actual working data and get the optimal value for the output parameter 

Specify the network structure (number of layers, training algorithm, ...)

Collect experimental or simulation results

Specify the output and input of the neural network

Train the neural network to get minimum value of the criteria function

Input the actual working data and get the optimal value for the output parameter 

Specify the network structure (number of layers, training algorithm, 

Fig. 1. Neural network using sequence.

EI
∂4δ(x, t)

∂x4
+ ρ

∂2δ(x, t)

∂t2
= −ρxθ̈(t). (4)

The flexible arm is clamped at its base, so both the deflection and slope of the deflection curve
must be zero at the clamped end. Bending moment at the free end also equals zero. Making
force balance at the tip obtains the following boundary conditions:

δ(x, t)|
x=0 = 0, (5)

∂δ(x, t)

∂x

∣

∣

∣

∣

x=0
= 0, (6)

EI
∂2δ(x, t)

∂x2

∣

∣

∣

∣

x=L

= 0, (7)

EI
∂3δ(x, t)

∂x3

∣

∣

∣

∣

x=L

= mt

[

xθ̈(t) +
∂2δ(x, t)

∂t2

]

x=L

, (8)

where L is the arm length. The dynamic equation describing the system presented in (?) is
written as follows:

T(t) =

(

Ih +
1

3
ρL

3

)

θ̈(t) + ρ
∫

L

0
xδ̈(x, t)dx

+mtL
(

Lθ̈(t) + δ̈(L, t)
)

. (9)

3. Controller
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Fig. 2. Single-link flexible manipulator.

A flexible manipulator simulator is built in MATLAB Simulink software using the mathemat-
ical model shown before to study the performance of the MPID control with different loading
and gains conditions.

3. Controller

A Modified PID controller (MPID) is proposed for controlling the tip position of the single-
link flexible manipulator (Mansour et al., 2008). This controller used three measurements to
generate the control signal, the hub rotational angle θ(t), the tip deflection δ(L, t) , and the
velocity of the hub θ̇(t). If we choose the tip position as the output from the system then the
error includes two components. The first component ej(t) is a result of the joint motion and is
equal to L(θre f − θ(t)) which is identical with the rigid arm error where θre f is the reference
joint angle. The second one is much more important and is due to the flexibility of the arm
and equals δ(L, t). These two error components are coupled to each other. The Modified
PID (MPID) controller replaces the classical integral term of a PID controller with a vibration
feedback term to affect the flexible modes of the beam in the generated control signal. The
MPID controller is formed as follows (Mansour et al., 2008):

u(t) = Kpej(t) + Kd ėj(t)

+Kvcg(t) sgn(ėj(t))
∫ t

0
g(t)dt, (10)

where u(t) is the control signal, Kp, Kd are the proportional and derivative gains for the joint
control,respectively, Kvc is the vibration control feedback gain, ej(t) is the tangential position
error and g(t) is a vibration variable such as strain, deflection, shear force or acceleration
under a single condition that the vibration variable value equal zero when the flexible manip-
ulator is static and under goes no deformation. The stability of the proposed controller had
been studied previously in (Mansour et al., 2008). It was proved that the system is stable as
long as Kd ≥ 0. The flexible manipulator simulator is used to validate the MPID controller
given by (10) and the results are shown in Figs. 3 and 4. We found from the simulation results
that the response of the flexible manipulator is sensitive to the change of the controller gains.
In addition to that, the change in the tip payload have a noticeable influence on the response
of the flexible manipulator end effector. If the controller gain is not tuned well, the response
with the new loading condition will suffer a performance degradation. As shown in Fig. 3, a
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Fig. 3. Effect of changing tip load.

