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Robust Stability and Control of
Linear Interval Parameter Systems
Using Quantitative (State Space) and
Qualitative (Ecological) Perspectives

Rama K. Yedavalli and Nagini Devarakonda
The Ohio State University
United States of America

1. Introduction

The problem of maintaining the stability of a nominally stable linear time invariant system
subject to linear perturbation has been an active topic of research for quite some time. The
recent published literature on this ‘robust stability” problem can be viewed mainly from two
perspectives, namely i) transfer function (input/output) viewpoint and ii) state space
viewpoint. In the transfer function approach, the analysis and synthesis is essentially carried
out in frequency domain, whereas in the state space approach it is basically carried out in
time domain. Another perspective that is especially germane to this viewpoint is that the
frequency domain treatment involves the extensive use of “polynomial’ theory while that of
time domain involves the use of “matrix’ theory. Recent advances in this field are surveyed
in [1]-[2].

Even though in typical control problems, these two theories are intimately related and
qualitatively similar, it is also important to keep in mind that there are noteworthy
differences between these two approaches (‘polynomial” vs “matrix’) and this chapter (both
in parts I and II) highlights the use of the direct matrix approach in the solution to the robust
stability and control design problems.

2. Uncertainty characterization and robustness

It was shown in [3] that modeling errors can be broadly categorized as i) parameter
variations, ii) unmodeled dynamics iii) neglected nonlinearities and finally iv) external
disturbances. Characterization of these modeling errors in turn depends on the
representation of dynamic system, namely whether it is a frequency domain, transfer
function framework or time domain state space framework. In fact, some of these can be
better captured in one framework than in another. For example, it can be argued
convincingly that real parameter variations are better captured in time domain state space
framework than in frequency domain transfer function framework. Similarly, it is intuitively
clear that unmodeled dynamics errors can be better captured in the transfer function
framework. By similar lines of thought, it can be safely agreed that while neglected
nonlinearities can be better captured in state space framework, neglected disturbances can
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44 Robust Control, Theory and Applications

be captured with equal ease in both frameworks. Thus it is not surprising that most of the
robustness studies of uncertain dynamical systems with real parameter variations are being
carried out in time domain state space framework and hence in this chapter, we emphasize
the aspect of robust stabilization and control of linear dynamical systems with real
parameter uncertainty.

Stability and performance are two fundamental characteristics of any feedback control
system. Accordingly, stability robustness and performance robustness are two desirable
(sometimes necessary) features of a robust control system. Since stability robustness is a
prerequisite for performance robustness, it is natural to address the issue of stability
robustness first and then the issue of performance robustness.

Since stability tests are different for time varying systems and time invariant systems, it is
important to pay special attention to the nature of perturbations, namely time varying
perturbations versus time invariant perturbations, where it is assumed that the nominal
system is a linear time invariant system. Typically, stability of linear time varying systems is
assessed using Lyapunov stability theory using the concept of quadratic stability whereas
that of a linear time invariant system is determined by the Hurwitz stability, i.e. by the
negative real part eigenvalue criterion. This distinction about the nature of perturbation
profoundly affects the methodologies used for stability robustness analysis.

Let us consider the following linear, homogeneous, time invariant asymptotically stable
system in state space form subject to a linear perturbation E:

x=(Ay+E)x x(0) = x, (1)

where Ap is an nxn asymptotically stable matrix and E is the error (or perturbation) matrix.
The two aspects of characterization of the perturbation matrix E which have significant
influence on the scope and methodology of any proposed analysis and design scheme are i)
the temporal nature and ii) the boundedness nature of E. Specifically, we can have the
following scenario:

i. Temporal Nature:

Time invariant error vs Time varying error
E = constant E=E(t)
ii. Boundedness Nature:
Unstructured ve Structured
(Norm bounded) (Elemental bounds)

