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1. Introduction    

Solidification microstructure is an important index to evaluate the mechanical properties 

and qualities of the casting. The modeling of microstructure is one of the important aspects 

of solidification simulation. With the rapid development of computational technique and 

solidification theory, there is a continuously increasing interest in simulating the 

microstructure evolution during a solidification process in recent years.  

Dendritic microstructure is a common solidification structure whose morphology features 

affect the properties of product. Dendrite evolution involves the heat, solute transfer and 

phase transition etc., and these processes always interact with each other, so it is difficult to 

exactly predict the microstructure evolution. In the past, there are several methods used to 

simulate the dendrite morphology, including the phase field method, front-tracking 

method, and the classical and modified cellular automaton methods. The phase field 

method (Boettinger et al., 2001) has an advantage of dealing with complex topology 

variation. On the other hand, a phase function has to be introduced into the model that has 

no much physical meaning. In addition, the mesh size must be smaller than the thickness of 

interface layer, which limits the computational scale. Furthermore, the thickness of interface 

layer is a variable that has different values at different positions, which is not consistent 

with the experiments. The front-tracking method (Juric & Tryggvason, 1996) needs to know 

the precise position of solid-liquid interface and the velocity of the interface to predict the 

position of the interface in the next step, so that too much calculation time is consumed on 

the iteration of the precise interface position.  

The classical cellular automaton method (Rappaz & Gandin, 1993; Gandin et al., 1999) has 

the advantages of simple rules and clear physical backgrounds. Moreover, the mesh size can 

be much coarser than that of the phase field method. However, the dendrite growth velocity 

in the method is referenced only to the local temperature in the solidifying region for a fixed 

alloy composition. Therefore, the individual grains do not interact directly until they touch 

each other and it is unable to describe the more detail features such as the side branches and 

the formation of second phases (eutectic). Being different from the classical one, several 

modified cellular automaton methods (Nastac, 1999; Zhu & Hong, 2001; Beltran-Sanchez & 
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Stefanescu, 2003) were developed to simulate dendrite morphology with more detailed local 

conditions, which includes the thermal diffusion and solute redistribution, curvature effect, 

latent heat release, and the change of solid fraction according to the minute calculation of 

the growth velocity. 

In the presented work, the modified cellular automaton method (Zhu & Hong, 2001) with 
KGT model is used to simulate the crystal growth of Al-Cu alloy. The mesh size used here is 
larger than the critical radius of a nucleus. If a mesh (or cell) is chosen as a nucleation site, 
the growth mechanism is then applied to the mesh instead of regarding it as completely 
solidified. The directional solidification processes for different solutal concentrations are 
simulated and compared with the experimental results. 

2. Mathematical models 

Nucleation. The continuous nucleation condition is considered in the present work where 
different Gaussian distributions account for the nucleation both on the mold wall and in the 
bulk liquid. The increase of grain density dn is induced by an increase in the undercooling 
d(ΔT) according to the following Gaussian distribution (Rappaz & Gandin, 1993): 

 
( )

2

max 1
exp

22
n mnd n T T

d T TT σσπ

⎡ ⎤⎛ ⎞Δ − Δ⎢ ⎥= − ⎜ ⎟
Δ Δ⎢ ⎥Δ ⎝ ⎠⎣ ⎦

 (1) 

where ΔTmn is the mean nucleation undercooling, ΔTσ is the standard deviation, and nmax is 
the maximum density of nuclei given by the integral of this distribution from 0 to ∞. Thus, 

the density of grains n(ΔT) formed at any undercooling ΔT is given by 

 ( ) ( ) ( )''0

T nd
n T d T

d T

Δ
Δ = Δ

Δ∫  (2) 

Growth kinetics and orientation. The growth velocity of a dendrite tip under a certain 
undercooling ΔT is calculated according to the KGT model (Kurz et al., 1986), which is v(ΔT) 
= k1ΔT2+k2ΔT3. k1 and k2 are the functions of the initial concentration. The total undercooling 
at the dendrite tip is given by the sum of the various contributions to undercooling (Rappaz 
& Gandin, 1993): 

 c t r kT T T T TΔ = Δ + Δ + Δ + Δ  (3) 

where ΔTc, ΔTt, ΔTr, ΔTk are the solutal, thermal, curvature, and kinetic undercooling, 
respectively. The kinetic undercooling is small for the metallic alloy under normal 
solidification, so that the effect is neglected. Nuclei formed on the mold wall or in the bulk 
liquid grow along the preferential growth direction, which corresponds toぬ10ねfor cubic 
metals in the present two-dimensional model. 
Solute Transport. The local equilibrium at the solid-liquid interface is assumed to balance 
the interfacial concentrations that are described as follow. 

