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1. Introduction

Signal processing is a fast growing area today and the desired effectiveness in utilization
of bandwidth and energy makes the progress even faster. Special signal processors have
been developed to make it possible to implement the theoretical knowledge in an efficient
way. Signal processors are nowadays frequently used in equipment for radio, transportation,
medicine, and production, etc.
One of the basic problems encountered in signal representations using conventional Fourier
transform (FT) is the ineffectiveness of the Fourier kernel to represent and compute location
information. One method to overcome such a problem is the windowed Fourier transform
(WFT). Recently, Gröchenig (2001); Gröchenig & Zimmermann (2001); Weisz (2008) have
extensively studied the WFT and its properties from a mathematical point of view. Kemao
(2007); Zhong & Zeng (2007) applied the WFT as a tool of spatial-frequency analysis, which is

able to characterize the local frequency at any location in a fringe pattern.
On the other hand the quaternion Fourier transform (QFT), which is a nontrivial
generalization of the real and complex Fourier transform (FT) using quaternion algebra, has
been of interest to researchers, for example, Hitzer (2007); Mawardi et al. (2008); Sangwine
& Ell (2007). It was found that many FT properties still hold but others have to be modified.
Based on the (right-sided) QFT, one can extend the classical windowed Fourier transform
(WFT) to quaternion algebra while enjoying the same properties as in the classical case.
In this paper, by using the adjoint operator of the (right-sided) QFT, we derive the Plancherel
theorem for the QFT. We apply it to prove the orthogonality relation and reconstruction
formula of the two-dimensional quaternionic windowed Fourier transform (QWFT). Our
results can be considered as an extension and continuation of the previous work of Mawardi
et al. (2008). We then present several examples to show the differences between the QWFT and
the WFT. Finally, we present a generalization of the QWFT to higher dimensions.
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2. Basics

For convenience of further discussions, we briefly review some basic facts on quaternions. The
quaternion algebra over R, denoted by

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R}, (1)

is an associative non-commutative four-dimensional algebra, which obeys Hamilton’s
multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (2)

The quaternion conjugate of a quaternion q is defined by

q̄ = q0 − iq1 − jq2 − kq3, q0, q1, q2, q3 ∈ R, (3)

and it is an anti-involution, i.e.
qp = p̄q̄. (4)

From (3), we obtain the norm of q ∈ H defined as

|q| =
√

qq̄ =
√

q2
0 + q2

1 + q2
2 + q2

3. (5)

It is not difficult to see that
|qp| = |q||p|, ∀p, q ∈ H. (6)

Using the conjugate (3) and the modulus of q, we can define the inverse of q ∈ H \ {0} as

q−1 =
q̄

|q|2 , (7)

which shows that H is a normed division algebra.

It is convenient to introduce the inner product ( f , g)L2(R2;H) valued in H of two quaternion
functions f and g as follows:

( f , g)L2(R2;H) =
∫

R2
f (x)g(x) d2x. (8)

The associated norm is defined by

‖ f ‖L2(R2;H) = ( f , f )1/2
L2(R2;H)

=

(

∫

R2
| f (x)|2 d2x

)1/2

. (9)

As a consequence of the inner product (8), we obtain the quaternion Cauchy-Schwarz inequality:

∣

∣

∣

∫

R2
f ḡ d2x

∣

∣

∣
≤

(

∫

R2
| f |2d2x

)1/2 (∫

R2
|g|2d2x

)1/2

, ∀ f , g ∈ L2(R2; H). (10)

3. Quaternionic Fourier Transform (QFT)

Let us introduce the continuous (right-sided) QFT. For more details, we refer the reader to
Hitzer (2007); Mawardi et al. (2008); Sangwine & Ell (2007).
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3.1 Definition of QFT

Definition 3..1 (Right-sided QFT). The QFT of f ∈ L1(R2; H) is the function Fq{ f } : R
2 → H

given by

Fq{ f }(ω) =
∫

R2
f (x)e−iω1 x1 e−jω2x2 d2x, (11)

where x = x1e1 + x2e2, ω = ω1e1 + ω2e2, and the quaternion exponential product e−iω1x1 e−jω2 x2

is the quaternion Fourier kernel.