The stability robustness problem for linear time invariant systems in the presence of linear
time invariant perturbations (i.e. robust Hurwitz invariance problem) is basically addressed
by testing for the negativity of the real parts of the eigenvalues (either in frequency domain
or in time domain treatments), whereas the time varying perturbation case is known to be
best handled by the time domain Lyapunov stability analysis. The robust Hurwitz
invariance problem has been widely discussed in the literature essentially using the
polynomial approach [4]-[5]. In this section, we address the time varying perturbation case,
mainly motivated by the fact that any methodology which treats the time varying case can
always be specialized to the time invariant case but not vice versa. However, we pay a price
for the same, namely conservatism associated with the results when applied to the time
invariant perturbation case. A methodology specifically tailored to time invariant
perturbations is discussed and included by the author in a separate publication [6].
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It is also appropriate to discuss, at this point, the characterization with regard to the
boundedness of the perturbation. In the so called ‘unstructured” perturbation, it is assumed
that one cannot clearly identify the location of the perturbation within the nominal matrix
and thus one has simply a bound on the norm of the perturbation matrix. In the ‘structured’
perturbation, one has information about the location(s) of the perturbation and thus one can
think of having bounds on the individual elements of the perturbation matrix. This
approach can be labeled as ‘Elemental Perturbation Bound Analysis (EPBA)’. Whether
‘“unstructured” norm bounded perturbation or ‘structured’ elemental perturbation is
appropriate to consider depends very much on the application at hand. However, it can be
safely argued that ‘structured” real parameter perturbation situation has extensive
applications in many engineering disciplines as the elements of the matrices of a linear state
space description contain parameters of interest in the evolution of the state variables and it
is natural to look for bounds on these real parameters that can maintain the stability of the
state space system.

3. Robust stability and control of linear interval parameter systems under
state space framework

In this section, we first give a brief account of the robust stability analysis techniques in 3.1
and then in subsection 3.2 we discuss the robust control design aspect.

3.1 Robust stability analysis
The starting point for the problem at hand is to consider a linear state space system
described by

x(t)=[Ay +E]x(t)

where x is an n dimensional state vector, asymptotically stable matrix and E is the
‘perturbation” matrix. The issue of ‘stability robustness measures’ involves the
determination of bounds on E which guarantee the preservation of stability of (1). Evidently,
the characterization of the perturbation matrix E has considerable influence on the derived
result. In what follows, we summarize a few of the available results, based on the
characterization of E.

1. Time varying (real) unstructured perturbation with spectral norm: Sufficient bound

For this case, the perturbation matrix E is allowed to be time varying, i.e. E(f) and a bound
on the spectral norm (o, (E(f)) where o(-) is the singular value of (-)) is derived. When a
bound on the norm of E is given, we refer to it as “unstructured” perturbation. This norm
produces a spherical region in parameter space. The following result is available for this
case [7]-[8]:

o (E(D) < —— @

O,
Fmax(P)

where P is the solution to the Lyapunov matrix

PAy+AlP+21=0 )

See Refs [9],[10],[11] for results related to this case.
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2. Time varying (real) structured variation
Case 1: Independent variations (sufficient bound) [12]-[13]

E;(t) <V, |E;(?) o~ il (4)
by <—— U, (5)

! O max (P mue )s “

where P satisfies equation (3) and U,; = €/ €. For cases when ¢; are not known, one can take
Ueij = | Avij | /| Avij | max- (-)m denotes the matrix with all modulus elements and (-)s denotes the
symmetric part of (-).

3. Time invariant, (real) structured perturbation E;; = Constant

Case i: Independent Variations [13]-[15]: (Sufficient Bounds). For this case, E can be
characterized as

E = 51D52 (6)

where S; and S; are constant, known matrices and | Dji| < djd with d;; 2 0 are given and d > 0
is the unknown. Let U be the matrix elements Uj; = d;;. Then the bound on d is given by [13]

1
([52 (jol - Ay) " Slln uj

Notice that the characterization of E (with time invariant) in (4) is accommodated by the
characterization in [15]. p(-) is the spectral radius of (-).
Case ii: Linear Dependent Variation: For this case, E is characterized (as in (6) before), by

< Sup =Hp = Hg )

>0

E=Y . BE (8)

and bounds on | f3;| are sought. Improved bounds on | ;| are presented in [6].

