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1. Introduction  

The theory of "Robust" Linear Control Systems has grown remarkably over the past ten 
years. Its popularity is now spreading over the industrial environment where it is an 
invaluable tool for analysis and design of servo systems. This rapid penetration is due to 
two major advantages: its applied nature and its relevance to practical problems of 
automation engineer. 
To appreciate the originality and interest of robust control tools, let us recall that a control 
has two essential functions:  

• shaping the response of the servo system to give it the desired behaviour, 

• maintaining this behaviour from the fluctuations that affect the system during 
operation (wind gusts for aircraft, wear for a mechanical system, configuration change 
to a robot.). 

This second requirement is termed "robustness to uncertainty". It is critical to the reliability 
of the servo system. Indeed, control is typically designed from an idealized and simplified 
model of the real system. 
To function properly, it must be robust to the imperfections of the model, i.e.   the 
discrepancies between the model and the real system, the excesses of physical parameters 
and the external disturbances. 
The main advantage of robust control techniques is to generate control laws that satisfy the 
two requirements mentioned above. More specifically, given a specification of desired 
behaviour and frequency estimates of the magnitude of uncertainty, the theory evaluates the 
feasibility, produces a suitable control law, and provides a guaranty on the range of validity 
of this control law (strength). This combined approach is systematic and very general. In 
particular, it is directly applicable to Multiple-Input Multiple Output systems. 
To some extent, the theory of Robust Automatic Control reconciles dominant frequency 
(Bode, Nyquist, PID) and the Automatic Modern dominated state variables (Linear 
Quadratic Control, Kalman). 
It indeed combines the best of both. From Automatic Classic, it borrows the richness of the 
frequency analysis systems. This framework is particularly conducive to the specification of 
performance objectives (quality of monitoring or regulation), of band-width and of 
robustness. From Automatic Modern, it inherits the simplicity and power of synthesis 
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methods by the state variables of enslavement. Through these systematic synthesis tools, the 
engineer can now impose complex frequency specifications and direct access to a diagnostic 
feasibility and appropriate control law. He can concentrate on finding the best compromise 
and analyze the limitations of his system. 
This chapter is an introduction to the techniques of Robust Control. Since this area is still 
evolving, we will mainly seek to provide a state of the art with emphasis on methods 
already proven and the underlying philosophy. For simplicity, we restrict to linear time 
invariant systems (linear time-invariant, LTI) continuous time. Finally, to remain true to the 
practice of this theory, we will focus on implementation rather than on mathematical and 
historical aspects of the theory. 

2. Basic concepts 

The control theory is concerned with influencing systems to realize that certain output 
quantities take a desired course. These can be technical systems, like heating a room with 
output temperature, a boat with the output quantities heading and speed, or a power plant 
with the output electrical power. These systems may well be social, chemical or biological, as, 
for example, the system of national economy with the output rate of inflation. The nature of the 
system does not matter. Only the dynamic behaviour is of great importance to the control 
engineer. We can describe this behaviour by differential equations, difference equations or 
other functional equations. In classical control theory, which focuses on technical systems, 
the system that will be influenced is called the (controlled) plant. 
In which kinds in manners can we influence the system? Each system is composed not only 
of output quantities, but as well of input quantities. For the heating of a room, this, for 
example, will be the position of the valve, for the boat the power of the engine and angle of 
the rudder. These input variables have to be adjusted in a manner that the output variables 
take the desired course, and they are called actuating variables. In addition to the actuating 
variables, the disturbance variables affect the system, too. For instance, a heating system, 
where the temperature will be influenced by the number of people in the room or an open 
window, or a boat, whose course will be affected by water currents. 
The desired course of output variables is defined by the reference variables. They can be 
defined by operator, but they can also be defined by another system. For example, the 
autopilot of an aircraft calculates the reference values for altitude, the course, and the speed 
of the plane. But we do not discuss the generation of reference variables here. In the 
following, we take for them for granted. Just take into account that the reference variables 
do not necessarily have to be constant; they can also be time-varying. 
Of which information do have we need to calculate the actuating variables to make the 
output variables of the system follow the variables of reference? Clearly the reference values 
for the output quantities, the behavior of the plant and the time-dependent behavior of the 
disturbance variables must be known. With this information, one can theoretically calculate 
the values of the actuating variables, which will then affect the system in a way that the 
output quantities will follow the desired course. This is the principle of a steering mechanism 
(Fig. 1). The input variable of the steering mechanism is the reference variableω , its output 

quantity actuating variable u  , which again - with disturbance variable w  forms the input 

value of the plant. y represents the output value of the system. 

The disadvantage of this method is obvious. If the behavior of the plant is not in accordance 
with the assumptions which we made about it, or if unforeseen disruptions, then the 
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quantities of output will not continue to follow the desired course. A steering mechanism 
cannot react to this deviation, because it does not know the output quantity of the plant. 
 

Plant 
u  y  

Steering 

iw  ow  

ω  
+ +  

+ +  

 

Fig. 1. Principle of a steering mechanism 

A improvement which can immediately be made is the principle of an (automatic) control 
(Fig. 2). Inside the automatic check, the reference variable ω  is compared with the 
measured output variable of the plant y  (control variable), and a suitable output quantity of 
the controller u (actuating variable) are calculated inside the control unit of the difference yΔ  
(control error).  
During old time the control unit itself was called the controller, but the modern controllers, 
including, between others, the adaptive controllers (Boukhetala et al., 2006), show a 
structure where the calculation of the difference between the actual and wished output 
value and the calculations of the control algorithm cannot be distinguished in the way just 
described. For this reason, the tendency today is towards giving the name controller to the 
section in which the variable of release is obtained starting from the reference variable and 
the measured control variable. 
 