Theorem 3..1 (Inverse QFT). Suppose that f ∈ L2(R2; H) and Fq{ f } ∈ L1(R2; H). Then the QFT
of f is an invertible transform and its inverse is given by

F−1
q [Fq{ f }](x) = f (x) =

1

(2π)2

∫

R2
Fq{ f }(ω)ejω2 x2 eiω1x1 d2

ω, (12)

where the quaternion exponential product ejω2 x2 eiω1x1 is called the inverse (right-sided) quaternion
Fourier kernel.

4. Linear Operators on Quaternionic Hilbert Spaces

In this section, we will briefly introduce the notation of linear operator on quaternionic Hilbert
spaces. In fact, it is a natural generalization of the idea of an operator on a real and complex
Hilbert space.

Definition 4..1. Let X and Y be two H-vector spaces. The operator T : X −→ Y is called a left
H-linear space if

T(αx + βy) = αT(x) + βT(x), (13)

for all quaternion constants α, β ∈ H and for all x, y ∈ X.

Definition 4..2. The adjoint of H-linear operator T : X −→ X is the unique H-linear operator
T∗ : X −→ X such that

(Tx, y) = (x, T∗y), ∀x, y ∈ X. (14)

This gives the following result.

Theorem 4..1. The adjoint of the QFT is inverse of the QFT multiplied by (2π)2, i.e.

(Fq{ f }, g)L2(R2;H) = (2π)2( f ,F−1
q {g})L2(R2;H). (15)

Proof. For f , g ∈ L2(R2; H) we calculate the inner product (8) to get

(Fq{ f }, g)L2(R2;H) =
∫

R2
Fq{ f }(ω) g(ω) d2

ω

(11)
=

∫

R2

∫

R2
f (x) e−iω1x1 e−jω2x2 d2xg(ω) d2

ω

(4)
=

∫

R2
f (x)

(

∫

R2
g(ω) ejx1ω1 eix2ω2 d2

ω

)

d2x

=
∫

R2
f (x) (2π)2F−1

q {g}(x) d2x

= (2π)2( f ,F−1
q {g})L2(R2;H), (16)

which completes the proof.
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Remark 4..1. Note that Theorem 4..1 is not valid for the (two-sided) QFT. This fact implies that the
Plancherel theorem can not be established.

Theorem 4..2 (Plancherel formula). Suppose that f , g ∈ L2(R2; H). Then

(Fq{ f },Fq{g})L2(R2;H) = (2π)2( f , g)L2(R2;H) (17)

and
(F−1

q [Fq{ f }],F−1
q [Fq{g}])L2(R2;H) = (2π)2( f , g)L2(R2;H). (18)

Proof. A simple calculation gives for every f , g ∈ L2(R2; H)

(Fq{ f },Fq{g})L2(R2;H)
(15)
= (2π)2( f ,F−1

q [Fq{g}])L2(R2;H)

(12)
= (2π)2( f , g)L2(R2;H), (19)

as desired. Equation (18) can be established in a similar manner.

4.1 Discrete QFT

Similar to the discrete Fourier transform, the discrete quaternionic Fourier transform (DQFT)

and the inverse discrete quaternionic Fourier transform (IDQFT) are defined as follows.

Definition 4..3. Let f (m, n) be a two-dimensional quaternion discrete-time sequence. The DQFT of
f (m, n) is defined by F(u, v) ∈ H

M×N, where

F(u, v) =
M−1

∑
m=0

N−1

∑
n=0

f (m, n) e−i um
M e−j vn

N . (20)

Definition 4..4. The IDQFT is defined by

f (m, n) =
1

(2π)2MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej vn
N ei um

M . (21)

4.2 Application of DQFT

In the following, we introduce an application of the DQFT to study two-dimensional discrete
linear time-varying (TV) systems. For this purpose, let us introduce the following definition.

Definition 4..5. Consider a two-dimensional discrete linear TV system with the quaternion impulse
response of the filter denoted h(·, ·, ·, ·). The output r(·, ·) of the system to the input f (·, ·) is defined by

r(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v). (22)

The transfer function of the TV filter h can be obtained by

R(m, n, ω1, ω2) =
∞

∑
m′=−∞

∞

∑
n′=−∞

h(m, n, m′, n′) e−im′ω1 e−jn′ω2 . (23)

The following simple theorem relates the DQFT to the output of a discrete linear TV band-pass
filter.
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Theorem 4..3. Consider a linear TV system with the quaternion impulse response h defined by

h(m, n, m′, n′) = e−i m(m−m′)
M e−j n(n−n′)

N , for 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1. (24)

If the input to this system is the quaternion signal f (u, v), then its output r(·, ·) is equal to the DQFT

of f (u, v).