This type of representation represents a “polytope of matrices’ as discussed in [4]. In this
notation, the interval matrix case (i.e. the independent variation case) is a special case of the
above representation where Ei contains a single nonzero element, at a different place in the
matrix for different i.

For the time invariant, real structured perturbation case, there are no computationally
tractable necessary and sufficient bounds either for polytope of matrices or for interval
matrices (even for a 2 x 2 case). Even though some derivable necessary and sufficient
conditions are presented in [16] for any general variation in E (not necessarily linear
dependent and independent case), there are no easily computable methods available to
determine the necessary and sufficient bounds at this stage of research. So most of the
research, at this point of time, seems to aim at getting better (less conservative) sufficient
bounds. The following example compares the sufficient bounds given in [13]-[15] for the
linear dependent variation case.
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Let us consider the example given in [15] in which the perturbed system matrix is given by

(A)+BKC)=| 0  -3+k, 0

Taking the nominally stable matrix to be

2 0 -1
Ag=[ 0 =3 0
-1 -1 -4

the error matrix with k; and k; as the uncertain parameters is given by

where
1 01 0 00
1 01 010

The following are the bounds on |k; | and |k2| obtained by [15] and the proposed method.

by ko ZK [14] ha [6]
0.815 0.875 1.55 1.75

3.2 Robust control design for linear systems with structured uncertainty

Having discussed the robustness analysis issue above, we now switch our attention to the
robust control design issue. Towards this direction, we now present a linear robust control
design algorithm for linear deterministic uncertain systems whose parameters vary within
given bounded sets. The algorithm explicitly incorporates the structure of the uncertainty
into the design procedure and utilizes the elemental perturbation bounds developed above.
A linear state feedback controller is designed by parameter optimization techniques to
maximize (in a given sense) the elemental perturbation bounds for robust stabilization.
There is a considerable amount of literature on the aspect of designing linear controllers for
linear tine invariant systems with small parameter uncertainty. However, for uncertain
systems whose dynamics are described by interval matrices (i.e., matrices whose elements
are known to vary within a given bounded interval), linear control design schemes that
guarantee stability have been relatively scarce. Reference [17] compares several techniques
for designing linear controllers for robust stability for a class of uncertain linear systems.
Among the methods considered are the standard linear quadratic regulator (LQR) design,
Guaranteed Cost Control (GCC) method of [18], Multistep Guaranteed Cost Control
(MGCC) of [17]. In these methods, the weighting on state in a quadratic cost function and
the Riccati equation are modified in the search for an appropriate controller. Also, the
parameter uncertainty is assumed to enter linearly and restrictive conditions are imposed on
the bounding sets. In [18], norm inequalities on the bounding sets are given for stability but
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48 Robust Control, Theory and Applications

they are conservative since they do not take advantage of the system structure. There is no
guarantee that a linear state feedback controller exists. Reference [19] utilizes the concept of
‘Matching conditions (MC)” which in essence constrain the manner in which the uncertainty
is permitted to enter into the dynamics and show that a linear state feedback control that
guarantees stability exists provided the uncertainty satisfies matching conditions. By this
method large bounding sets produce large feedback gains but the existence of a linear
controller is guaranteed. But no such guarantee can be given for general ‘mismatched’
uncertain systems. References [20] and [21] present methods which need the testing of
definiteness of a Lyapunov matrix obtained as a function of the uncertain parameters. In the
multimodel theory approach, [22] considers a discrete set of points in the parameter
uncertainty range to establish the stability. This paper addresses the stabilization problem
for a continuous range of parameters in the uncertain parameter set (i.e. in the context of
interval matrices). The proposed approach attacks the stability of interval matrix problem
directly in the matrix domain rather than converting the interval matrix to interval
polynomials and then testing the Kharitonov polynomials.

Robust control design using perturbation bound analysis [23],[24]

Consider a linear, time invariant system described by

x=Ax+Bu x(0) =x,

Where x is nx1 state vector, the control uis mx1. The matrix pair (A,B) is assumed to
be completely controllable.

