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1. Introduction

Speech is the most natural form of communication for human beings and is often described as
a unimodal communication channel. However, it is well known that speech is multimodal in
nature and includes the auditive, visual, and tactile modalities. Other less natural modalities
such as electromyographic signal, invisible articulator display, or brain electrical activity or
electromagnetic activity can also be considered. Therefore, in situations where audio speech is
not available or is corrupted because of disability or adverse environmental condition, people
may resort to alternative methods such as augmented speech.
In several automatic speech recognition systems, visual information from lips/mouth and
facial movements has been used in combination with audio signals. In such cases, visual
information is used to complement the audio information to improve the system’s robustness
against acoustic noise (Potamianos et al., 2003).
For the orally educated deaf or hearing-impaired people, lip reading remains a crucial speech
modality, though it is not sufficient to achieve full communication. Therefore, in 1967, Cornett
developed the Cued Speech system as a supplement to lip reading (O.Cornett, 1967). Recently,
studies have been presented on automatic Cued Speech recognition using hand gestures in
combination with lip/mouth information (Heracleous et al., 2009).
Several other studies have been introduced that deal with the problem of alternative
speech communication based on speech modalities other than audio speech. A method for
communication based on inaudible speech received through body tissues has been introduced
using the Non-Audible Murmur (NAM) microphone. NAM microphones have been used
for receiving and automatically recognizing sounds of speech-impaired people, for ensuring
privacy in communication, and for achieving robustness against noise (Heracleous et al., 2007;
Nakamura et al., 2008). Aside from automatic recognition of NAM speech, silicon NAM
microphones were used for NAM-to-speech conversion (Toda & Shikano, 2005; Tran et al.,
2008).
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A few researchers have addressed the problem of augmented speech based on the activation
signal of the muscles produced during speech production (Jou et al., 2006). The OUISPER
project (Hueber et al., 2008) attempts to automatically recognize and resynthesize speech
based on the signals of tongue movements captured by an ultrasound device in combination
with lip information.
In this article, automatic recognition of Cued Speech for French and Non-Audible Murmur
(NAM) recognition are introduced. Cued Speech is a visual mode for communication in
the deaf society. Using only visual information produced by lip movements and hand
shapes, all the sounds of a spoken language can be visually distinguished and thus enabling
deaf individuals to communicate with each other and also with normal-hearing people.
Non-Audible Murmur is very quietly uttered speech which can be perceived by a special
acoustic sensor (i.e., NAM microphone). NAM microphones can be used for privacy, for
robustness against noise, and also by speech-impaired people. In this study, experimental
results are also presented showing the effectiveness of the two methods in augmentative
speech communication.

2. Cued Speech

To date, visual information is widely used to improve speech perception or automatic speech
recognition (lipreading) (Potamianos et al., 2003). With lipreading technique, speech can be
understood by interpreting the movements of lips, face and tongue. In spoken languages,
a particular facial and lip shape corresponds to a specific sound (phoneme). However,
this relationship is not one-to-one and many phonemes share the same facial and lip shape
(visemes). It is impossible, therefore to distinguish phonemes using visual information alone.
Without knowing the semantic context, one cannot perceive the speech thoroughly even
with high lipreading performances. To date, the best lip readers are far away into reaching
perfection. On average, only 40 to 60% of the vowels of a given language (American English)
are recognized by lipreading (Montgomery & Jackson, 1983), and 32% when relating to low
predicted words (Nicholls & Ling, 1982). The best result obtained amongst deaf participants
was 43.6% for the average accuracy (Auer & Bernstein, 2007; Bernstein et al., 2007). The
main reason for this lies in the ambiguity of the visual pattern. However, as far as the
orally educated deaf people are concerned, the act of lipreading remains the main modality of
perceiving speech.
To overcome the problems of lipreading and to improve the reading abilities of profoundly
deaf children, Cornett (O.Cornett, 1967) developed in 1967 the Cued Speech system to
complement the lip information and make all phonemes of a spoken language clearly visible.
As many sounds look identical on face/lips (e.g., /p/, /b/, and /m/), using hand information
those sounds can be distinguished and thus make possible for deaf people to completely
understand a spoken language using visual information only.
Cued Speech [also referred to as Cued Language (Fleetwood & Metzger, 1998)] uses hand
shapes placed in different positions near the face along with natural speech lipreading to
enhance speech perception from visual input. This is a system where the speaker faces
the perceiver and moves his hand in close relation with speech. The hand, held flat and
oriented so that the back of the hand faces the perceiver, is a cue that corresponds to a unique
phoneme when associated with a particular lip shape. A manual cue in this system contains
two components: the hand shape and the hand position relative to the face. Hand shapes
distinguish among consonant phonemes whereas hand positions distinguish among vowel
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phonemes. A hand shape, together with a hand position, cues a syllable. Cued Speech