+
 

+ 
+

 + 

 Process Actuator 
ω  

u
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Metering Element 

e
 

-
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Fig. 2. Elements of a control loop 

The quantity u is usually given as low-power signal, for example as a digital signal. But with 
low power, it is not possible to tack against a physical process. How, for example, could be a 
boat to change its course by a rudder angle calculated numerically, which means a sequence 
of zeroes and ones at a voltage of 5 V? Because it's not possible directly, a static inverter and 
an electric rudder drive are necessary, which may affect the rudder angle and the boat's 
route. If the position of the rudder is seen as actuating variable of the system, the static 
inverter, the electric rudder drive and the rudder itself from the actuator of the system. The 
actuator converts the controller output, a signal of low power, into the actuating variable, a 
signal of high power that can directly affect the plant. 
Alternatively, the output of the static inverter, that means the armature voltage of the 
rudder drive, could be seen as actuating variable. In this case, the actuator would consist 
only of static converter, whereas the rudder drive and the rudder should be added to the 
plant. These various views already show that a strict separation between the actuator and 
the process is not possible.  But it is not necessary either, as for the design of the controller; 
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we will have to take every transfer characteristic from the controller output to the control 
variable into account anyway.  Thus, we will treat the actuator as an element of the plant, 
and henceforth we will employ the actuating variable to refer to the output quantity of the 
controller. 
For the feedback of the control variable to the controller the same problem is held, this time 
only in the opposite direction: a signal of high power must be transformed into a signal of 
low power. This happens in the measuring element, which again shows dynamic properties 
that should not be overlooked. 
Caused by this feedback, a crucial problem emerges, that we will illustrate by the following 
example represented in (Fig. 3). We could formulate strategy of a boat’s automatic control 
like this: the larger the deviation from the course is, the more the rudder should be steered 
in the opposite direction. At a glance, this strategy seems to be reasonable. If for some 
reason a deviation occurs, the rudder is adjusted. By steering into the opposite direction, the 
boat receives a rotatory acceleration in the direction of the desired course. 
The deviation is reduced until it disappears finally, but the rotating speed does not 

disappear with the deviation, it could only be reduced to zero by steering in the other 

direction. In this example, because of the rotating speed of the boat will receive a deviation 

in the other direction after getting back to the desired course.  This is what happened after 

the rotating speed will be reduced by counter-steering caused by the new deviation. But as 

we already have a new deviation, the whole procedure starts again, only the other way 

round. The new deviation could be even greater than the first. 

The boat will begin zigzagging its way, if worst comes to worst, with always increasing 

deviations. This last case is called instability. If the amplitude of vibration remains the same, 

it is called borderline of stability. 

Only if the amplitudes decrease the system is stable. To receive an acceptable control 

algorithm for the example given, we should have taken the dynamics of the plant into 

account when designing the control strategy. 

A suitable controller would produce a counter-steering with the rudder right in time to 

reduce the rotating speed to zero at the same time the boat gets back on course. 

 

 
Desired Course 

 

Fig. 3. Automatic cruise control of a boat  

This example illustrates the requirements with respect to the controlling devices. A 
requirement is accuracy, i.e. the control error should be also small as possible once all the 
initial transients are finished and a stationary state is reached. Another requirement is the 
speed, i.e. in the case of a changing reference value or a disturbance; the control error should 
be eliminated as soon as possible. This is called the response behavior. The requirement of the 
third and most important is the stability of the whole system. We will see that these 
conditions are contradicted, of this fact of forcing each kind of controller (and therefore 
fuzzy controllers, too) to be a compromise between the three. 
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3. Frequency response 

If we know a plant’s transfer function, it is easy to construct a suitable controller using this 
information. If we cannot develop the transfer function by theoretical considerations, we 
could as well employ statistical methods on the basis of a sufficient quantity of values 
measured to determine it. This method requires the use of a computer, a plea which was not 
available during old time. Consequently, in these days a different method frequently 
employed in order to describe a plant's dynamic behavior, frequency response (Franklin  et al., 
2002). As we shall see later, the frequency response can easily be measured. Its good 
graphical representation leads to a clear method in the design process for simple PID 
controllers. Not to mention only several criteria for the stability, which as well are employed 
in connection with fuzzy controllers, root in frequency response based characterization of a 
plant's behavior. 
The easiest way would be to define the frequency response to be the transfer function of a 
linear transfer element with purely imaginary values for s. 

Consequently, we only have to replace the complex variable s of the transfer function by a 

variable purely imaginary. jω : ( ) ( )
s j

G j G s == ωω . The frequency response is thus a complex 

function of the parameterω . Due to the restriction of s to purely imaginary values; the 

frequency response is only part of the transfer function, but a part with the special 

properties, as the following theorem shows: 
Theorem 1 If a linear transfer element has the frequency response ( )G jω , then its response to the 
input signal ( ) sinx t a t= ω  will be-after all initial transients have settled down-the output signal 

 ( ) ( ) sin( ( ( )))y t a G j t G j= +ω ω ϕ ω  (1) 

If the following equation holds: 

 
0

( )g t dt
∞

∞∫ ≺  (2) 

( )G jω  is obviously the ratio of the output sine amplitude to the input sine amplitude 
((transmission) gain or amplification). ( ( )G jφ ω is the phase of the complex quantity ( )G jω and 
shows the delay of the output sine in relation to the input sine (phase lag). ( )g t  is the impulse 
response of the plant. In case the integral given in (2) does not converge, we have to add the term  

( )r t  to the right hand side of (1), which will, even for t →∞ , not vanish. 
The examination of this theorem shows clearly what kind of information about the plant the 
frequency response gives: Frequency response characterizes the system's behavior for any 
frequency of the input signal.  Due to the linearity of the transfer element, the effects caused 
by single frequencies of the input signal do not interfere with each other. In this way, we are 
now able to predict the resulting effects at the system output for each single signal 
component separately, and we can finally superimpose these effects to predict the overall 
system output. 