U=Gx

For this case, the nominal closed loop system matrix is given by

_ _p-lpT
A-=A+BG, G= ROB%

and

-1
KA+AT1<—1<BR—OBT1<+Q=0
Pe

and A is asymptotically stable.

Here G is the Riccati based control gain where Q,and Ry are any given weighting matrices
which are symmetric, positive definite and p.is the design variable.

The main interest in determining G is to keep the nominal closed loop system stable. The
reason Riccati approach is used to determine G is that it readily renders (A+BG)
asymptotically stable with the above assumption on Q and Ry.

Now consider the perturbed system with linear time varying perturbations Ea(t) and Ep(t)
respectively in matrices A and B

ie, ¥ =[A+E,(t)]x(t)+[B+Eg(t)]u(t)

Let AA and AB be the perturbation matrices formed by the maximum modulus deviations
expected in the individual elements of matrices A and B respectively. Then one can write

AA=¢c U

a~—ea

(Absolute variation)
AB = (C,‘bueh
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where ¢, is the maximum of all the elements in AA and ¢, is the maximum of all elements in
AB. Then the total perturbation in the linear closed loop system matrix of (10) with nominal
control u = Gx is given by

A = AA + ABGm = Euueu + Sbueme

Assuming the ratio is ¢,/¢, =& known, we can extend the main result of equation (3) to the
linear state feedback control system of (9) and (10) and obtain the following design
observation.

Design observation 1:

The perturbed linear system is stable for all perturbations bounded by ¢, and ¢, if

5, < L = u )
Omax I:Pm (ueu + g_ueme ):Is

and ¢, <€ u where

P(A+BG)+(A+BG)'P+2I =0

Remark: If we suppose AA = 0, AB = 0 and expect some control gain perturbations AG,
where we can write

AG = ¢ le, (10)
then stability is assured if
1
& < = (11)
s O max (PmBmueg )s ¢

In this context ug can be regarded as a “gain margin”.

For a given ¢, and &, one method of designing the linear controller would be to
determine G of (3.10) by varying p. of (3.10) such that 1 is maximum. For an aircraft control
example which utilizes this method, see Reference [9].

4. Robust stability and control of linear interval parameter systems using
ecological perspective

It is well recognized that natural systems such as ecological and biological systems are
highly robust under various perturbations. On the other hand, engineered systems can be
made highly optimal for good performance but they tend to be non-robust under
perturbations. Thus, it is natural and essential for engineers to delve into the question of as
to what the underlying features of natural systems are, which make them so robust and then
try to apply these principles to make the engineered systems more robust. Towards this
objective, the interesting aspect of qualitative stability in ecological systems is considered in
particular. The fields of population biology and ecology deal with the analysis of growth
and decline of populations in nature and the struggle of species to predominate over one
another. The existence or extinction of a species, apart from its own effect, depends on its
interactions with various other species in the ecosystem it belongs to. Hence the type of
interaction is very critical to the sustenance of species. In the following sections these
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interactions and their nature are thoroughly investigated and the effect of these qualitative
interactions on the quantitative properties of matrices, specifically on three matrix
properties, namely, eigenvalue distribution, normality/condition number and robust
stability are presented. This type of study is important for researchers in both fields since
qualitative properties do have significant impact on the quantitative aspects. In the
following sections, this interrelationship is established in a sound mathematical framework.
In addition, these properties are exploited in the design of controllers for engineering
systems to make them more robust to uncertainties such as described in the previous
sections.

4.1 Robust stability analysis using principles of ecology

4.1.1 Brief review of ecological principles

In this section a few ecological system principles that are of relevance to this chapter are
briefly reviewed. Thorough understanding of these principles is essential to appreciate their
influence on various mathematical results presented in the rest of the chapter.