 * *
s lC kC=  (4) 

where k is the partition coefficient, *
sC  and *

lC  are the interface equilibrium concentrations 

in the solid and liquid phases, respectively. 

www.intechopen.com



Simulation of Dendritic Growth in Solidification of Al-Cu alloy by Applying the 
Modified Cellular Automaton Model with the Growth Calculation of Nucleus within a Cell   

 

223 

As the solidification proceeds, the solidified region rejects solute to the neighboring liquid 
according to Eq. (4). Diffusion within the entire liquid domain is redistributed by the 
following equation. 

 ( )1 sl l l
l l l

fC C C
D D C k

t x x y y t

⎛ ⎞ ∂∂ ∂ ∂∂ ∂⎛ ⎞= + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (5) 

where Dl is the solute diffusion coefficient in the liquid phase, fs is the solid fraction, and k is 
the partition coefficient. The last term of the right hand side of the equation indicates the 
amount of solute rejected at the solid-liquid interface. 
The governing equation for diffusion in the solid phase is given by 

 s s s
s s

C C C
D D

t x x y y

⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (6) 

where Ds is the solute diffusion coefficient in the liquid phase. 
Thermal transport. The governing equation for two-dimensional transient heat conduction is 

 s
p

fT T T
C H

t x x y y t
ρ λ λ ρ

⎛ ⎞ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞= + + Δ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (7) 

where ρ is the density, Cp is the specific heat, λ is the thermal conductivity, and ΔH is the 
latent heat. 

3. Numerical method 

The modified cellular automaton model used to predict the evolution of dendritic structures 
is based on the coupling of the macroscopic heat and microscopic mass transport. The 
designation of a nucleus site in a mesh (cell) is followed by applying the growth mechanism 
to the mesh instead of regarding it as completely solidified. 
Nucleation and growth algorithm. The cellular automaton model for the nucleation and 
growth simulation consists of (1) the geometry of a cell, (2) the state of a cell, (3) the 
neighborhood configuration, and (4) the transition rule that determines the state of a given 
cell during any time step. The calculation domain is divided into uniform square 
arrangement of micromeshes, called cells. Each cell is characterized by different variables 
such as temperature, concentration, crystallographic orientation, solid fraction and state (i.e. 
solid or liquid). Two kinds of cells are necessary according to Eq. (5) and (6). One is the 
liquid cell including the solid-liquid interface and the other is the solid cell. If a cell is a 
predetermined nucleation cite according to Eq. (1) by the local undercooling, the nucleus in 
the cell will grow along the preferential direction until the growth touches the boundaries of 
the cell. Then the state of the cell changes from liquid to solid with a reference index. The 
cell will grow continuously along the preferential direction corresponding to its 
crystallographic orientation if the undercooling of any adjacent liquid cell is sufficient to 
initiate the growth. The growth length L at a given time tn from the nucleus to the 
boundaries of nucleation cell or the solid cell to its liquid neighbors can be calculated by 
 

 ( )
( ){ } ( ){ }

( )

0
1 1 1

2

cos sin

n

i i i
i

n

v T t t r v T t t

L t
θ θ

=

⎡ ⎤⎡Δ ⎤ × Δ − + Δ × Δ⎣ ⎦ ⎣ ⎦
=

+

∑
 (8) 
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where Δti is the time step size, θ is the angle of the cell’s preferential growth 

directionぬ10ねwith respect to the line between the solid cell to its liquid neighbors or the 

nucleus to each boundary of the nucleation cell, and n indicates the time step number. r0 is 

the critical radius forming a nucleus only effective in the nucleation cell and is zero 

elsewhere. ( )1 1v T t⎡Δ ⎤⎣ ⎦  and ( )i iv T t⎡ ⎤Δ⎣ ⎦  are the growth rates at time t1 and ti. The growth 

rate in any liquid or nucleation cell can be calculated by using the KGT model depending 

upon the local undercooling ΔT(ti). The neighborhood of 8 cells around a liquid cell is 

considered to estimate the liquid-to-solid state transition of the liquid cell. The local 

undercooling ΔT(ti) is given by 

 ( ) ( ) ( )( ) ( )// / 0 s li l s l i s l i iT t T T t C t C K tΔ = − + − − Γ  (9) 