Unlike the coefficients of a transfer function, we can measure the amplitude and phase shift 
of the frequency response directly: The plant is excited by a sinusoidal input signal of a 
certain frequency and amplitude. After all initial transients are installed we obtain a 
sinusoidal signal at the output plant, whose phase position and amplitude differ from the 
input signal. The quantities can be measured, and depending to (1), this will also instantly 
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provide the amplitude and phase lag of the frequency response ( )G jω . In this way, we can 
construct a table for different input frequencies that give the principle curve of the 
frequency response. Take of measurements for negative values of ω , i.e. for negative 
frequencies, which is obviously not possible, but it is not necessary either, delay elements 
for the transfer functions rational with real coefficients and for ( )G jω will be conjugate 
complex to ( )G j− ω . Now, knowing that the function ( )G jω for 0≥ω  already contains all 
the information needed, we can omit an examination of negative values ofω . 

4. Tools for analysis of controls 

4.1 Nyquist plot 

A Nyquist plot is used in automatic control and signal processing for assessing the stability 
of a system with feedback. It is represented by a graph in polar coordinates in which the 
gain and phase of a frequency response are plotted. The plot of these phasor quantities 
shows the phase as the angle and the magnitude as the distance from the origin (see. Fig.4). 
The Nyquist plot is named after Harry Nyquist, a former engineer at Bell Laboratories. 
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Fig. 4. Nyquist plots of linear transfer elements 

Assessment of the stability of a closed-loop negative feedback system is done by applying 

the Nyquist stability criterion to the Nyquist plot of the open-loop system (i.e. the same 

system without its feedback loop). This method is easily applicable even for systems with 

delays which may appear difficult to analyze by means of other methods. 

Nyquist Criterion: We consider a system whose open loop transfer function (OLTF) is ( )G s ; 

when placed in a closed loop with feedback ( )H s , the closed loop transfer function (CLTF) 

then becomes
1 .

G

G H+
. The case where 1H = is usually taken, when investigating stability, 

and then the characteristic equation, used to predict stability, becomes 1 0G + = . 

We first construct The Nyquist Contour, a contour that encompasses the right-half of the 
complex plane: 

• a path traveling up the jω axis, from 0  -j∞  to 0  j+ ∞ .  
• a semicircular arc, with radius r →∞  , that starts at 0  j+ ∞ and travels clock-wise to 

0  -j∞  
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The Nyquist Contour mapped through the function 1 ( )G s+ yields a plot of 1 ( )G s+ in the 
complex plane. By the Argument Principle, the number of clock-wise encirclements of the 
origin must be the number of zeros of 1 ( )G s+ in the right-half complex plane minus the 
poles of 1 ( )G s+ in the right-half complex plane. If instead, the contour is mapped through 
the open-loop transfer function ( )G s , the result is the Nyquist plot of ( )G s . By counting the 
resulting contour's encirclements of 1− , we find the difference between the number of poles 
and zeros in the right-half complex plane of 1 ( )G s+ . Recalling that the zeros of 1 ( )G s+ are 
the poles of the closed-loop system, and noting that the poles of 1 ( )G s+ are same as the 
poles of ( )G s , we now state The Nyquist Criterion: 
Given a Nyquist contour sΓ , let P be the number of poles of ( )G s encircled by sΓ  and Z be 
the number of zeros of 1 ( )G s+ encircled by sΓ . Alternatively, and more importantly, Z  is 
the number of poles of the closed loop system in the right half plane. The resultant contour 
in the ( )G s -plane, ( )G sΓ shall encircle (clock-wise) the point ( )1 0j− +  N  times such 
that N Z P= − . For stability of a system, we must have 0Z = , i.e. the number of closed loop 
poles in the right half of the s-plane must be zero. Hence, the number of counterclockwise 
encirclements about ( )1 0j− + must be equal to P , the number of open loop poles in the right 
half plane (Faulkner, 1969), ( Franklin, 2002). 

4.2 Bode diagram 

A Bode plot is a plot of either the magnitude or the phase of a transfer function ( )T jω as a 
function of ω . The magnitude plot is the more common plot because it represents the gain 
of the system. Therefore, the term “Bode plot” usually refers to the magnitude plot (Thomas, 
2004),( William, 1996),( Willy, 2006). The rules for making Bode plots can be derived from 
the following transfer function: 

0

( )

n
s

T s K

±
⎛ ⎞

= ⎜ ⎟
⎝ ⎠ω  

where n  is a positive integer. For n+  as the exponent, the function has n zeros at 0s = . For 
n− , it has n  poles at 0s = . With s j= ω , it follows that 0( ) ( / )n nT j Kj± ±=ω ω ω , 

0( ) ( / ) nT j Kj ±=ω ω ω  and ( ) 90T j n∠ = ± ×ω D . If ω is increased by a factor of 10 , ( )T jω  
changes by a factor of 10 n± . Thus a plot of ( )T jω versus ω  on log log−  scales has a slope 
of ( )log 10  /n n decades decade± = ± . There are 20dBs  in a decade , so the slope can also be 
expressed as 20  /n dB decade± . 
In order to give an example, (Fig. 5) shows the Bode diagrams of the first order and second 
order lag. Initial and final values of the phase lag courses can be seen clearly. The same 
holds for the initial values of the gain courses. Zero, the final value of these courses, lies at 
negative infinity, because of the logarithmic representation. Furthermore, for the second 
order lag the resonance magnification for smaller dampings can be see at the resonance 
frequency 0ω . 
Even with a transfer function being given, a graphical analysis using these two diagrams 
might be clearer, and of course it can be tested more easily than, for example, a numerical 
analysis done by a computer. It will almost always be easier to estimate the effects of 
changes in the values of the parameters of the system, if we use a graphical approach 
instead of a numerical one. For this reason, today every control design software tool 
provides the possibility of computing the Nyquist plot or the Bode diagram for a given 
transfer function by merely clicking on a button. 
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Fig. 5. Bode diagram of first and second-order systems 