Fig. 1. Hand shapes for consonants (top) and hand position (bottom) for vowels in French
Cued Speech.

improves the speech perception of deaf people (Nicholls & Ling, 1982; Uchanski et al., 1994).
Moreover, for deaf people who have been exposed to this mode since their youth, it offers
a complete representation of the phonological system, and therefore it has a positive impact
on the language development (Leybaert, 2000). Figure 1 describes the complete system for
French. In French Cued Speech, eight hand shapes in five positions are used. The system was
adapted from American English to French in 1977. To date, Cued Speech has been adapted in
more than 60 languages.
Another widely used communication method for deaf individuals is the Sign Language
(Dreuw et al., 2007; Ong & Ranganath, 2005). Sign Language is a language with its own
grammar, syntax and community; however, one must be exposed to native and/or fluent
users of Sign Language to acquire it. Since the majority of children who are deaf or
hard-of-hearing have hearing parents (90%), these children usually have limited access to
appropriate Sign Language models. Cued Speech is a visual representation of a spoken
language, and it was developed to help raise the literacy levels of deaf individuals. Cued
Speech was not developed to replace Sign Language. In fact, Sign Language will be always
a part of deaf community. On the other hand, Cued Speech is an alternative communication
method for deaf individuals. By cueing, children who are deaf would have a way to easily
acquire the native home language, read and write proficiently, and communicate more easily
with hearing family members who cue them.
In the first attempt for vowel recognition in Cued Speech, in (Aboutabit et al., 2007) a method
based on separate identification, i.e., indirect decision fusion was used and a 77.6% vowel
accuracy was obtained. In this study, however, the proposed method is based on HMMs
and uses concatenative feature fusion to integrate the components into a combined one and
then perform automatic recognition. Fusion (Adjoudani & Benoît, 1996; Hennecke et al., 1996;
Nefian et al., 2002) is the integration of all available single modality streams into a combined
one. In this study, lip shape and hand components are combined in order to realize automatic
recognition in Cued Speech for French.

305Towards Augmentative Speech Communication

www.intechopen.com



4 Will-be-set-by-IN-TECH

3. Non-Audible Murmur (NAM)

Non-Audible Murmur (NAM) refers to a very softly uttered speech received through the
body tissue. A special acoustic sensor (i.e., the NAM microphone) is attached behind the
talker’s ear. This receives very soft sounds that are inaudible to other listeners who are in
close proximity to the talker.
The attachment of the NAM microphone to the talker is shown in Figure 2. The first NAM
microphone was based on stethoscopes used by medical doctors to examine patients, and was
called the stethoscopic microphone (Nakajima et al., 2003). Stethoscopic microphones were
used for the automatic recognition of NAM speech (Heracleous et al., 2004). The silicon NAM
microphone is a more advanced version of the NAM microphone (Nakajima et al., 2005). The
silicon NAM microphone is a highly sensitive microphone wrapped in silicon; silicon is used
because its impedance is similar to that of human skin. Silicon NAM microphones have been
employed for automatic recognition of NAM speech as well as for NAM-to-speech conversion
(Toda & Shikano, 2005). Similar approaches have been introduced for speech enhancement
or speech recognition (Jou et al., 2004; Zheng et al., 2003). Further, non-audible speech
recognition has also been reported based on electromyographic (EMG) speech recognition,
which processes electric signals caused by the articulatory muscles (Walliczek et al., 2006).