 

where Tl is the equilibrium liquidus temperature, m is the liquidus slope, C0 is the initial 

concentration, and Γ is the Gibbs-Thomson coefficient. /s lK , Cs/l(ti) and Ts/l(ti) are the mean 

curvature, the concentration and the temperature of the solid-liquid interface in the liquid 

cell at time ti. Then, the solid fraction fs(tn) contributed from a solid cell to the liquid cell at a 

given time can be expressed as 

 ( ) ( ) /s n nf t L t= `  (10) 

 

where `  is the length between the solid cell and the liquid cell or half the size (dx/2) of the 

nucleation cell. Since the neighborhood of 8 cells around a liquid cell is considered, for 

example, dx=` if the solid cell is located at one of the four nearest east, west, south and 

north neighbors, and 2dx=` if the solid cell is located at one of the corner neighbors. 

When fs(tn)ë1, which means that the growth front of the solid cell touches the center of the 

liquid cell. 

The transformation of state from liquid to solid depends on the total solid fraction ( )t
s nf t , 

which can be written as 

 ( ) ( )
1

1 M
t i
s n s n

i

f t f t
M =

= ∑  (11) 

 

where M is the total number of the contributed solid neighbors to the liquid cell or total 

number of the growth components in a nucleation cell. When ( ) 1t
s nf t ≥  means that the state 

of the liquid or nucleation cell changes from liquid to solid and the newly solidified cell gets 

the same orientation index as the group of the solid cells. 
The primary dendrite will grow and coarsen along the preferentialぬ10ねdirection by the 

means of the algorithm described above. As the growing and the coarsening processes of the 
primary trunk proceed, the solute will be enriched in the liquid near the solid-liquid 
interface due to the solute redistribution, which will destroy the interface stability and 
therefore form the side branching or the secondary arms along the primary trunk. 
Calculation of the interface curvature. The interface curvature in a cell with the solid 
fraction fs is calculated by the counting cell method (Sasikumar & Sreenivasan, 1994), which 
is expressed as 
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 ( )
1

1 2
1 ( )

1

n
t t

i s s
j

K f i f j
dx n =

⎧ ⎫⎡ ⎤⎪ ⎪= − +⎢ ⎥⎨ ⎬
+ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑  (12) 

where dx is the cell size and n is the number of the neighboring cells. The values of the 
curvature vary from 1/dx to 0 for convex surfaces and from 0 to -1/dx for concave surfaces. 
Calculation of the solute transport. An explicit finite difference scheme is applied for 
calculating the solute diffusion in both the solid and liquid phases, and the zero-flux 
boundary conditions are used for the cells located at the surface of the calculation domain. 
The mesh arrangement is the same as the growth algorithm described above. When a cell 
transforms its state from liquid to solid by nucleation or growth, its concentration is 

changed according to Eq. (4). The rejected amount of solute * *( )l sC kC− will accumulate in the 

neighboring liquid cell(s). 
Solution scheme for macroscopic thermal transport. As the thermal diffusivity of metallic 

alloys is 3-4 orders of magnitudes greater than the solute diffusivity, the kinetics for 

microstructure evolution can be assumed to be solute transport-controlled, and therefore the 

thermal diffusion can be considered to be complete in the microscopic scale. Thus the 

thermal transport is calculated through the arrangement of macroscopic meshes. The 

governing equation (Eq. (7)) and related boundary conditions are solved by the explicit 

finite difference algorithm. The value of temperature simulated is located in the center of the 

square mesh. The latent heat effect in the last term of Eq. (7) is dealt with by using the 

temperature recovery method depending on the total variation of the solid fraction in the 

macroscopic mesh, which is contributed from the change of the liquid-to-solid state in the 

microscopic cells included. Therefore, the equivalent temperature ΔTL recovered from a 

liquid cell due to the latent heat release during nucleation or growth is evaluated by 