4.3 Evans root locus 

In addition to determining the stability of the system, the root locus can be used to design 
for the damping ratio and natural frequency of a feedback system (Franklin  et al., 2002). 
Lines of constant damping ratio can be drawn radially from the origin and lines of constant 
natural frequency can be drawn as arcs whose center points coincide with the origin (see. 
Fig. 6). By selecting a point along the root locus that coincides with a desired damping ratio 
and natural frequency a gain, K, can be calculated and implemented in the controller. More 
elaborate techniques of controller design using the root locus are available in most control 
textbooks: for instance, lag, lead, PI, PD and PID controllers can be designed approximately 
with this technique. 
The definition of the damping ratio and natural frequency presumes that the overall 
feedback system is well approximated by a second order system, that is, the system has a 
dominant pair of poles. This often doesn't happen and so it's good practice to simulate the 
final design to check if the project goals are satisfied. 
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Fig. 6. Evans root locus of a second-order system 

Suppose there is a plant (process) with a transfer function expression ( )P s , and a forward 
controller with both an adjustable gain K and a transfer function expression ( )C s . A unity 
feedback loop is constructed to complete this feedback system. For this system, the overall 
transfer function is given by: 

 
. ( ). ( )

( )
1 . ( ). ( )

K C s P s
T s

K C s P s
=

+
 (3) 

Thus the closed-loop poles of the transfer function are the solutions to the equation 
1 . ( ). ( ) 0K C s P s+ = . The principal feature of this equation is that roots may be found 
wherever . . 1K C P = − . The variability of K , the gain for the controller, removes amplitude 
from the equation, meaning the complex valued evaluation of the polynomial in s  

( ). ( )C s P s needs to have net phase of 180 deg, wherever there is a closed loop pole. The 
geometrical construction adds angle contributions from the vectors extending from each of 
the poles of KC to a prospective closed loop root (pole) and subtracts the angle 
contributions from similar vectors extending from the zeros, requiring the sum be 180. The 
vector formulation arises from the fact that each polynomial term in the factored CP , ( )s a−   
for example, represents the vector from a  which is one of the roots, to s which is the 
prospective closed loop pole we are seeking. Thus the entire polynomial is the product of 
these terms, and according to vector mathematics the angles add (or subtract, for terms in 
the denominator) and lengths multiply (or divide). So to test a point for inclusion on the root 
locus, all you do is add the angles to all the open loop poles and zeros. Indeed a form of 
protractor, the "spirule" was once used to draw exact root loci. 
From the function ( )T s , we can also see that the zeros of the open loop system ( CP ) are also 
the zeros of the closed loop system. It is important to note that the root locus only gives the 
location of closed loop poles as the gain K  is varied, given the open loop transfer function. 
The zeros of a system cannot be moved. 
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Using a few basic rules, the root locus method can plot the overall shape of the path (locus) 
traversed by the roots as the value of K varies. The plot of the root locus then gives an idea 
of the stability and dynamics of this feedback system for different values of K. 

5. Ingredients for a robust control 

The design of a control consists in adjusting the transfer function of the compensator so as to 
obtain the properties and the behavior wished in closed loop. In addition to the constraint of 
stability, we look typically the best possible performance. This task is complicated by two 
principal difficulties. On the one hand, the design is carried out on a idealized model of the 
system. We must therefore ensure the robustness to imperfections in the model, i.e. to 
ensure that the desired properties for a family of systems around the reference model. On 
the other hand, it faces inherent limitations like the compromise between performances and 
robustness. 
This section shows how these objectives and constraints can be formulated and quantified in 
a consistent framework favorable to their taking into systematic account. 

5.1 Robustness to uncertainty 

The design of a control is carried out starting from a model of the real system often called 
nominal model or reference model. This model may come from the equations of physics or 
a process identification. In any case, this model is only one approximation of reality. Its 
deficiencies can be multiple: dynamic nonlinearities neglected, uncertainty on certain 
physical parameters, assumptions simplifying, errors of measurement to the identification, 
etc..  In addition, some system parameters can vary significantly with time or operating 
conditions. Finally, from the unforeseeable external factors can come to disturb the 
operation of the control system. 
It is thus insufficient to optimize control compared to the nominal model: it is also necessary 
to be guarded against the uncertainty of modeling and external risks. Although these factors 
are poorly known, one has information in general on their maximum amplitude or their 
statistical nature. For example, the frequency of the oscillation, maximum intensity of the 
wind, or the terminals min and max on the parameter value. It is from this basic knowledge 
that one will try to carry out a robust control. 
There are two classes of uncertain factors. A first class includes the uncertainty and external 
disturbances. These are signals or actions randomness that disrupt the controlled system. 
They are identified according to their point of entry into the loop. Referring again to (Fig. 2) 
there are basically: 

• the disruption of the control  iw   which can come from errors of discretization or 

quantification of the control or parasitic actions on the actuators. 

• Disturbances at exit ow  corresponding to external effects on the output or 

unpredictable on the system, e.g. the wind for a airplane, an air pressure change for a 
chemical reactor, etc.. 