Fig. 2. NAM microphone attached to the talker

The speech received by a NAM microphone has different spectral characteristics in
comparison to normal speech. In particular, the NAM speech shows limited high-frequency
contents because of body transmission. Frequency components above the 3500-4000 Hz range
are not included in NAM speech. The NAM microphone can also be used to receive audible
speech directly from the body [Body Transmitted Ordinary Speech (BTOS)]. This enables
automatic speech recognition in a conventional way while taking advantage of the robustness
of NAM against noise.
Previous studies have reported experiments for NAM speech recognition that produced very
promising results. A word accuracy of 93.9% was achieved for a 20k Japanese vocabulary
dictation task when a small amount of training data from a single speaker was used
(Heracleous et al., 2004). Moreover, experiments were conducted using simulated and real
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noisy test data with clean training models to investigate the role of the Lombard reflex
(Heracleous et al., 2007; Junqua, 1993) in NAM recognition.
In the present study, audio-visual NAM recognition is investigated by using the concatenative
feature fusion, the multistream HMM decision fusion, and late fusion to integrate the audio
and visual information. A statistical significance test was performed, and audio-visual NAM
recognition in a noisy environment was also investigated.

4. Experiments

4.1 Cued Speech automatic recognition

The data for vowel- and consonant recognition experiments were collected from a
normal-hearing cuer. The female native French speaker employed for data recording
was certified in transliteration speech into Cued Speech in the French language. She regularly
cues in schools. The cuer wore a helmet to keep her head in a fixed position and opaque
glasses to protect her eyes against glare from the halogen floodlight. The cuer’s lips were
painted blue, and blue marks were marked on her glasses as reference points. These
constraints were applied in recordings in order to control the data and facilitate the extraction
of accurate features.
The data were derived from a video recording of the cuer pronouncing and coding in Cued
Speech a set of 262 French sentences. The sentences (composed of low predicted multi-syllabic
words) were derived from a corpus that was dedicated to Cued Speech synthesis (Gibert
et al., 2005). Each sentence was dictated by an experimenter, and was repeated two or three
times (to correct the pronunciation errors) by the cuer resulting in a set of 638 sentences.

Fig. 3. Parameters used for lip shape modeling.