Proof. Using Definition 4..5, we obtain

r(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v)

=
M−1

∑
u=0

N−1

∑
v=0

f (u, v) e−i m(m−(m−u))
M e−j n(n−(n−v))

N

=
M−1

∑
u=0

N−1

∑
v=0

f (u, v) e−i um
M e−j vn

N , (25)

which completes the proof by Definition 4..3.

If the quaternion impulse response h is given by

h(m, n, m′, n′) =
1

(2π)2MN
ej n(n−n′)

N ei m(m−m′)
M , (26)

then (22) implies

r2(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v)

=
1

(2π)2 MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej n(n−(n−v))
N ei m(m−(m−u))

M

=
1

(2π)2 MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej nv
N ei um

M , (27)

where the input to the system is quaternion signal F(u, v).
Equations (24) and (26) show that the choice of the quaternion impulse response of the filter
determines output characteristics of the discrete linear TV systems.

5. Quaternionic windowed Fourier Transform

In section, we introduce the QWFT presented in Mawardi et al. (2010). As we will see, not all
properties of the WFT can be established for the QWFT.
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5.1 2-D WFT

Although the FT is a powerful tool for the analysis of stationary signals, the FT is not well
suited for the analysis of non-stationary signals. Because the FT is a global transformation with
poor spatial localization Zhong & Zeng (2007). However, in practice, most natural signals are
non-stationary. In order to characterize a non-stationary signal properly, the WFT is commonly
used.

Definition 5..1 (WFT). The WFT of a two-dimensional real signal f ∈ L2(R2; R) with respect to the
window function g ∈ L2(R2) \ {0} is given by

Gg f (ω, b) =
∫

R2
f (x) g

ω,b(x) d2x, (28)

where the window daughter function g
ω,b is defined by

g
ω,b(x) = g(x − b)e

√
−1 ω·x. (29)

The window daughter function g
ω,b is also called the windowed Fourier kernel.

Most applications make use of the Gaussian window function g, which is non-negative and
well localized around the origin both in spatial and frequency domains. The Gaussian window
function can be represented as

g(x, σ1, σ2) = e−[(x1/σ1)2+(x2/σ2)2]/2, (30)

where σ1 and σ2 are the standard deviations of the Gaussian function. For fixed ω0 = u0e1 +
v0e2,

gc,ω0 (x, σ1, σ2) = e
√
−1 (u0x1+v0x2)e−[(x1/σ1)2+(x2/σ2)2]/2 (31)

is called a complex Gabor filter.

5.2 Quaternionic Gabor filters

Bülow (1999; Felsberg & Sommer) extended the complex Gabor filter gc,ω0 (x, σ1, σ2) to

quaternions by replacing the complex kernel e
√
−1(u0x1+v0x2) with the inverse (two-sided)

quaternion Fourier kernel eiu0 x1 ejv0 x2 . He proposed the extension form

gq(x, σ1, σ2) = eiu0 x1 ejv0 x2 e−[(x1/σ1)2+(x2/σ2)2]/2, (32)

which he called quaternionic Gabor filter, and applied it to get the local quaternionic phase of
a two-dimensional real signal. Bayro-Corrochano et al. (2007) also used quaternionic Gabor
filters for the preprocessing of 2D speech representations. Based on (32), the quaternionic
windowed Fourier kernel can be written in the form

Φ
ω,b(x) = eiu0 x1 g(x − b)ejv0x2 . (33)

The extension of the WFT to quaternions using the quaternionic windowed Fourier kernel (33)

is rather complicated, due to the non-commutativity of quaternion functions. Alternatively,
we use the kernel of the (right-sided) QFT to define the quaternionic windowed Fourier kernel
which enables us to extend the WFT to quaternions.
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Definition 5..2. For a non-zero quaternion window function φ ∈ L2(R2; H) \ {0}, its quaternionic
window daughter function is defined by