It should be noted that these external actions do not modify the dynamic behavior interns 
system, but only the “trajectory” of its outputs. 
A second class of uncertain factors joins together imperfections and variations of the 
dynamic model of the system. Recall that the robust control techniques applied to finite 
dimensional linear models, while real systems are generally non-linear and infinite 
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dimensional. Typically, the model used thus neglects non-linear ties and is valid only in one 
limited frequency band. It depends of more than physical parameters whose value can 
fluctuate and is often known only roughly. For practical reasons, one will distinguish: 

• the dynamic uncertainty which gathers the dynamic ones neglected in the model. 

There is usually only an upper bound on the amplitude of these dynamics. One must 

thus assume and guard oneself against worst case in the limit of this marker. 

• the parametric uncertainty or structured  which is related to the variations or errors in 

estimation on certain physical parameters of the system, or with uncertainties of 

dynamic nature, but entering the loop at different points. Parametric uncertainty 

intervenes mainly when the model is obtained starting from the equations of physics. 

The way in which the parameters influential on the behavior of the system determines 

the “structure” of the uncertainty. 

5.2 Representation of the modeling uncertainty 

The dynamic uncertainty (unstructured) can encompass of physical phenomena very 

diverse (linear or nonlinear, static or time-variant, frictions, hysteresis, etc.). The techniques 

discussed in this chapter are particularly relevant when one does not have any specific 

information if not an estimate of the maximum amplitude of dynamic uncertainty, In other 

words, when uncertainty is reasonably modeled by a ball in the space of bounded operators 

of 2A in 2A . 

Such a model is of course very rough and tends to include configurations with physical 

sense. If the real system does not comprise important nonlinearities, it is often preferable to 

be restricted with a stationary purely linear model of dynamic uncertainty. We can then 

balance the degree of uncertainty according to the frequency and translate the fact that the 

system is better known into low than in high frequency. Uncertainty is then represented as a 

disturbing system LTI ( )G sΔ  which is added to the nominal model ( )G s of the real system: 

 
( ) ( ) ( )trueG s G s G s= + Δ

 (4) 

This system must be BIBO-stable (bounded 2A in 2A ), and it usually has an estimate of the 

maximum amplitude of ( )G jΔ ω in each frequency band. Typically, this amplitude is small at 

lower frequencies and grows rapidly in the high frequencies where the dynamics neglected 

become important. This profile is illustrated in (Fig. 7). It defines a family of systems whose 

envelope on the Nyquist diagram is shown in (Fig. 8) (case SISO). The radius of the disk of 

the frequency uncertainty ω  is ( )G jΔ ω . 
 

 

Fig. 7. Standard profile for ( )G jΔ ω . 
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( ))(Re ωjG  

( ))(Im ωjG  

 

Fig. 8. Family of systems 

The information on the amplitude ( )G jΔ ω  of the uncertainty can be quantified in several 
ways: 
• additive uncertainty: the real system is of the form: 

 ( ) ( ) ( )trueG s G s s= + Δ  (5) 

Where ( )sΔ  is a stable transfer function satisfying: 

 ( ) ( ) ( ) 1l rW j W
∞

ω Δ ω ω ≺  (6) 

for certain models ( )lW s and ( )rW s . These weighting matrices make it possible to 
incorporate information on the frequential dependence and directional of the maximum 
amplitude of ( )sΔ  (see singular values). 
• multiplicative uncertainty at the input: the real system is of the form: 

 
( ) ( ).( ( ))trueG s G s I s= + Δ

 (7) 

where ( )sΔ is like above. This representation models errors or fluctuations on the behavior 
in input. 
• multiplicative uncertainty at output: the real system is of the form: 

 
( ) ( ( )). ( )trueG s I s G s= + Δ

 (8) 

This representation is adapted to modeling of the errors or fluctuations in the output behavior. 
According to the data on the imperfections of the model, one will choose one or the other of 
these representations. Let us note that multiplicative uncertainty has a relative character. 

5.3 Robust stability 

Let the linear system be given by the transfer function 
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with the gain 

 0

0

b
V

a
=  (10) 

First we must explain what we mean by stability of a system. Several possibilities exist to 

define the term, two of which we will discuss now. A third definition by the Russian 

mathematician Lyapunov will be presented later. The first definition is based on the step 

response of the system: 
Definition 1 A system is said to be stable if, for t →∞ , its step response converges to a finite value. 

Otherwise, it is said to be instable.  

This unit step function has been chosen to stimulate the system does not cause any 

restrictions, because if the height of the step is modified by the factor k, the values to the 

system output will change by the same factor k, too, according to the linearity of the system. 

Convergence towards a finite value is therefore preserved. 

A motivation for this definition can be the idea of following illustration: If a system 

converges towards a finished value after strong stimulation that a step in the input signal 

represents, it can suppose that it will not be wedged in permanent oscillations for other 

kinds of stimulations. 

It is obvious to note that according to this definition the first order and second order lag is 

stable, and that the integrator is instable. 

Another definition is attentive to the possibility that the input quantity may be subject to 

permanent changes: 
Definition 2 A linear system is called stable if for an input signal with limited amplitude, its output 
signal will also show a limited amplitude. This is the BIBO-Stability (bounded input - bounded 
output). 