change in the tip load of the flexible manipulator has an undesirable effect for the vibration of
the end effector.
Not only the change of the environment parameters like the tip payload causes an undesirable
effect on the response as shown in Fig. 3, but also changing the system configuration like joint
angle causes the same effect. Unlike industrial manipulators, both the environment parameter
(i.e. tip payload) and the system configuration (i.e. joint angle) are always changeable in the
case of space manipulators. This highlights the importance of optimization the gain used with
this controller.
Another important point is that the change of the vibration control gain Kvc has seriously
affects on the response of the single-link flexible manipulator. This is completely noticeable
from the results in Fig. 4. This fact is the main motivation to find out a good way for tuning Kvc

that brings the minimum vibration for the tip as well as a fast response for the joint position.
It is predicted from Fig. 4 that the damping effect becomes stronger as the vibration control
gain Kvc increases to a certain limit. However if the gain Kvc exceeds the limits it start to create
an overshoot in the joint response.
The most difficulty of using the MPID controller is the adjustment of the vibration control
gain. Ge et al. tried to use the genetic algorithm optimization process to find the suitable gain
for the controller (Ge et al., 1996). In their research they consider the fixed tip payload of
the flexible manipulator and generate a set of gains for this configuration using the genetic
algorithm. However in general, the tip payloads and the joint angle are not the same in each
operation but it varies from one task to another. Hence the tuning of the vibration control
gain Kvc becomes the most importance issue to achieve the required position with a minimum
vibration. To overcome the lake of consideration with the changing of tip payload and joint
angle in the tuning of the MPID we proposed to use the NN in the tuning of the MPID.
In this research the vibration control gain Kvc for the MPID controller given by equation (10) is
tuned using the NN for the environment parameter (i.e. tip payload), the system configuration

4. Simulation Model
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Fig. 4. Effect of changing vibration control gain.

(i.e. joint angle) and for both the other controller gains (i.e. Kp, Kd). By this way the controller
gives the best response with respect to all the parameters related to the flexible manipulator.

4. Simulation Model

In this section, a highlight to the simulation which is used to simulate the flexible manipu-
lator is given. A model of the flexible robot control system is simulated in Matlab-Simulink
software. The development of the Matlab-Simulink model allows control algorithms to be
evaluated before we use the neural network. Also, the simulation program is used to provide
information about the behave of the system. The result we get from the simulation will be
used in selecting the criterion function, which we will train the neural network on it. In this
simulation, we used the mathematical equation derived on section (2) for the flexible manip-
ulator. The block of the simulation model which had been used is shown in Fig. 5. We wish
to give attention to some point we consider in make the simulation and important simula-
tion parameters. In the simulation, we use the variable step solvers not the fixed step solvers.
The Variable step solvers vary the step size during the simulation, reducing the step size to
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increase accuracy when a model’s states are changing rapidly and increasing the step size to
avoid taking unnecessary steps when the model’s states are changing slowly. Computing the
step size adds to the computational overhead at each step but can reduce the total number of
steps, and hence simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states. Also for the numerical integration tech-
niques for solving the ordinary differential equations (ODEŠs) that represent the continuous
states of dynamic systems. Simulink provides an extensive set of fixed-step and variable-
step continuous solvers, each implementing a specific ODE solution method. There are many
solver types in the solution methods. First we identifying the optimal solver for the model,
optimal means acceptable accuracy with the shortest simulation. We use in the solution of
the numerical integration for the ordinary differential equations the ode45 (Dormand-Prince).
ODE45 is based on an explicit Runge-Kutta (4,5) formula. It is a one-step solver; that is, in
computing y(tn), it needs only the solution at the immediately preceding time point, y(tn−1).
In general, ode45 is the best solver to apply if the problem is not stiff. It is also the default
solver used by Simulink for models with continuous states.

5. Neural Network

There is no precise agreed definition among researchers as to what a neural network is, but
most would agree that it involves a network of simple processing elements (neurons), which
can exhibit complex global behavior, determined by the connections between the process-
ing elements and element parameters. The original inspiration for the technique was from
examination of the central nervous system and the neurons (and their axons, dendrites and
synapses) which constitute one of its most significant information processing elements. In a
neural network model, simple nodes (called variously “neurons," “neurodes," or “PEs- pro-
cessing elements") are connected together to form a network of nodes Ů hence the term “neu-
ral network." While a neural network does not have to be adaptive itself, its practical use
comes with algorithms designed to alter the strength (weights) of the connections in the net-
work to produce a desired signal flow. These networks are also similar to the biological neural
networks in the sense that functions are performed collectively and in parallel by the units,
rather than there being a clear delineation of subtasks to which various units are assigned.
Currently, the term Artificial Neural Network (ANN) tends to refer mostly to neural network
models employed in statistics, cognitive psychology and artificial intelligence.
In modern software implementations of artificial neural networks, the approach inspired by
biology has more or less been abandoned for a more practical approach based on statistics and
signal processing. In some of these systems, neural networks or parts of neural networks (such
as artificial neurons) are used as components in larger systems that combine both adaptive
and non-adaptive elements. While the more general approach of such adaptive systems is
more suitable for real-world problem solving, it has far less to do with the traditional artificial
intelligence connection models. What they do however have in common is the principle of
non-linear, distributed, parallel and local processing and adaptation. Neural networks, with
their remarkable ability to derive meaning from complicated or imprecise data, can be used
to extract patterns and detect trends that are too complex to be noticed by either humans or
other computer techniques. A trained neural network can be thought of as an “expert" in the
category of information it has been given to analyse. This expert can then be used to provide
projections given new situations of interest and answer “what if" questions. Other advantages
include:
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• Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