In a complex community composed of many species, numerous interactions take place.
These interactions in ecosystems can be broadly classified as i) Mutualism, ii) Competition,
iif) Commensalism/ Ammensalism and iv) Predation (Parasitism). Mutualism occurs when
both species benefit from the interaction. When one species benefits/suffers and the other
one remains unaffected, the interaction is classified as Commensalism/Ammensalism.
When species compete with each other, that interaction is known as Competition. Finally, if
one species is benefited and the other suffers, the interaction is known as Predation
(Parasitism). In ecology, the magnitudes of the mutual effects of species on each other are
seldom precisely known, but one can establish with certainty, the types of interactions that
are present. Many mathematical population models were proposed over the last few
decades to study the dynamics of eco/bio systems, which are discussed in textbooks [25]-
[26]. The most significant contributions in this area come from the works of Lotka and
Volterra. The following is a model of a predator-prey interaction where x is the prey and vy is
the predator.

x =xf(x,y)
y=yg(x,y)

where it is assumed that of (x,y) /0y <0 and 0g(x,y)/ox >0

This means that the effect of y on the rate of change of x (x ) is negative while the effect of x
on the rate of change of y (1) is positive.

The stability of the equilibrium solutions of these models has been a subject of intense study
in life sciences [27]. These models and the stability of such systems give deep insight into the
balance in nature. If a state of equilibrium can be determined for an ecosystem, it becomes
inevitable to study the effect of perturbation of any kind in the population of the species on
the equilibrium. These small perturbations from equilibrium can be modeled as linear state
space systems where the state space plant matrix is the ‘Jacobian’. This means that
technically in the Jacobian matrix, one does not know the actual magnitudes of the partial
derivatives but their signs are known with certainty. That is, the nature of the interaction is
known but not the strengths of those interactions. As mentioned previously, there are four
classes of interactions and after linearization they can be represented in the following
manner.

(12)
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Digraph Matrix

Interaction type . .
yp representation | representation

+ * 4 T

Mutualism @ L .
Competition @ B :
Commensalism M 0
Ammensalism ®<_—@ 0 *
Predation +
(Parasitism) @ - %

Table 1. Types of interactions between two species in an ecosystem

In Table 1, column 2 is a visual representation of such interactions and is known as a
directed graph or ‘digraph’ [28] while column 3 is the matrix representation of the
interaction between two species. ¥ represents the effect of a species on itself.

In other words, in the Jacobian matrix, the ‘qualitative’ information about the species is
represented by the signs +, - or 0. Thus, the (i,j) entry of the state space (Jacobian) matrix
simply consists of signs +, -, or 0, with the + sign indicating species j having a positive
influence on species i, - sign indicating negative influence and 0 indicating no influence. The
diagonal elements give information regarding the effect of a species on itself. Negative sign
means the species is ‘self-regulatory’, positive means it aids the growth of its own
population and zero means that it has no effect on itself. For example, in the Figure 1 below,
sign pattern matrices A; and A, are the Jacobian form while D; and D, are their
corresponding digraphs.

a) :Il:
0 — 0 0 0
+ 0 - 0
by 4, =[0 + — — 0
00 + 0 -
00 0 + 0]

Fig. 1. Various sign patterns and their corresponding digraphs representing ecological
systems; a) three species system b) five species system
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52 Robust Control, Theory and Applications

4.1.2 Qualitative or sign stability

Since traditional mathematical tests for stability fail to analyze the stability of such
ecological models, an extremely important question then, is whether it can be concluded,
just from this sign pattern, whether the system is stable or not. If so, the system is said to be
‘qualitatively stable” [29-31]. In some literature, this concept is also labeled as “sign stability’.
In what follows, these two terms are used interchangeably. It is important to keep in mind
that the systems (matrices) that are qualitatively (sign stable) stable are also stable in the
ordinary sense. That is, qualitative stability implies Hurwitz stability (eigenvalues with
negative real part) in the ordinary sense of engineering sciences. In other words, once a
particular sign matrix is shown to be qualitatively (sign) stable, any magnitude can be inserted in
those entries and for all those magnitudes the matrix is automatically Hurwitz stable. This is the
most attractive feature of a sign stable matrix. However, the converse is not true. Systems
that are not qualitatively stable can still be stable in the ordinary sense for certain
appropriate magnitudes in the entries. From now on, to distinguish from the concept of
‘qualitative stability’ of life sciences literature, the label of ‘quantitative stability” for the
standard Hurwitz stability in engineering sciences is used.