The audio part of the video recording was synchronized with the image. Figure 3 shows the
lip shape parameters used in the study. An automatic image processing method was applied
to the video frames in the lip region to extract their inner and outer contours and derive the
corresponding characteristic parameters: lip width (A), lip aperture (B), and lip area (S) (i.e.,
six parameters in all).
The process described here resulted in a set of temporally coherent signals: the 2D hand
information, the lip width (A), the lip aperture (B), and the lip area (S) values for both inner
and outer contours, and the corresponding acoustic signal. In addition, two supplementary
parameters relative to the lip morphology were extracted: the pinching of the upper lip (Bsup)
and lower (Binf) lip. As a result, a set of eight parameters in all was extracted for modeling lip
shapes. For hand position modeling, the xy coordinates of two landmarks placed on the hand
were used (i.e., 4 parameters). For hand shape modeling, the xy coordinates of the landmarks
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placed on the fingers were used (i.e., 10 parameters). Non-visible landmarks received default
coordinates [0,0].
During the recording of Cued Speech material for isolated word recognition experiments,
the conditions were different from the ones described earlier. The system was improved by
excluding the use of a helmet by the cuer, enabling in this way the head movements during
recording. The subject was seated on a chair in a way to avoid large movements in the third
direction (i.e. towards the camera). However, the errors that might occur have not been
evaluated. In addition, the landmarks placed on the cuer’s fingers were of different colors in
order to avoid the hand shape coding and the finger identification, and this helped to simplify
and speed up the image processing stage. In these recording sessions, a normal-hearing cuer
and a deaf cuer were employed. The corpus consisted of 1450 isolated words with each of 50
words repeated 29 times by the cuers.
In the phoneme recognition experiments, context-independent, 3-state, left-to-right,
no-skip-phoneme HMMs were used. Each state was modeled with a mixture of 32 Gaussians.
In addition to the basic lip and hand parameters, first- (∆) and second-order derivatives (∆∆)
were used as well. For training and test, 426 and 212 sentences were used, respectively. The
training sentences contained 3838 vowel and 4401 consonant instances, and the test sentences
contained 1913 vowel and 2155 consonant instances, respectively. Vowels and consonants
were extracted automatically from the data after a forced alignment was performed using the
audio signal.
For isolated word recognition experiments two HMM sets were trained (deaf and
normal-hearing). Fifteen repetitions of each word were used to train 50, 6-state, whole word
HMMs, and 14 repetitions were used for testing. Eight and ten parameters were used for lip
shape and hand shape modeling, respectively.
In automatic speech recognition, a diagonal covariance matrix is often used because of the
assumption that the parameters are uncorrelated. In lipreading, however, parameters show
a strong correlation. In this study, a global Principal Component Analysis (PCA) using all
the training data was applied to decorrelate the lip shape parameters and then a diagonal
covariance matrix was used. The test data were then projected into the PCA space. All PCA
lip shape components were used for HMM training. For training and recognition the HTK3.1
toolkit (Young et al., 2001) was used.
For the integration of the lip shape and hand shape components, feature concatenative fusion
was used. Feature concatenation uses the concatenation of the synchronous lip shape and
hand features as the joint feature vector

OLH
t = [O

(L)T

t , O
(H)T

t ]T ∈ RD (1)

where OLH
t is the joint lip-hand feature vector, O

(L)
t the lip shape feature vector, O

(H)
t the

hand feature vector, and D the dimensionality of the joint feature vector. In vowel recognition
experiments, the dimension of the lip shape stream was 24 (8 basic parameters, 8 ∆, and 8
∆∆ parameters) and the dimension of the hand position stream was 12 ( 4 basic parameters,
4 ∆, and 4 ∆∆ parameters). The dimension D of the joint lip-hand position feature vectors
was, therefore 36. In consonant recognition experiments, the dimension of the hand shape
stream was 30 (10 basic parameters, 10 ∆, and 10 ∆∆ parameters). The dimension D of the
joint lip-hand shape feature vectors was, therefore 54. Figure 4 shows the vowel recognition
results. As shown, by integrating hand position component with lip shape component, a
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Fig. 4. Cued Speech vowel recognition using only lip and hand parameters based on
concatenative feature fusion.

vowel accuracy of 85.1% was achieved, showing a 53% relative improvement compared to the
sole use of lip shape parameters.
Using concatenative feature fusion, lip shape component was integrated with hand shape
component and consonant recognition was conducted. For hand shape modeling, the xy
coordinates of the fingers, and first- and second-order derivatives were used. In total, 30
parameters were used for hand shape modeling. For lip shape modeling, 24 parameters were
used. Figure 5 shows the obtained results in the function of Gaussians per state. It can be
seen that when using 32 Gaussians per state, a consonant accuracy of 78.9% was achieved.
Compared to the sole use of lip shape, a 56% relative improvement was obtained.

Fig. 5. Cued Speech consonant recognition using only lip and hand parameters based on
concatenative feature fusion.
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Fig. 6. Word accuracy for isolated word recognition in the case of a normal-hearing subject.