φ
ω,b(x) = ejω2x2 eiω1 x1 φ(x − b). (34)

For fixed ω0 = u0e1 + v0e2, our quaternionic Gabor filter is defined by

Gq(x, σ1, σ2) = ejv0x2 eiu0 x1 e−[(x1/σ1)2+(x2/σ2)2]/2. (35)

Lemma 5..1. For φ
ω,b ∈ L2(R2; H), we have

‖φω,b‖
2
L2(R2;H) = ‖φ‖2

L2(R2;H). (36)

5.3 Definition of QWFT

Definition 5..3 (QWFT). Let φ ∈ L2(R2; H) \ {0} be a non-zero quaternion window function.
Denote by Gφ, the QWFT on L2(R2; H). The QWFT of f ∈ L2(R2; H) with respect to φ is defined
by

Gφ f (ω, b) =
∫

R2
f (x) φ

ω,b(x) d2x

=
∫

R2
f (x) φ(x − b)e−iω1x1 e−jω2x2 d2x. (37)

The quaternionic window daughter function

φ
ω,b(x) = ejω2x2 eiω1x1 φ(x − b) (38)

is also called the quaternionic windowed Fourier kernel.

These lead to the following observations:

• Equation (37) shows that it is generated using the inverse (right-sided) QFT kernel. Note
that the definition is not valid using the kernel of the (two-sided) QFT.

• If we fix ω = ω0, and b1 = b2 = 0, and take the Gaussian function as the window function
of (38), then we get the quaternionic Gabor filter

Gq(x, σ1, σ2) = ejv0x2 eiu0 x1 e−[(x1/σ1)2+(x2/σ2)2]/2. (39)

• Since the modulation property does not hold for the QFT, equations (37) and (38) can not
be expressed in terms of the QFT.

It is easy to see that
Gφ f (ω, b) = Fq{ f · Tbφ̄}(ω), (40)

where the translation operator is defined by

Tb f = f (x − b). (41)

Equation (40) clearly shows that the QWFT can be regarded as the (right-sided) QFT of the
product of a quaternion-valued signal f and a quaternion conjugated and shifted quaternion
window function, or as an inner product (8) of f and the quaternionic window daughter

function. In contrast to the QFT basis e−iω1x1 e−jω1 x2 , which has an infinite spatial extension,

the QWFT basis φ(x − b) e−iω1x1 e−jω1x2 has a limited spatial extension due to the locality of
the quaternion window function φ(x − b).
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5.4 Properties of QWFT

The following proposition describes the elementary properties of the QWFT. Its proof is
straightforward.

Proposition 5..2. Let φ ∈ L2(R2; H) be a quaternion window function.

(i). (Left linearity)
[Gφ(λ f + µg)](ω, b) = λGφ f (ω, b) + µGφg(ω, b), (42)

for arbitrary quaternion constants λ, µ ∈ H.

(ii). (Parity)
GPφ(P f )(ω, b) = Gφ f (ω,−b), (43)

where P is the parity operator defined by P f (x) = f (−x).

(iii). (Specific shift) Assume that f = f0 + i f1 and φ = φ0 + iφ1.

Gφ(Tx0 f )(ω, b) = e−iω1x0
(

Gφ f (ω, b − x0)
)

e−jω2y0 . (44)

Let us give alternative proofs of the orthogonality relation and reconstruction formula. We
follow the idea of Gröchenig (2001) to prove the theorems.

Theorem 5..3 (Orthogonality relation). Let φ, ψ be quaternion window functions and f , g ∈
L2(R2; H) arbitrary. Then we have

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b = (2π)2( f (φ̄, ψ̄)L2(R2;H), g)L2(R2;H). (45)

Proof. We notice that
Gφ f (ω, b) = Fq{ f · Tbφ̄}(ω), (46)

for fixed b. We have known that the Plancherel theorem is valid for the (right-sided) QFT. So,
applying it into the left-hand side of (45), we get

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω = (Fq{ f · Tbφ̄},F{ f · Tbψ̄})L2(R2;H)

= (2π)2( f · Tbφ̄, f · Tbψ̄)L2(R2;H)

= (2π)2
∫

R2
f (x)φ(x − b)ψ(x − b)g(x) d2x. (47)

If we assume that f φ̄ and ψḡ are in L2(R2; H), then integrating (47) with respect to d2b yields

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b = (2π)2
∫

R2
f (x)

∫

R2
φ(x − b)ψ(x − b)g(x) d2x d2b

= (2π)2
∫

R2
f (x)

∫

R2
φ(x′)ψ(x′) d2x′ g(x) d2x, (48)

which proves the theorem.