These conditions in matrix theory notation are given below

i a;<0Vi

ii. and a; <0 for at least one i

ii. aya; <0 Vi,j i#j

iv.  a;apay..a,; =0 for any sequence of three or more distinct indices i j k,...m.

v. Det(A)=0

vi. Color test (Elaborated in [32],[33])

Note: In graph theory a;a;; are referred to as I-cycles and a;a;ay...4,,; are referred to as
k-cycles. In [34], [35], l-cycles are termed ‘interactions’ while k-cycles are termed
‘interconnections” (which essentially are all zero in the case of sign stable matrices).

With this algorithm, all matrices that are sign stable can be stored apriori as discussed in
[36]. If a sign pattern in a given matrix satisfies the conditions given in the above papers
(thus in the algorithm), it is an ecological stable sign pattern and hence that matrix is
Hurwitz stable for any magnitudes in its entries. A subtle distinction between ‘sign stable’
matrices and ‘ecological sign stable” matrices is now made, emphasizing the role of nature of
interactions. Though the property of Hurwitz stability is held in both cases, ecosystems
sustain solely because of interactions between various species. In matrix notation this means
that the nature of off-diagonal elements is essential for an ecosystem. Consider a strictly
upper triangular 3x3 matrix

I
00 - )
From quantitative viewpoint, it is seen that the matrix is Hurwitz stable for any magnitudes

in the entries of the matrix. This means that it is indeed (qualitatively) sign stable. But since
there is no predator-prey link and in fact no link at all between species 1&2 and 3&2, such a
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digraph cannot represent an ecosystem. Therefore, though a matrix is sign stable, it need not
belong to the class of ecological sign stable matrices. In Figure 2 below, these various classes
of sign patterns and the corresponding relationship between these classes is depicted. So,
every ecological sign stable sign pattern is sign stable but the converse is not true.

With this brief review of ecological system principles, the implications of these ecological
qualitative principles on three quantitative matrix theory properties, namely eigenvalues,
normality /condition number and robust stability are investigated. In particular, in the next
section, new results that clearly establish these implications are presented. As mentioned in
the previous section, the motivation for this study and analysis is to exploit some of these
desirable features of ecological system principles to design controllers for engineering
systems to make them more robust.

<« Allsign patterns

<« All stable sign patterns

All ecologically stable
sign patterns

Fig. 2. Classification of sign patterns

4.2 Ecological sign stability and its implications in quantitative matrix theory

In this major section of this chapter, focusing on the ecological sign stability aspect discussed
above, its implications in the quantitative matrix theory are established. In particular, the
section offers three explicit contributions to expand the current knowledge base, namely 1)
Eigenvalue distribution of ecological sign stable matrices ii) Normality / Condition number
properties of sign stable matrices and iii) Robustness properties of sign stable matrices.
These three contributions in turn help in determining the role of magnitudes in quantitative
ecological sign stable matrices. This type of information is clearly helpful in designing
robust controllers as shown in later sections. With this motivation, a 3-species ecosystem is
thoroughly analyzed and the ecological principles in terms of matrix properties that are of
interest in engineering systems are interpreted. This section is organized as follows: First,
new results on the eigenvalue distribution of ecological sign stable matrices are presented.
Then considering ecological systems with only predation-prey type interactions, it is shown
how selection of appropriate magnitudes in these interactions imparts the property of
normality (and thus highly desirable condition numbers) in matrices. In what follows, for
each of these cases, concepts are first discussed from an ecological perspective and then later
the resulting matrix theory implications from a quantitative perspective are presented
Stability and eigenvalue distribution

Stability is the most fundamental property of interest to all dynamic systems. Clearly, in
time invariant matrix theory, stability of matrices is governed by the negative real part
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54 Robust Control, Theory and Applications

nature of its eigenvalues. It is always useful to get bounds on the eigenvalue distribution of
a matrix with as little computation as possible, hopefully as directly as possible from the
elements of that matrix. It turns out that sign stable matrices have interesting eigenvalue
distribution bounds. A few new results are now presented in this aspect.