• Self-Organization: An ANN can create its own organization or representation of the
information it receives during learning time.

• Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured which take advantage of this
capability.

• Fault Tolerance via Redundant Information Coding: Partial destruction of a network
leads to the corresponding degradation of performance. However, some network capa-
bilities may be retained even with major network damage.

A simple representation of neural network is shown in Fig. 6. The Input to the neural net-
work is presented by X1, X2, ....., XR where R is the number of inputs in the input layer, S is
the number of neuron in the hidden layer and w is the weight. The output from the neural
network Y is given by

Hidden layer 

R

f1(n)

S

f1(n)

f1(n)

f1(n)

Σ

Σ

Σ

Σ

f2(n)Σ

   b
X1

X2

XR

bs

b3

b2

b1

w11 

wRS

w12

wR3

n1

n2

ns

Output layer 

Input layer 

Y

Fig. 6. Simple presentation of neural network.

Y = f2(
j=S

∑
j=1

f1(nj) + b) (11)

nj =
j=S

∑
j=1

i=R

∑
i=1

Xiwij + bj (12)

where i = 1, 2, . . . , R , j = 1, 2, . . . , S,
f1 and f2 represents transfer functions.

To overcome the problem of tuning the vibration control gain Kvc due to the changing in the
manipulator configuration, environment parameter or the other controller gains the neural
network is proposed. The main task of the neural network is to get the optimum vibration
control gain which can achieve the vibration suppression while reaching the desired position
for the flexible manipulator.
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So the function of the neural network is to receive the desired position θre f and the manipula-
tor tip payload Mt with the classical PD controller gains Kp, Kd. The neural network will give
out the relation between the vibration control gain Kvc and the criterion function at a certain
inputs θre f , Mt, Kp, Kd. From this relation the value of the value of optimum vibration control
gain Kvc is corresponding to the minimum criterion function.
A flow chart for the training process of the neural network with the parameters of the manip-
ulator and gains of the controller is shown in Fig. 7. The details of the learning algorithm and
how is the weight in changed will be discussed later in the training of the neural network.

Take pattern 

θref, Mt, K p,  Kd,  K vc

Neural network
Flex ible manipulator 

s imulator

Redefine output 

-   +

Squae error< ε

Fix  weights

Save weights

Yes

Yes

 

End

No

No

start

i i ii i

Learing 

algorithm

change weights

Patterns finished

       i >220

Take new pattern

       i=i+1

Fig. 7. Flow chart for the training of the neural network.
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By trying many criterion function to select one of them as a measurement for the output re-
sponse from the simulation. We put in mind when selecting the criterion function to include
two parameters. The first one is the amplitude of the defection of the end effector and the

second one is the corresponding time. A set of criterion function like
∫ ts

0 tδ2dt,
∫ ts

0 10tδ2dt,
∫ ts

0 δ2etdt is tried and a comparison between the behave for all of them and the vibration con-
trol gain Kvc is done. The value of ts here represent the time for simulation and on this research

we take it as 10 seconds. The criterion function
∫ ts

0 δ2etdt is selected as its value is always min-
imal when the optimum vibration control gain is used. The term optimum vibration control

gain Kvc pointed here to the value of Kvc which give a minimum criterion function
∫ ts

0 δ2etdt
and on the same time keep stability of the system.
The neural network is trained on the results from the simulation with different
θre f , Mt, Kp, Kd, Kvc. The neural network is trying to find how the error in the response from

the system (represented by the criterion function
∫ ts

0 δ2etdt is changed with the manipulator
parameter (tip payload, joint angle) i.e. Mt, θre f and also how it changes with the other con-
troller parameters Kp, Kd, Kvc. The relation between the vibration control gain of the controller,

Kvc which will be optimized using the neural network and the criterion function,
∫ ts

0 δ2etdt
which represent a measurement for the output response from the simulation is shown in Fig.
8. After the input and output of the neural network is specified, the structure of the neural
network have to been built. In the next section the structure of the neural network used to
optimize the vibration control gain Kvc will be explained.