From the above theorem, we obtain the following consequences.
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(i). If φ = ψ, then

∫

R2
Gφ f (ω, b) Gφg(ω, b) d2b d2

ω = (2π)2‖φ‖L2(R2;H)( f , g)L2(R2;H). (49)

This formula is quite similar to the orthogonality relation of the classical WFT, for example,
see Gröchenig (2001). However, we must remember that equation (49) is a quaternion
valued function.

(ii). If f = g, then

∫

R2
Gφ f (ω, b) Gψ f (ω, b) d2b d2

ω = (2π)2( f (φ̄, ψ̄)L2(R2;H), f )L2(R2;H). (50)

(iii). If f = g and φ = ψ, then

∫

R2

∫

R2

∣

∣Gφ f (ω, b)
∣

∣

2
d2b d2

ω = (2π)2‖ f ‖2
L2(R2;H)‖φ‖2

L2(R2;H). (51)

(iv). If the quaternion window function is normalized so that ‖φ‖L2(R2;H) = 1, then (51)
becomes

∫

R2

∫

R2

∣

∣Gφ f (ω, b)
∣

∣

2
d2b d2

ω = (2π)2‖ f ‖2
L2(R2;H). (52)

Equation (52) shows that the QWFT is an isometry from L2(R2; H) into L2(R2; H). In other
words, up to the factor (2π)2, the total energy of a quaternion-valued signal computed in
the spatial domain is equal to the total energy computed in the quaternionic windowed
Fourier domain.

Theorem 5..4 (Reconstruction formula). Let φ, ψ ∈ L2(R2; H) be two quaternion window
functions. Assume that (φ, ψ)L2(R2;H) 
= 0. Then, every 2-D quaternion signal f ∈ L2(R2; H) can
be fully reconstructed by

f (x) = (2π)−2
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b(x) (φ̄, ψ̄)−1
L2(R2;H)

d2b d2
ω. (53)

Under the same assumptions as in (49), we obtain

f (x) =
1

(2π)2‖φ‖2
L2(R2;H)

∫

R2

∫

R2
Gφ f (ω, b)φ

ω,b(x) d2b d2
ω. (54)

Proof. By direct calculation, we obtain

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b =
∫

R2

∫

R2

∫

R2
Gφ f (ω, b) ψ

ω,b(x)ḡ(x) d2
ω d2b d2x

= (
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b, g)L2(R2;H), (55)

for every g ∈ L2(R2; H). Applying (45) of Theorem 5..3 to the left-hand side of (55), we have

(2π)2( f (φ̄, ψ̄)L2(R2;H), g)L2(R2;H) =

(

∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b, g

)

L2(R2;H)
, (56)
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for every g ∈ L2(R2; H). Since the inner product identity (56) holds for every g ∈ L2(Rn; H),
we conclude that

(2π)2 f (φ̄, ψ̄)L2(R2;H) =
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b. (57)

Multiplying both sides of (57) from the right side by (2π)−2(φ̄, ψ̄)−1
L2(R2;H)

, we immediately

obtain

f = (2π)−2
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b (φ̄, ψ̄)−1
L2(R2;H)

d2
ω d2b. (58)

Notice also that if φ = ψ, then (φ̄, ψ̄)L2(R2;H) = ‖φ̄‖2
L2(R2;H)

= ‖φ‖2
L2(R2;H)

. This proves (54).

Theorem 5..5 (Reproducing kernel). Let be φ ∈ L2(R2; H) be a quaternion window function. If

Kφ(ω, b; ω
′, b′) =

1

(2π)2‖φ‖2
L2(R2;H)

(φ
ω,b, φ

ω′ ,b
′ )L2(R2;H), (59)

then Kφ(ω, b; ω
′, b′) is a reproducing kernel, i.e.