In what follows, the quantitative matrix theory properties for an n-species ecological system
is established, i.e., an nxn sign stable matrix with predator-prey and commensal/ammensal
interactions is considered and its eigenvalue distribution is analyzed. In particular, various
cases of diagonal elements’ nature, which are shown to possess some interesting eigenvalue
distribution properties, are considered.

Bounds on real part of eigenvalues

Based on several observations the following theorem for eigenvalue distribution along the
real axis is stated.

Theorem 1 [37]

(Case of all negative diagonal elements):

For all nxn sign stable matrices, with all negative diagonal elements, the bounds on the real parts of
the eigenvalues are given as follows:

The lower bound on the magnitude of the real part is given by the minimum magnitude diagonal
element and the upper bound is given by the maximum magnitude diagonal element in the matrix.
That is, for an nxn ecological sign stable matrix A =[ay],

|aii|min < |Re(i)|min < |Re(l)|max - |aii|max (13)
Corollary
(Case of some diagonal elements being zero):
If the ecological sign stable matrix has zeros on the diagonal, the bounds are given by
i (= 0) < [Re(2)] 5, < [Re(2)] <[ (14)

The sign pattern in Example 1 has all negative diagonal elements. In this example, the case
discussed in the corollary where one of the diagonal elements is zero, is considered. This
sign pattern is as shown in the matrix below.

A=|0 - 0
+ + 0

Bounds on imaginary part of eigenvalues [38]

Similarly, the following theorem can be stated for bounds on the imaginary parts of the
eigenvalues of an nxn matrix. Before stating the theorem, we present the following lemma.
Theorem 2

For all nxn ecologically sign stable matrices, bound on the imaginary part of the eigenvalues
is given by

= |Imag(/11) (15)

H |imugss

max

Above results are illustrated in figure 3.
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B ........ .I ............................................................ l ................ .
I I
EE--ee S P b i

Fig. 3. Eigenvalue distribution for sign stable matrices

Theorem 3

For all nxn matrices, with all k-cycles being zero and with only commensal or ammensal interactions,
the eigenvalues are simply the diagonal elements.

It is clear that these theorems offer significant insight into the eigenvalue distribution of nxn
ecological sign stable matrices. Note that the bounds can be simply read off from the
magnitudes of the elements of the matrices. This is quite in contrast to the general
quantitative Hurwitz stable matrices where the lower and upper bounds on the eigenvalues
of a matrix are given in terms of the singular values of the matrix and/or the eigenvalues of
the symmetric part and skew-symmetric parts of the matrices (using the concept of field of
values), which obviously require much computation, and are complicated functions of the
elements of the matrices.

Now label the ecological sign stable matrices with magnitudes inserted in the elements as
‘quantitative ecological sign stable matrices’. Note that these magnitudes can be arbitrary in
each non zero entry of the matrix! It is interesting and important to realize that these
bounds, based solely on sign stability, do not reflect diagonal dominance, which is the
typical case with general Hurwitz stable matrices. Taking theorems 4, 5, 6 and their
respective corollaries into consideration, we can say that it is the ‘diagonal connectance” that
is important in these quantitative ecological sign stable matrices and not the “diagonal
dominance” which is typical in the case of general Hurwitz stable matrices. This means that
interactions are critical to system stability even in the case of general nxn matrices.

Now the effect on the quantitative property of normality is presented.

Normality and condition number

Based on this new insight on the eigenvalue distribution of sign stable matrices, other matrix
theory properties of sign stable matrices are investigated. The first quantitative matrix
theory property is that of normality/condition number. But this time, the focus is only on
ecological sign stable matrices with pure predator-prey links with no other types of
interactions.
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A zero diagonal element implies that a species has no control over its growth/decay rate. So
in order to regulate the population of such a species, it is essential that, in a sign stable
ecosystem model, this species be connected to at least one predator-prey link. In the case
where all diagonal elements are negative, the matrix represents an ecosystem with all self-
regulating species. If every species has control over its regulation, a limiting case for stability
is a system with no interspeciel interactions. This means that there need not be any
predator-prey interactions. This is a trivial ecosystem and such matrices actually belong to
the only ‘sign-stable” set, not to ecological sign stable set.