Immediately, the question on the connection between the two definitions arises, that we will 

now examine briefly. The starting point of discussion is the convolution integral, which 

gives the relationship between the system's input and the output quantity (the impulse 

response): 

 
0 0

( ) ( ) ( ) ( ) ( )
t t

y t g t x d g x t d
= =

= − = −∫ ∫
τ τ

τ τ τ τ τ τ  (11) 

( )x t is bounded if and only if ( )x t k≤ holds (with 0k > ) for all t . This implies: 

 
0 0

( ) ( ) ( ) ( )
t t

y t g x t d k g d
= =

≤ − ≤∫ ∫
τ τ

τ τ τ τ τ  (12) 

Now, with absolute convergence of the integral of the impulse response, 

 
0

( )g d c
∞

=

= < ∞∫
τ

τ τ  (13) 

( )y s will be limited by kc , also, and thus the whole system will be BIBO-stable. Similarly it 

can be shown that the integral (13) converges absolutely for all BIBO-stable systems. BIBO 
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stability and the absolute convergence of the impulse response integral are the equivalent 

properties of system. 
Now we must find the conditions under which the system will be stable in the sense of a 
finite step response (Definition 2): Regarding the step response of a system in the frequency 
domain, 

 
1

( ) ( )y s G s
s

=  (14) 

If we interpret the factor 1
s

as an integration (instead of the Laplace transform of the step 

signal), we obtain 

 
0

( ) ( )
t

y s g d
=

= ∫
τ

τ τ  (15) 

in the time domain for (0) 0. ( )y y t= converge to a finite value only if the integral converges: 

 
0

( )
t

g d c
=

= < ∞∫
τ

τ τ  (16) 

Convergence is obviously a weaker criterion than absolute convergence. Therefore, each 
BIBO-stable system will have a finite step response. To treat the stability always in the sense 
of the BIBO-stability is tempting because this stronger definition makes other 
differentiations useless. On the other hand, we can simplify the following considerations 
much if we use the finite-step-response-based definition of stability (Christopher, 
2005),(Arnold, 2006). In addition to this, the two definitions are equivalent as regards the 
transfer functions anyway. Consequently, henceforth we will think of stability as 
characterized in (Definition 2). 
Sometimes stability is also defined while requiring that the impulse response to converge 
towards zero for t →∞ . A glance at the integral (16) shows that this criterion is necessary 

but not sufficient condition for stability as defined by (Definition 2), while (Definition 2) is the 
stronger definition. If we can prove a finite step response, then the impulse response will 
certainly converge to zero. 

5.3.1 Stability of a transfer function 

If we want to avoid having to explicitly calculate the step response of a system in order to 
prove its stability, then a direct examination of the transfer function of the system's, trying to 
determine criteria for the stability, seems to suggest itself ( Levine, 1996). This is relatively 
easy concerning all ideas that we developed up to now about the step response of a rational 
transfer function. The following theorem is valid: 
Theorem 2 A transfer element with a rational transfer function is stable in the sense of (Definition 2) 
if and only if all poles of the transfer function have a negative real part. 
According to equation (17), the step response of a rational transfer element is given by: 

 
1

( ) ( ) t
i

s
y t h t e

=
=∑ λ

λ
λ

 (17) 
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For each pole sλ of multiplicity nλ , we obtain a corresponding operand ( )
ts

h t e λ
λ , which 

( )h tλ is a polynomial of degree 1n −λ . For a pole with a negative real part, this summand 

disappears to increase t , as the exponential function converges more quickly towards 

zero than the polynomial ( )h tλ can increase. If all the poles of the transfer function have a 

negative real part, then all corresponding terms disappear. Only the summand ( )
ti

s

ih t e for 

the simple pole 0is =  remains, due to the step function. The polynomial ( )ih t is of degree 

1 0in − = , i.e. a constant, and the exponential function is also reduced to a constant. In this 

way, this summand form the finite final value of the step function, and the system is 

stable. 
We omit the proof in the opposite direction, i.e. a system is instable if at least one pole has a 

positive real part because it would not lead to further insights. It is interesting that (Theorem 

2) holds as well for systems with delay according to (9). The proof of this last statement will 

be also omitted. 

Generally, the form of the initial transients as reaction to the excitations of outside will also 
be of interest besides that the fact of stability. If a plant has, among others, a complex 

conjugate pair of poles sλ , sλ , the ratio 2 2Re( ) Re( ) Im( )s s s+λ λ λ  is equal to the damping 

ratio D and therefore responsible for the form of the initial transient corresponding to this 
pair of poles. In practical applications one will therefore pay attention not only to that the 
system’s poles have a negative real part, but also to the damping ratio D having a 
sufficiently high value, i.e. that a complex conjugate pair of poles lies at a reasonable 
distance to the axis of imaginaries. 

5.3.2 Stability of a control loop 

The system whose stability must be determined will in the majority of the cases be a closed 

control loop (Goodwin, 2001), as shown in (Fig. 2). A simplified structure is given in (Fig. 9). 

Let the transfer function of the control unit is ( )K s , the plant will be given by ( )G s and the 

metering element by ( )M s . To keep further derivations simple, we set ( )M s  to 1, i.e. we 

neglect the dynamic behavior of the metering element, for simple cases, but it should 

normally be no problem to take the metering element also into consideration. 
 

+
 

+ 

- 
G 

ω  u
 y  

K 

M

e  

 

d  

 

Fig. 9. Closed-loop system 

 We summarize the disturbances that could affect the closed loop system to virtually any 

point, into a single disturbance load that we impressed at the plant input. This step 

simplifies the theory without the situation for the controller easier than it would be in 

practical applications. Choose the plant input as the point where the disturbance affects the 

plant is most unfavorable: The disturbance can affect plants and no countermeasure can be 

applied, as the controller can only counteract after the changes at the system output. 

www.intechopen.com



 Robust Control, Theory and Applications 

 

18 

To be able to apply the criteria of stability to this system we must first calculate the transfer 

function that describes the transfer characteristic of the entire system between the input 

quantity ω  and the output quantity y . This is the transfer function of the closed loop, which 

is sometimes called the reference (signal) transfer function. To calculate it, we first set d to 

zero. In the frequency domain we get 

  ( ) ( ) ( ) ( ) ( )( ( ) ( ))y s G s u s G s K s s y s= = −ω  (18) 

 
( ) ( ) ( )

( )
( ) ( ) ( ) 1

y s G s K s
T s

s G s K s
= =

+ω  (19) 

In a similar way, we can calculate a disturbance transfer function, which describes the transfer 

characteristic between the disturbance d and the output quantity y: 

 
( ) ( ) ( )

( )
( ) ( ) ( ) 1

y s G s K s
S s

d s G s K s
= =

+
 (20) 

The term ( ) ( )G s K s has a special meaning: if we remove the feedback loop, so this term 

represents the transfer function of the resulting open circuit. Consequently, ( ) ( )G s K s is 

sometimes called the open-loop transfer function. The gain of this function (see (9)) is called 

open-loop gain. 