Gφ f (ω′, b′) =
∫

R2

∫

R2
Gφ f (ω, b)Kφ(ω, b; ω

′, b′) d2
ω d2b. (60)

Proof. By inserting (53) into the definition of the QWFT (37), we obtain

Gφ f (ω′, b′) =
∫

R2
f (x) φ

ω
′,b

′ (x) d2x

=
∫

R2

(

1

(2π)2‖φ‖2
L2(R2;H)

∫

R2

∫

R2
Gφ f (ω, b) φ

ω,b(x)d
2b d2

ω

)

φ
ω

′,b
′ (x) d2x

=
∫

R2

∫

R2
Gφ f (ω, b)

1

(2π)2‖φ‖2
L2(R2;H)

(

∫

R2
φ

ω,b(x)φω
′,b

′ (x) d2x

)

d2b d2
ω

=
∫

R2

∫

R2
Gφ f (ω, b)Kφ(ω, b; ω

′, b′) d2b d2
ω, (61)

which was to be proved.

5.5 Examples of the QWFT

For illustrative purposes, we will give examples of the QWFT. Let us begin with a
straightforward example given in Mawardi et al. (2010).

Example 5..1. Consider the two-dimensional first order B-spline window function defined by

φ(x) =

{

1, if −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1,

0, otherwise.
(62)

Obtain the QWFT of the function defined as follows:

f (x) =

{

ex1+x2 , if −∞ < x1 < 0 and −∞ < x2 < 0,

0, otherwise.
(63)
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By applying the definition of the QWFT, we have

Gφ f (ω, b) =
1

(2π)2

∫ m1

−1+b1

∫ m2

−1+b2

ex1+x2 e−iω1x1 e−jω2x2 dx1dx2,

m1 = min(0, 1 + b1), m2 = min(0, 1 + b2). (64)

Simplifying (64) yields

Gφ f (ω, b) =
1

(2π)2

∫ m1

−1+b1

∫ m2

−1+b2

ex1(1−iω1)ex2(1−jω2) d2x

=
1

(2π)2

∫ m1

−1+b1

ex1(1−iω1)dx1

∫ m2

−1+b2

ex2(1−jω2) dx2

=
1

(2π)2
ex1(1−iω1)(1 − iω1)

∣

∣

∣

m1

−1+b1

ex2(1−jω2)

(1 − jω2)

∣

∣

∣

m2

−1+b2

=
(em1(1−iω1) − e(−1+b1)(1−iω1))(em2(1−jω2) − e(−1+b2)(1−jω2))

(2π)2(1 − iω1 − jω2 + kω1ω2)
. (65)

Using the properties of quaternions, we obtain

Gφ f (ω, b)

=
(em1(1−iω1)−e(−1+b1)(1−iω1))(em2(1−jω2)−e(−1+b2)(1−jω2))(1+iω1+ jω2−kω1ω2)

(2π)2(1 + ω2
1 + ω2

2 + ω2
1ω2

2)
. (66)

Example 5..2. Let the window function be the two-dimensional Haar function defined by

φ(x) =

⎧

⎪

⎨

⎪

⎩

1, for 0 ≤ x1 < 1/2 and 0 ≤ x2 < 1/2,

−1, for 1/2 ≤ x1 < 1 and 1/2 ≤ x2 < 1,

0, otherwise.

(67)

Find the QWFT of the Gaussian function f (x) = e−(x2
1+x2

2).

From Definition 5..3, we obtain

Gφ f (ω, b) =
1

(2π)2

∫

R2
f (x)φ(x − b)e−iω1x1 e−jω2 x2 d2x

=
1

(2π)2

∫ 1/2+b1

b1

e−x2
1 e−iω1x1 dx1

∫ 1/2+b2

b2

e−x2
2 e−jω2 x2 dx2

− 1

(2π)2

∫ 1+b1

1/2+b1

e−x2
1 e−iω1x1 dx1

∫ 1+b2

1/2+b2

e−x2
2 e−jω2 x2 dx2. (68)

By completing squares, we have

Gφ f (ω, b) =
1

(2π)2

∫ 1/2+b1

b1

e−(x1+iω1/2)2−ω2
1/4dx1

∫ 1/2+b2

b2

e−(x2+jω2/2)2−ω2
2 /4dx2

− 1

(2π)2

∫ 1+b1

1/2+b1

e−(x1+iω1/2)2−ω2
1 /4dx1

∫ 1+b2

1/2+b2

e−(x2+jω2/2)2−ω2
2/4dx2. (69)
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Making the substitutions y1 = x1 + i ω1
2 and y2 = x2 + j ω2