Figure 6 shows the isolated word recognition results obtained in the function of several
Gaussians per state in the case of the normal-hearing cuer. In the case of a single Gaussian
per state, using lip shape alone obtained a 56% word accuracy; however, when hand shape
information was also used, a 92.8% word accuracy was obtained. The highest word accuracy
when using lip shape was 72%, obtained in the case of using 4 Gaussians per state. In that case,
the Cued Speech word accuracy using also hand information was 94.9%. Figure 7 shows the

Fig. 7. Word accuracy for isolated word recognition in the case of a deaf subject.

obtained results in the case of a deaf cuer. The results show that in the case of the deaf subject,
words were better recognized when using lip shape alone compared to the normal-hearing
subject. The fact that deafs rely on lipreading for speech communication may increase their
ability not only for speech perception but also for speech production. The word accuracy in
the case of the deaf subject was 89% compared to the 94.9% in the normal-hearing subject.
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HMMs
Test data Normal Deaf Normal+Deaf

Normal 94.9 0.6 92.0
Deaf 2.0 89.0 87.2

Table 1. Word accuracy of a multi-speaker experiment

The difference in performance might be because of the lower hand shape recognition in the
deaf subject. It should also be noted that the normal-hearing cuer was a professional teacher
of Cued Speech. The results show that there are no additional difficulties in recognizing Cued
Speech in deaf subjects, other than those appearing in normal-hearing subjects.
A multi-cuer isolated word recognition experiment was also conducted using the
normal-hearing and the deaf cuers’ data. The aim of this experiment is to investigate whether
it is possible to train speaker-independent HMMs for Cued Speech recognition. The training
data consisted of 750 words from the normal-hearing subject, and 750 words from the deaf
subject. For testing, 700 words from normal-hearing subject and 700 words from the deaf
subject were used, respectively. Each state was modeled with a mixture of 4 Gaussian
distributions. For lip shape and hand shape integration, the concatenative feature fusion was
used.
Table 1 shows the results obtained when lip shape and hand shape features were used. The
results show, that due to the large variability between the two subjects, word accuracy of
cross-recognition is extremely low. On the other hand, the word accuracy in normal-hearing
subject when using multi-speaker HMMs was 92%, which is comparable with the 94.9% word
accuracy when cuer-dependent HMMs were used. In the case of the deaf subject, the word
accuracy when using multi-cuer HMMs was 87.2%, which was also comparable with the 89%
word accuracy when using speaker-dependent HMMs.
The results obtained indicate that creating speaker-independent HMMs for Cued Speech
recognition using a large number of subjects should not face any particular difference, other
than those appear in the conventional audio speech recognition. To prove this, however,
additional experiments using a large number of subjects are required.

4.2 NAM automatic recognition

The corpus used in the experiment was 212 continuous Japanese utterances, containing
7518 phoneme realisations. A 3-state with no skip HMM topology was used. Forty-three
monophones were trained using 5132 phonemes. For the purpose of testing, 2386 phonemes
were used. The audio parameter vectors were of length 36 (12 MFCC, 12∆MFCC, and 12
∆∆MFCC). The HTK3.4 Toolkit was used for training and testing.
The face and profile views of the subject were filmed under conditions of good lighting.
The system captured the 3-D positions of 112 colored beads glued on the speaker’s face at
a sampling rate of 50 Hz (fig. 8), synchronized with the acoustic signal sampled at 16000 Hz.
The collection of 30 lip points using a generic 3-D geometric model of the lips is shown in
Figure 9 (Revéret & Benoît, 1998).
The shape model is built using the Principal Component Analysis (PCA). Successive
applications of PCA are performed on the selected subsets of the data, which generate the
main directions. These directions are retained as linear predictors for the whole data set. The
mobile points P of the face deviate from their average position B by a linear composition of
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Fig. 8. Characteristic points used for capturing the movements.

the basic components M loaded by factors α (articulatory parameters) (Revéret et al., 2000).