5.1 Design
The neural network structure mainly consists of input layer, output layer and it also may
contain a hidden layer or layers. Depending on the application whether it is a classification,
prediction or modelling and the complexity of the problem the number of hidden layer is
decided. One of the most important characteristics of the neural network is the number of
neurons in the hidden layer(s). If an inadequate number of neurons are used, the network
will be unable to model complex data, and the resulting fit will be poor. If too many neurons
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5.1 Design
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Fig. 9. NN structure.

are used, the training time may become excessively long, and, worse, the network may over fit
the data. When over fitting occurs, the network will begin to model random noise in the data.
The result is that the model fits the training data extremely well, but it generalizes poorly to
new, unseen data.
Validation must be used to test for this. There are no reliable guidelines for deciding the
number of neurons in a hidden layer or how many hidden layers to use. As a result, the
number of hidden neurons and hidden layers were decided by a trial and error method based
on the system itself (Principe et al., 2000). Networks with more than two hidden layers are
rare, mainly due to the difficulty and time of training them. The best architecture to be used
is problem specific.
A proposed neural network structure is shown in Fig. 9. A neural network with one input
layer and one output layer and two hidden layers is proposed. In the proposed neural net-
work the input layer contains five inputs, θre f , Mt, Kp, Kd, Kvc. Those inputs represent the
manipulator configuration, environment variable and controller gains. The output layer is
consists of one output which is the criterion function and a bias transfer function on the neu-
ron of this layer. The first one of the two hidden layers is consists of 5 neuron and the second
one is consists of 7 neurons. For the transfer function used in the neuron of the two hidden
layer first we use the sigmoid function described by 13 to train the neural network.

f (xi, wi) =
1

1 + exp(−xbias
i )

, (13)

where xbias
i = xi + wi.

The progress of the training of the neural network is shown when using sigmoid transfer
function in Fig. 10. As we notice that no good progress in the training we propose to use the
tanh as a transfer function for the neuron for both of the two layers. Tanh applies a biased
tanh function to each neuron/processing element in the layer. This will squash the range of
each neuron in the layer to between -1 and 1. Such non-linear elements provide a network
with the ability to make soft decisions. The mathematical equation of the tanh function is give
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2 training
20 training
50 training

Fig. 10. Progress in training using sigmoid function.

by 14.

f (xi, wi) =
2

1 + exp(−2xbias
i )

− 1, (14)

where xbias
i = xi + wi. Also the progress in the training of the neural network using the tanh

function is shown in Fig. 11.

5.2 Optimal Vibration Control Gain Finding Procedure
The MPID controller includes non-linear terms such as sgn(ėj(t)), therefore standard gain
tuning method like Ziegler-Nichols method can not be used for the controller. For the optimal
control methods like pole placement, it involves specifying closed loop performance in terms
of the closed-loop poles positions.
However such theory assumes a linear model and a controller. Therefore it can not be directly
applied to the MPID controller.
In this research we propose a NN based gain tuning method for the MPID controller to control
flexible manipulators. The true power and advantages of NN lies in its ability to represent
both linear and non-linear relationships and in their ability to learn these relationships directly
from the data being modelled. Traditional linear models are simply inadequate when it comes
to modelling data that contains non-linear characteristics. The basic idea to find the optimal
gain Kvc is illustrated in Fig. 12 (a). The procedure is summarized as follows.

1. A task, i.e. the tip payload Mt and reference angle θre f , is given.

2. The joint angle control gains Kp and Kd are appropriately tuned without considering
the flexibility of the manipulator.

3. Initial Kvc is given.
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5.2 Optimal Vibration Control Gain Finding Procedure

Fig. 11. Progress in training using tanh function.