2 in the above expression, we
immediately obtain

Gφ f (ω, b) =
e−(ω2

1+ω2
2)/4

(2π)2

∫ 1/2+b1+iω1/2

b1+iω1/2
e−y2

1 dy1

∫ 1/2+b2+jω2/2

b2+jω2/2
e−y2

2 dy2

− e−(ω2
1+ω2

2)/4

(2π)2

∫ 1+b1+iω1/2

1/2+b1+iω1/2
e−y2

1 dy1

∫ 1+b2+jω2/2

1/2+b2+jω2/2
e−y2

2 dy2

=
e−(ω2

1+ω2
2)/4

(2π)2

[(

∫ b1+iω1/2

0
(−e−y2

1) dy1 +
∫ 1/2+b1+iω1/2

0
e−y2

1 dy1

)

×
(

∫ b2+jω2/2

0
(−e−y2

2) dy2 +
∫ 1/2+b2+jω2/2

0
e−y2

2 dy2

)

−
(

∫ 1/2+b1+iω1/2

0
(−e−y2

1) dy1 +
∫ 1+b1+iω1/2

0
e−y2

1 dy1

)

×
(

∫ 1/2+b2+jω2/2

0
(−e−y2

2) dy2 +
∫ 1+b2+jω2/2

0
e−y2

2 dy2

)]

. (70)

Denote erf(x) =
2√
π

∫ x

0
e−t2

dt. Equation (70) can be written in the form

Gφ f (ω, b) =
e−(ω2

1+ω2
2)/4

(2
√

π)3

{[

−erf

(

b1 +
i

2
ω1

)

+ erf

(

1

2
+ b1 +

i

2
ω1

)]

×
[

−erf

(

b2 +
j

2
ω2

)

+ erf

(

1

2
+ b2 +

j

2
ω2

)]

−
[

−erf

(

1

2
+ b1 +

i

2
ω1

)

+ erf

(

1 + b1 +
i

2
ω1

)]

×
[

−erf

(

1

2
+ b2 +

j

2
ω2

)

+ erf

(

1 + b2 +
j

2
ω2

)]}

. (71)

6. Clifford windowed Fourier Transform

In this section, we introduce the Clifford windowed Fourier transform as a generalization of
two-dimensional quaternionic Fourier transform to higher dimensions. Let us start with the
following definition.

Definition 6..1. The Clifford windowed Fourier transform of a multivector function f ∈ L2(Rn; Cl0,n)
with respect to the non-zero Clifford window function φ ∈ L2(Rn; Cl0,n) is given by

Gc
φ f (ω, b) =

∫

Rn
f (x) φb,ω(x) dnx

=
∫

Rn
f (x) φ(x − b)

n

∏
k=1

e−ekωkxk dnx, (72)
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where ω, b ∈ R
n and e1, e2, e3, · · · , en are the orthonormal vector basis of Clifford algebra Cl0,n which

satisfy the following rules:

ei ej = −ej ej for i 
= j, i, j = 1, 2, 3, · · · , n

e2
i = −1 for i = 1, 2, 3, · · · , n.

We call

φ
ω,b(x) =

n−1

∏
k=0

een−kωn−kxn−kφ(x − b), (73)

a Clifford windowed Fourier kernel. Notice that the Clifford windowed Fourier transform for
n = 2 is identical with the QWFT and that for n = 1 is identical with the classical windowed
Fourier transform.

7. Conclusion

Using the basic concepts of quaternion algebra and its Fourier transform, we have introduced
2-D quaternionic windowed Fourier transform. Since the multiplication in quaternions is
non-commutative, some properties of the classical windowed Fourier transform, such as the
shift property, orthogonality relation and reconstruction formula, needed to be modified. We
have shown that the construction formula can be extended to higher dimensions using the
Clifford Fourier transform. Like quaternion wavelets, which are successfully applied to optical

flow, it will be possible to apply the QWFT to optical flow, image features and image fusion in
the future.
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