P = B + αM (2)

Only the first 5 parameters of the extracted 12 linear components M were used. These
explained more than 90% of the data variance using the following iterative linear prediction
on the data residual: the first component of the PCA on the lower teeth (LT) values leads to
the "first jaw" predictor. The PCA on the residual lips values (without jaw1 influence) usually
presented three pertinent lip predictors (i.e., lips protrusion, lips closing mainly required for
bilabials, and lips raising mainly required for labiodental fricatives). The movements of the
throat linked the underlying movements of the larynx and the hyoid bone, and served as
the fifth one. The video parameters were interpolated at 200 Hz to synchronize with the
audio analysis frame rate. For audio-visual NAM recognition, concatenative feature fusion,

Fig. 9. The 30 control points and the 3 basic contour curves.

multistream decision fusion, and late fusion methods were used.
Multistream HMM fusion is a state synchronous decision fusion, which captures the reliability
of each stream by combining the likelihoods of single-stream HMM classifiers (Potamianos
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et al., 2003). The emission likelihood of the multistream HMM is the product of the emission
likelihoods of the single-stream components, weighted appropriately by stream weights.
Given the O combined observation vector, that is, the NAM and visual elements, the emission
score of multistream HMM is given by:

bj(Ot) =
S

∏
s=1

[
Ms

∑
m=1

cjsmN(Ost; µjsm, Σjsm)]
λs (3)

where, N(O; µ, Σ) is the value in O of a multivariate Gaussian with mean µ and covariance
matrix Σ, and S is the number of the streams. For each stream s, Ms Gaussians in a mixture
are used, each weighted with cjsm. The contribution of each stream is weighted by λs. In
the present study, it is assumed that the stream weights do not depend on state j and time t.
However, two constraints were applied, namely:

0 ≤ {λn, λv} ≤ 1, and λn + λv = 1 (4)

where λn is the NAM stream weight, and λv is the visual stream weight. In these experiments,
the weights were experimentally adjusted to 0.6 and 0.4 values, respectively. The selected
weights were obtained by maximizing the accuracy on several experiments.
A disadvantage of the previously described fusion methods is the assumption that there is a
synchrony between the two streams. In the present study, late fusion was applied to enable
asynchrony between the NAM stream and the visual stream. In the late fusion method,
two single HMM-based classifiers were used for the NAM speech and the visual speech,
respectively. For each test utterance (i.e., isolated phone), the two classifiers provided an
output list, which included all the phone hypotheses with their likelihoods. Subsequently, all
the separate mono-modal hypotheses were combined into the bi-modal hypotheses using the
weighted likelihoods, as given by:

logPNV(h) = λnlogPN(h|O
¯ N) + λvlogPV(h|O

¯ V) (5)

where, logPNV(h) is the score of the combined bi-modal hypothesis h, logPN(h|O
¯ N) is the

score of the h provided by the NAM classifier, and logPV(h|O
¯ V) is the score of the h provided

by the visual classifier. λn and λv are the stream weights with the same constraints applied in
multi-stream HMM fusion.
The procedure described in this study finally resulted in a combined N-best list in which
the top hypothesis was selected as the correct bi-modal output. A similar method was also
introduced in (Potamianos et al., 2003).
A comparison of the three classification methods used in the present study is shown in Table 2.
As seen in the table, the highest classification accuracies are achieved when late fusion is used.
The second best classification accuracies are achieved when using multistream HMM decision

Fusion Method
Late Multistream Feature

Phonemes 71.8 68.9 67.8

Vowels 86.2 83.7 83.3

Consonants 64.1 59.7 58.2

Table 2. Comparison of the fusion methods in NAM automatic recognition.
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fusion. Finally, the lowest accuracies are observed when using feature fusion. Specifically,
when using late fusion, an accuracy of 71.8% is achieved for phoneme classification, 86.2%
accuracy for vowel classification, and 64.1% accuracy for consonant classification. The highest
accuracies, when using late fusion, might be an evidence of asynchrony between the NAM
speech and the visual stream. In the following experiments late fusion is used to integrate the
NAM audio speech with the visual data. The results obtained when using visual data, NAM