4. The control input u(t) is calculated with given Kp, Kd, Kvc, θre f and θt using (10).

5. Dynamic simulation is performed with given tip payload Mt and the control input u(t)

6. 4 and 5 are iterated when t ≤ ts (ts: given settling time).

7. Criterion function is calculated using (15).

8. 4 ∼ 7 are iterated for another Kvc.

9. Based on the obtained criterion function for various Kvc, an optimal gain Kvc is found

As the criterion function C(Mt, θre f , Kp, Kd, Kvc), the integral of the squared tip deflection
weighted by exponential function is considered as:

C(Mt, θre f , Kp, Kd, Kvc) =
∫ ts

0
δ

2(t)etdt, (15)

where ts is a given settling time and δ(t) is one of the output of the dynamic simulator (see
Fig. 12 (a)).
The NN replaces the MPID control and dynamic simulator and bring out the relation between
the input to the simulator, control gains and the criterion function. Based on this relation we
can get the optimal vibration gain Kvc for any combination of simulator input and PD joint
gains Kp, Kd.
However the procedure 5 (dynamic simulation) requires high computational cost and pro-
cedure 5 is iterated plenty of times. Consequently it is difficult to find an optimal gain Kvc

on-line.
Therefore we propose to replace the blocks enclosed by a dashed rectangle in Fig. 12 (a) by
a NN model illustrated in Fig. 12 (b). By this way the input to the NN is the simulation
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Fig. 12. Finding optimal gain Kvc.

condition, θre f , Mt, Kp, Kd, Kvc while the output is the criterion function defined in (15). The
mapping from the input to the output is many-to-one.

5.3 A NN Model to Simulate Dynamic of A Flexible Manipulator
The NN structure generally consists of input layer, output layer and hidden layer(s). The
number of hidden layer is depending on the application such as classification, prediction or
modelling and on the complexity of the problem. One of the most important problems of the
NN is the determination of the number of neurons in the hidden layer(s). If an inadequate
number of neurons are used, the network will be unable to model complex function, and the
resulting fit will not be satisfactory. If too many neurons are used, the training time may
become excessively long, and, if the worst comes, the network may over fit the data. When
over fitting occurs, the network will begin to model random noise in the data. The result of the
over fitting is that the model fits the training data well, but it is failed to be generalized for new
and untrained data. The over fitting should be examined (Principe et al., 2000). The proposed
NN structure is shown in Fig. 9. The NN includes one input layer, one output layer and two
hidden layers. In the designed NN the input layer contains five inputs: θre f , Mt, Kp, Kd, Kvc

(see also Fig. 12). Those inputs represent the manipulator configuration, environment variable
and controller gains. The output layer consists of one output which is the criterion function,
Σδ

2et and a bias transfer function on the neuron of this layer. The first hidden layer consists of
five neurons and the second hidden layer consists of seven neurons. For the transfer function
used in the neurons of the two hidden layers a tanh function is used.
The mathematical equation of the tanh function is give by:

f (xi, wi) =
2

1 + exp(−2xbias
i )

− 1, (16)

6. Learning and Training
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5.3 A NN Model to Simulate Dynamic of A Flexible Manipulator

where xi is the ith input to the neuron, wi is the weight for the input xi and xbias
i = xi +

wi. After the NN is structured, it is trained using a various examples to generate the correct
weights to be used in producing the data in the operating stage.
The main task of the NN is to represent the relation between the input parameters to the
simulator, MPID gains and the criterion function.

6. Learning and Training

The training for the NN is analogous to the learning process of the human. As human starts
in the learning process to find the relationship between the input and outputs. The NN does
the same activity in the training phase.
The block diagram which represents the system during the training process is shown in Fig.
13.

 

 

 NN model  

MPID controller,

Flexible manipulator                                   

dynamics simulator and

  computation of (10)

 

+ 

- 

 

 

Weights 

readjustment 

θref 

Mt

Kp

Kvc

Kd

Criterion function

C(Mt, θref, Kp, Kd, Kvc)

CNN(Mt, θref, Kp, Kd, Kvc, wij, wjk, wkn, bn )
I L1 L2     O

Fig. 13. Block diagram for the training the NN.