Apart from the self-regulatory characteristics of species, the phenomena that contribute to
the stability of a system are the type of interactions. Since a predator-prey interaction has a
regulating effect on both the species, predator-prey interactions are of interest in this
stability analysis. In order to study the role played by these interactions, henceforth focus is
on systems with n-1 pure predator-prey links in specific places. This number of links and
the specific location of the links are critical as they connect all species at the same time
preserving the property of ecological sign stability. For a matrix A, pure predator-prey link
structure implies that

1. A;A;<0 Vi,j

2. AA;=0iff Ay=A;=0

Hence, in what follows, matrices with all negative diagonal elements and with pure
predator-prey links are considered.

Consider sign stable matrices with identical diagonal elements (negative) and pure
predator-prey links of equal strengths.

Normality in turn implies that the modal matrix of the matrix is orthogonal resulting in it
having a condition number of one, which is an extremely desirable property for all matrices
occurring in engineering applications.

The property of normality is observed in higher order systems too. An ecologically sign
stable matrix with purely predator-prey link interactions is represented by the following
digraph for a 5-species system. The sign pattern matrix A represents this digraph.

-+ 000
- - 0 0
A=0 - - + 0
o0 - - +
_0 0 - __

Theorem 4

An nxn matrix A with equal diagonal elements and equal predation prey interaction strengths for
each predation-prey link is a normal matrix.

The property of k=1 is of great significance in the study of robustness of stable matrices. This
significance will be explained in the next section eventually leading to a robust control
design algorithm

Robustness

The third contribution of this section is related to the connection between ecological sign
stability and robust stability in engineering systems.
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As mentioned earlier, the most interesting feature of ecological sign stable matrices is that the
stability property is independent of the magnitude information in the entries of the matrix.
Thus the nature of interactions, which in turn decide the signs of the matrix entries and their
locations in the matrix, are sufficient to establish the stability of the given sign matrix. Clearly,
it is this independence (or non-dependence) from magnitude information that imparts the
property of robust stability to engineering systems. This aspect of robust stability in
engineering systems is elaborated next from quantitative matrix theory point of view.
Robustness as a result of independence from magnitude information

In mathematical sciences, the aspect of ‘robust stability” of families of matrices has been an
active topic of research for many decades. This aspect essentially arises in many applications
of system and control theory. When the system is described by linear state space
representation, the plant matrix elements typically depend on some uncertain parameters
which vary within a given bounded interval.

Robust stability analysis of a class of interval matrices [39]:

Consider the “interval matrix family” in which each individual element varies independently
within a given interval. Thus the interval matrix family is denoted by

A e[AL, AY] as the set of all matrices A that satisfy
(AL)” <A; < (Au)” for every i,j
ij ij

Now, consider a special ‘class of interval matrix family' in which for each element that is
varying, the lower bound i.e. (AL);j and the upper bound i.e. (AU);; are of the same sign.
For example, consider the interval matrix given by

2<a;, <5

0 ap ap 1<a;;<4
A=lay 0 0 -3<a, <-1
a3y 0 agp —4<qay <2

5<a, <05

with the elements a1, a13, 421, 431 and as3 being uncertain varying in some given intervals as
follows:

Qualitative stability as a ‘sufficient condition' for robust stability of a class of interval
matrices: A link between life sciences and engineering sciences

It is clear that ecological sign stable matrices have the interesting feature that once the sign
pattern is a sign stable pattern, the stability of the matrix is independent of the magnitudes
of the elements of the matrix. That this property has direct link to stability robustness of
matrices with structured uncertainty was recognized in earlier papers on this topic [32] and
[33]. In these papers, a viewpoint was put forth that advocates using the ‘qualitative
stability' concept as a