Fig. 10. Phoneme classification in a clean environment.

data, and visual-NAM data are shown in Figure 10. The results indicate that the classification
accuracy is very low when only visual data is used. As many sounds appear to be similar on
the lips/face, the sole use of visual parameters cannot distinguish these sounds. In the case
of NAM data, the accuracies are higher in comparison to visual data. Specifically, an accuracy
of 79.2% was achieved for vowel recognition, 49.8% accuracy for consonant recognition, and
59.7% accuracy for phoneme recognition. It is observed that the accuracy is considerably
lower for consonant recognition in comparison to vowel recognition. However, because of
the unvoiced nature of NAM, both voiced and unvoiced sounds articulated at the same place
become similar, resulting in a larger number of confusions between consonants.The significant
improvements in accuracy, when visual data were fused with NAM speech, are shown in
Figure 10. Specifically, a relative improvement of 33% was achieved for vowel recognition,
28% for consonant recognition, and 30% for phoneme recognition.
The McNemar’s test (Gillick & Cox, 1989) was performed to determine whether the
differences were statistically significant . The p-values in all the cases were 0.001, which
indicated that the differences were statistically significant.
Table 3 and Table 4 show the confusion matrices of the plosives sounds when using NAM
and NAM-visual speech, respectively. As is shown, the number of confusions decreases when
visual information was also used resulting in a higher accuracy.
In another experiment, office noise recorded by a NAM microphone was superimposed on
clean NAM speech on several Signal-to-Noise-Ratio (SNR) levels. The noisy data were used
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/p/ /b/ /t/ /d/ /k/ /g/
/p/ 0 0 5 0 2 1
/b/ 0 8 5 1 3 0
/t/ 2 0 36 3 12 1
/d/ 0 2 6 14 4 1
/k/ 1 0 8 0 45 6
/g/ 0 1 0 2 6 20

Table 3. Confusion matrix of Japanese plosives using NAM speech.

/p/ /b/ /t/ /d/ /k/ /g/

/p/ 3 0 5 0 0 0
/b/ 1 13 3 0 0 0
/t/ 0 0 39 1 13 1
/d/ 0 0 7 17 1 2
/k/ 0 0 7 0 50 3
/g/ 0 0 0 1 6 22

Table 4. Confusion matrix of Japanese plosives using NAM-visual speech.

to train HMMs of a desired SNR level. In addition, the noisy NAM data were fused with the
visual parameters and audiovisual NAM HMMs were trained.
The classification accuracies in the function SNR levels for the visual, the NAM, and the
NAM-visual cases are shown in Figure 11 . As seen in the figure, the accuracy of NAM
recognition decreases when noisy data is used. However, the accuracy drastically increases
when NAM speech is integrated with visual information. In such a case, an average of 15%
absolute increase in accuracy was obtained.

Fig. 11. Phoneme classification in noisy environment.
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5. Conclusion and future word

In this chapter, two methods for augmentative speech communication were introduced.
Specifically, automatic recognition for Cued Speech for French and Non-Audible Murmur
recognition were reported. The authors demonstrated the effectiveness of both methods
in alternative speech communication, when modalities other than the audio one are used.
Regarding Cued Speech automatic recognition, the experimental results obtained showed
recognition rates comparable to those obtained when audio speech is used. In addition, the
results showed that using hand information as complement to lip movements, significantly
higher rates achieved compared to the sole use of lip movements. With concern to
Non-Audible Murmur recognition, the results showed that the unvoiced nature of NAM
speech causes a higher number of confusions. Using, however, visual information produced
by face/lips further improvements achieved compared with using NAM speech only. As
future work, the authors plan to investigate the Cued Speech for Japanese, and also to evaluate
the intelligibility of audible NAM speech in clean and noisy environments. This work has
been partially supported by JST CREST ’Studies on Cellphone-type Teleoperated Androids
Transmitting Human Presence’
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