After the NN is constructed by choosing the number of layers, the number of neurons in each
layer and the shape of transfer function in each neuron, the actual learning of NN starts by
giving the NN teacher signals. In order to train the NN, the results of the dynamic simulator
for given conditions are used as teacher signals. In this shadow the feed-forward NN can
be used as a mapping between θre f , Mt, Kp, Kd, Kvc and the output response all over the time
span which is calculated by (15).
For the NN illustrated in Fig. 9, the output can be written as

Output = CNN(Mt, θre f , Kp, Kd, Kvc, wI
ij, wL1

jk , wL2
k1 , bO

1 ), (17)

where wI
ij is the weight from element i (i = 1 ∼ 5) in input layer (I) to element j (j = 1 ∼ 5)in

next layer (L1). wL1
jk is the weight from element j (j = 1 ∼ 5) in first hidden layer (L1) to

element k (k = 1 ∼ 7) in next layer (L2). wL2
k1 is the weight from element k (k = 1 ∼ 7) in

second hidden layer (L2) to element n in output layer (O). bO
1 is the bias of the output layer.

The NN begins to adjust the weights is each layer to achieve the desired output.

www.intechopen.com



PID Control, Implementation and Tuning180

Herein, the performance surface E(w) is defined as follows:

E(w) = (C(Mt, θre f , Kp, Kd, Kvc)− CNN(Mt, θre f , Kp, Kd, Kvc))
2. (18)

The conjugate gradient method is applied to readjustment of the weights in NN. The principle
of the conjugate gradient method is shown in Fig. 14.

Performance Surface E(w)  

Gradient

w

w0w2
w1

w3

Optimal w
 0=

dw

dE

Gradient direction 
 at w0  ,w1, w3

Fig. 14. Conjugate gradient for minimizing error.

By always updating the weights in a direction that is conjugate to all past movements in the
gradient, all of the zigzagging of 1st order gradient descent methods can be avoided. At each
step, a new conjugate direction is determined and then move to the minimum error along
this direction. Then a new conjugate direction is computed and so on. If the performance
surface is quadratic, information from the Hessian can determine the exact position of the
minimum along each direction, but for non quadratic surfaces, a line search is typically used.
The equations which represent the conjugate gradient method are:

∆w = α(n)p(n), (19)

p(n + 1) = −G(n + 1) + β(n)p(n), (20)

β(n) =
GT(n + 1)G(n + 1)

GT(n)G(n)
, (21)

where w is a weight, p is the current direction of weight movement, α is the step size, G is the
gradient (back propagation information) and β is a parameter that determines how much of
the past direction is mixed with the gradient to form the new conjugate direction. And as a
start for the searching we put p(0) = −G(0). The equation for α in case of line search to find
the minimum mean squared error (MSE) along the direction p is given by:

α =
−GT(n)p(n)

pT(n)H(n)p(n)
, (22)

where H is the Hessian matrix. The line search in the conjugate gradient method is critical
for finding the right direction to move next. If the line search is inaccurate, then the algorithm

6.1 Training result
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may become brittle. This means that we may have to spend up to 30 iterations to find the
appropriate step size.
The scaled conjugate is more appropriate for NN implementations. One of the main advan-
tages of the scaled conjugate gradient (SCG) algorithm is that it has no real parameters. The
algorithm is based on computing Hd where d is a vector. It uses equation (22) and avoids the
problem of non-quadratic surfaces by manipulating the Hessian so as to guarantee positive
definiteness, which is accomplished by H + λI , where I is the identity matrix. In this case α
is computed by:

α =
−GT(n)p(n)

pT(n)H(n)p(n) + λ | p(n) |2
, (23)

instead of using (22). The optimization function in the NN learning process is used in the
mapping between the input to the simulator and the output criterion function not in the opti-
mization of the vibration gain.

6.1 Training result
The SCG is chosen as the learning algorithm for the NN. Once the algorithm for the learning
process is selected, the NN is trained on the patterns. The result of the learning process is
shown in this subsection. The teacher signals (training data set) are generated by the simula-
tion system illustrated in Fig. 12 (a). The examples of the training data set are listed in Table 1.
220 data sets are used for the training. The data is put in a scattered order to allow the NN to
get the relation in a correct manner.