We can see that the reference transfer function and the disturbance transfer function have 

the same denominator ( ) ( ) 1G s K s + . On the other hand, by (Theorem 2), it is the denominator 

of the transfer function that determines the stability. It follows that only the open-loop 

transfer function affects the stability of a system, but not the point of application of an input 

quantity. We can therefore restrict an analysis of the stability to a consideration of the 

term ( ) ( ) 1G s K s + . 

However, since both the numerator and denominator of the two transfer functions ( )T s and 

( )S s  are obviously relatively prime to each other, the zeros of ( ) ( ) 1G s K s +  are the poles of 

these functions, and as a direct consequence of (Theorem 2) we can state: 

Theorem 3 A closed-loop system with the open-loop transfer function ( ) ( )G s K s is stable if and only if 

all solutions of the characteristic equation have a negative real part. 

 ( ) ( ) 1 0G s K s + =  (21) 

Computing these zeros in an analytic way will no longer be possible if the degree of the 

plant is greater than two, or if an exponential function forms a part of the open-loop transfer 

function. Exact positions of the zeros, though, are not necessary in the analysis of stability. 

Only the fact whether the solutions have a positive or negative real part is of importance. 

For this reason, in the history of the control theory criteria of stability have been developed 

that could be used to determine precisely without having to make complicated calculations 

(Christopher, 2005), ( Franklin, 2002). 

5.3.3 Lyapunov’s stability theorem 

We state below a variant of Lyapunov’s direct method that establishes global asymptotic 

stability. 
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Theorem 4 Consider the dynamical system ( ) ( ( ))x t f x t=�  and let 0x = be its unique 

equilibrium point. If there exists a continuously differentiable function : nV ℜ →ℜ  such that 

 (0) 0V =  (22) 

 ( ) 0  0V x x∀ ≠;  (23) 

 
( )x V x→∞⇒ →∞

 (24) 

 ( ) 0  0,V x x∀ ≠� ≺  (25) 

then 0x = is globally asymptotically stable. 

Condition (25) is what we refer to as the monotonicity requirement of Lyapunov’s theorem. In 

the condition, ( )V x� denotes the derivation of ( )V x  along the trajectories of ( )x t�  and is given 

by 

( )( )
( ) , ,

V x
V x f x

x

∂
=< >

∂
�  

where <.,.> denotes the standard inner product in nℜ and 
( ) nV x

x

∂
∈ℜ

∂
 is the gradient of 

( )V x . As far as the first two conditions are concerned, it is only needed to assume that ( )V x  

is lower bounded and achieves its global minimum at 0x = .There is no conservatism, 

however, in requiring (22) and (23). A function satisfying condition (24) is called radially 
unbounded. We refer the reader to (Khalil, 1992) for a formal proof of this theorem and for an 
example that shows condition (24) cannot be removed. Here, we give the geometric intuition 
of Lyapunov’s theorem, which essentially carries all of the ideas behind the proof. 
 

 

Fig. 10. Geometric interpretation of Lyapunov’s theorem. 

(Fig. 10) shows a hypothetical dynamical system in 2ℜ . The trajectory is moving in the 

1 2( , )x x  plane but we have no knowledge of where the trajectory is as a function of time. On 

the other hand, we have a scalar valued function ( )V x , plotted on the z-axis, which has the 
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guaranteed property that as the trajectory moves the value of this function along the 

trajectories strictly decreases. Since ( ( ))V x t  is lower bounded by zero and is strictly 

decreasing, it must converge to a nonnegative limit as time goes to infinity. It takes a 

relatively straightforward argument appealing to continuity of ( )V x  and ( )V x� ) to show that 

the limit of ( ( ))V x t  cannot be strictly positive and indeed conditions (22)-(25) imply 

( ( )) 0 as tV x t → →∞  

Since 0x = is the only point in space where ( )V x  vanishes, we can conclude that ( )x t  goes to 

the origin as time goes to infinity. 

It is also insightful to think about the geometry in the 1 2( , )x x plane. The level sets of ( )V x are 

plotted in (Fig. 10) with dashed lines. Since ( ( ))V x t  decreases monotonically along trajectories, 

we can conclude that once a trajectory enters one of the level sets, say given by ( )V x c= , it 

can never leave the set { }: n
c xx V c= ∈ℜ ≤Ω .This property is known as invariance of sub-level 

sets.  
Once again we emphasize that the significance of Lyapunov’s theorem is that it allows 

stability of the system to be verified without explicitly solving the differential equation. 

Lyapunov’s theorem, in effect, turns the question of determining stability into a search for a 

so-called Lyapunov function, a positive definite function of the state that decreases 

monotonically along trajectories. There are two natural questions that immediately arise. 

First, do we even know that Lyapunov functions always exist? 

Second, if they do in fact exist, how would one go about finding one? In many situations, the 

answer to the first question is positive. The type of theorems that prove existence of Lyapunov 

functions for every stable system are called converse theorems. One of the well known 

converse theorems is a theorem due to Kurzweil that states if f in (Theorem 4) is continuous 

and the origin is globally asymptotically stable, then there exists an infinitely differentiable 

Lyapunov function satisfying conditions of (Theorem 4). We refer the reader to (Khalil, 1992) 

and (Bacciotti & Rosier,2005) for more details on converse theorems. Unfortunately, converse 

theorems are often proven by assuming knowledge of the solutions of (Theorem 4) and are 

therefore useless in practice. By this we mean that they offer no systematic way of finding 

the Lyapunov function. Moreover, little is known about the connection of the dynamics f to 

the Lyapunov function V. Among the few results in this direction, the case of linear systems 

is well settled since a stable linear system always admits a quadratic Lyapunov function. It 

is also known that stable and smooth homogeneous systems always have a homogeneous 

Lyapunov function (Rosier, 1992). 

5.3.4 Criterion of Cremer, Leonhard and Michailow 

Initially let us discuss a criterion which was developed independently by Cremer , Leonhard  

and Michailov during the years 1938-1947. The focus of interest is the phase shift of the 

Nyquist plot of a polynomial with respect to the zeros of the polynomial (Mansour, 1992). 

Consider a polynomial of the form 

 1
1 1 0

1

( ) ... ( )
n

n n
nP s s a s a s a s s−
−

=

= + + + + = −∏ ν
ν

 (26) 
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be given. Setting s j= ω  and substituting we obtain 

 

1

( )

1 1

( )
( )

1

( ) ( ) ( ) )

( )

n

n n
j

n j
j

P j j s j s e

j s e P j e=

= =

=

= − = −

∑
= − =

∏ ∏

∏

ν

ν
ν

ϕ ω
ν ν

ν ν

ϕ ω
ϕ ω

ν
ν

ω ω ω

ω ω

 (27) 

We can see, that the frequency response ( )P jω is the product of the vectors ( )j s− νω , where 

the phase ( )ϕ ω  is given by the sum of the angles ( )νϕ ω  of those vectors. (Fig.11) shows the 

situation corresponding to a pair of complex conjugated zeros with negative real part and 

one zero with a positive real part. 
 

Im 

Re 

)( 1sj −ω  

)( 2sj −ω  

)( 3sj −ω  

s

2s  
3s  

1 ϕ
 

2 ϕ
 

3 ϕ
 

 

Fig. 11. Illustration to the Cremer-Leonhard-Michailow criterion 

If the parameter ω  traverses the interval ( , )−∞ ∞ , it causes the end point of the vectors 

( )j s− νω to move along the axis of imaginaries in positive direction. For zeros with negative 

real part, the corresponding angle νϕ  traverses the interval from 
2

−
π  to 

2
+
π  , for zeros with 

positive real part the interval from 3

2
+

π  to 
2

+
π . For zeros lying on the axis of imaginaries 

the corresponding angle νϕ  initially has the value 
2

−
π  and switches to the value 

2
+
π  

at j s= νω . 

We will now analyze the phase of frequency response, i.e. the entire course which the angle 

( )ϕ ω  takes. This angle is just the sum of the angles ( )uνϕ ω . Consequently, each zero with a  

negative real part contributes an angle of +π  to the phase shift of the frequency response, 

and each zero with a positive real part of the angle −π . Nothing can be said about zeros 

located on the imaginary axis because of the discontinuous course where the values of the 

phase to take. But we can immediately decide zeros or not there watching the Nyquist plot 

of the polynomial ( )P s . If she got a zero purely imaginary s s= ν , the corresponding Nyquist 

plot should pass through the origin to the frequency s= νω . This leads to the following 

theorem: 
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Theorem 5 A polynomial P(s) of degree n with real coefficients will have only zeros with negative 
real part if and only if the corresponding Nyquist plot does not pass through the origin of the complex 
plane and the phase shift ∆ϕ  of the frequency response is equal to nπ  for −∞ < < +∞ω . If ω 

traverses the interval 0 ≤ < +∞ω  only, then the phase shift needed will be equal to 
2

nπ . 

We can easily prove the fact that for 0 ≤ < +∞ω  the phase shift needed is only 
2

nπ —only 

half the value: 

For zeros lying on the axis of reals, it is obvious that their contribution to the phase shift will 
be only half as much if ω  traverses only half of the axis of imaginaries (from 0  to ∞ ). The 
zeros with an imaginary part different from zero are more interesting. Because of the 
polynomial’s real-valued coefficients, they can only appear as a pair of complex conjugated 
zeros. (Fig. 12) shows such a pair with 1 2s s=  and 1 2= −α α . For −∞ < < +∞ω the 
contribution to the phase shift by this pair is 2π . For 0 ≤ < +∞ω , the contribution of 1s  

is 
1

2
+

π α  and the one for 2s  is 
1

2
−

π α . Therefore, the overall contribution of this pair of 

poles isπ , so also for this case the phase shift is reduced by one half if only the half axis of 

imaginaries is taken into consideration. 
 

Im 

Re 

s

2s  

1 α
 

2 α
 

 

Fig. 12. Illustration to the phase shift for a complex conjugated pair of poles 

6. Beyond this introduction 

There are many good textbooks on Classical Robust Control. Two popular examples are 

(Dorf & Bishop, 2004) and (Franklin  et al., 2002). A less typical and interesting alternative is 

the recent textbook (Goodwin et al., 2000). All three of these books have at least one chapter 

devoted to the Fundamentals of Control Theory. Textbooks devoted to Robust and Optimal 

Control are less common, but there are some available. The best known is probably (Zhou et 

al.1995). Other possibilities are (Aström & Wittenmark, 1996),(Robert, 1994)( Joseph et al, 

2004). An excellent book about the Theory and Design of Classical Control is the one by 

Aström and Hägglund (Aström & Hägglund, 1995). Good references on the limitations of 

control are (Looze & Freudenberg, 1988). Bode’s book (Bode, 1975) is still interesting, 

although the emphasis is on vacuum tube circuits. 
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