Pattern θre f Mt Kp Kd Kvc Σδ
2et

1 5 0.5 300 100 20000 0.0129

2 15 0.25 800 300 80000 7.242

3 10 0.25 600 200 0 1.21

4 25 0.5 600 200 10000 0.1825

5 25 0.5 600 200 10000 0.1825

6 15 0.25 600 150 70000 4.56

... ... ... ... ... ... ...

Table 1. Sample of NN training patterns.

As shown in Fig. 15, two curves are drawn relating the value of the normalized cri-
terion for each example used in the training. The normalized the criterion function
C(Mt, θre f , Kp, Kd, Kvc obtained from the simulation is plotted in circles while the normalized
criterion function CNN(Mt, θre f , Kp, Kd, Kvc) generated by the NN in the training process is
plotted in cross marks. The results of Fig. 15 show that training of the NN enhance its abil-
ity to follow up the output from the simulation. A performance measure is used to evaluate
whether the training of the NN is completed. In this measurement, the normalized mean
squared error (NMSE) between the two datasets (i. e. the dataset the NN trained on and the
dataset the NN generate) is calculated. For this case NMSE is 0.0054. Another performance
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index is also used which is the correlation coefficient r between the two datasets. The correla-
tion coefficient r is 0.9973. When a test is done for the trained NN upon a complete new set of
data the NMSE is 0.0956 and r is 0.9664.

0

Fig. 15. NN training.

7. Optimization result

In this section, the results obtained using the simulation are compared with the results ob-
tained using the NN. The criterion function C computed by (15) and the output of NN, CNN ,
for the vibration control gain Kvc are plotted in Fig. 16. Comparing the results obtaind using
the NN for the criterion function with the results obtained using dynamic simulator in Fig. 16.
shows good coincidence. This means that the NN network can successfully replace the dy-
namic simulator to find how the criterion function changes with the changing of the system
parameters.
Form Fig. 16 the optimum gain Kvc can be easily found. One of the main advantages of using
the NN to find the optimal gain for the MPID control is the computional speed. To generate
the data of the simulation curve, which is indicated by the triangles in Fig. 16, 1738 seconds is
needed while only 6 seconds are needed to generate the data using the NN, which is indicated
by the circles. The minimum values of the criterion function occurs when the value of the
vibration control gain Kvc equals 22500 V s/m2.

Vibration control gain
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7. Optimization result

Vibration control gain

Fig. 16. Vibration control gain vs. criterion function.
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Fig. 17. Response using optimum gain.
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Fig. 18. Response using optimum gain.
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Fig. 19. Response using optimum gain.

The response of the flexible manipulator using the optimal gain Kvc is shown in Fig. 17, Fig. 18
and Fig. 19. 0.5 kg is used as a tip payload Mt with 24 degree for the joint reference angle θre f .
For the controller described by equation (10), the values of Kp and Kd are set at 600 V rad/m
and 400 V s rad/m respectively. The response with different vibration gains Kvc is plotted. In
the beginning the response with PD control only (i.e. Kvc = 0) is plotted in dash line while
the response with the maximum Kvc which is 80000 V s/m2 is plotted in a dash-dot line. The
response with the optimum Kvc -which was tuned using NN- appears in a continous line. The
value of the optimum vibration control gain Kvc is 17600 V s/m2. Increasing the vibration
control gain Kvc leads the system to have fast response for the joint position as shown in
Fig. 17 but more increasing in the value of the vibration control gain leads to an undesirable
overshoot as shown in Fig. 18 with a dash-dot line. To focus on the effect of the vibration gain
on the end-effector vibration Fig. 19 is plotted. It is clear from the figure that the optimum
vibration control gain for the MPID succeed to suppress the vibration at the end of the flexible
manipulator.

8. Conclusions

This chapter discusses a NN based gain tuning method for the vibration control PID (MPID)
controller of a single-link flexible manipulator. The NN is trained to simulate the dynamics
of the single-link flexible manipulator and to produce the integral of the squared tip deflec-
tion weighted by exponential function. A dynamic simulator is used to produce the teacher
signals.
The main advantage of using NN to find an optimal gain is the computational speed. The NN
based method is approximately 290 times faster than the dynamic simulation based method.
Simulation results with the obtained optimal gain validate the proposed method.
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