 ( ) ( )2 2/L V PT H dx C XρΔ = Δ × × Δ  (13) 

where ΔHv is volumetric latent heat release, ρCp is the volumetric specific heat, and ΔX and 
dx are the mesh sizes for the macroscopic and microscopic schemes, respectively. 
Temperature of the macroscopic mesh is then recovered based on Eq. (13) by the newly 
solidified macroscopic cells. Using these updated temperatures, macroscopic heat transfer 
calculation can be continued. 
Integration of the macroscopic and microscopic schemes. The present model consists of 

two schemes: the combination of solute transport in FDM and modified cellular automaton 

model for simulating the evolution of dendritic structures and the macroscopic heat 

transport in FDM. Based on the calculated temperature profile in the cells, the calculation of 

nucleation and growth as well as the solute redistribution are carried out by the modified 

cellular automaton model as described above.  

For two different schemes, two kinds of time step are used; one for the macroscopic heat 

transfer calculation based on the macroscopic mesh, and the other for the modified cellular 

automaton model, based on microscopic cells, as follows: 

Macroscopic time step: 

 ( ) ( )2 / 4.5macro pt X Cρ λΔ = Δ × ×  (14) 
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where λ is the thermal conductivity. 
Microscopic time step: 

 ( ) ( ) ( )2
max1 / 4.5 min / , /micro lt dx V dx D⎡ ⎤Δ = ⎣ ⎦  (15) 

where Vmax is the maximum growth velocity within all liquid cells during each time step 

and Dl is the solute diffusion coefficient in the liquid phase. Within a Δtmacro, the relationship 

between both time steps is ΔtmicroäΔtmacro. 

4. Results and discussion 

The Al-Cu alloy is chosen to simulate the several microstructures of dendritic growth in the 
present work with the material properties listed in table 1. 
Free dendritic growth in an undercooled melt. In order to simulate free dendritic growth in 
an undercooled melt, the calculating domain is divided into 320×320 cells with a cell size of 

0.2 μm, which is fine enough to resolve a dendrite tip radius (Zhu & Hong, 2001). The size is 
larger than the critical radius r0 of a crystal, which is approximated by the following 
equation (Kurz & Fisher, 1998) 

 ( ) ( )0
0 2 /

r
r T= Γ Δ  (16) 

where Γ is the Gibbs-Thomson coefficient and 0r
TΔ is the undercooling for the occurrence of 

nucleation. Based on the calculation of the Gaussian distribution in the bulk liquid, the 

nucleation will appear if the simulated temperature is lowered by the amount of ΔTmn. Thus, 

for simplicity, the mean nucleation undrecooling ΔTmn in the bulk is used for 0r
TΔ . In the 

beginning of simulation, one nucleus with the preferential growth direction of 0o or 45o with 

respect to the horizontal direction is assigned in the center of the area. The initial 

concentration of the calculation domain is assumed to be C0. 
The simulated dendrite morphology of an Al-2.0mass%Cu alloy solidified into an 

undercooled melt is shown in Fig. 1 for three stages: (a) the initial growth stage before 

emitting the side branch, (b) the initial of the secondary arms emitting from the primary 

trunk, and (c) the dendrite morphology with well-developed secondary and even tertiary 

arms. The different levels of darkness in the figure indicate the concentration profiles in both 

the solid and liquid phases. Within the solid region, along the centerline of primary trunks 

or side arms, there exists a spine with lower concentration, which is considered as the result 

of the combined effect of curvature and interface kinetics (Warren & Boettinger, 1995). The 

concentration in solid near the solid-liquid interface shows the higher concentration where 

the final solidification occurs. It could be seen from Fig. 1 (c) that the tertiary arm branching 

occurs only at one side of the secondary arms. These phenomena have been consistent with 

the observation of experiments and also simulated by the modified cellular automaton (Fig. 

(d)-(f)) (Zhu & Hong, 2001) and phase field models (Warren & Boettinger, 1995). The results 

of Fig. 1 illustrates the similar capability of the model with the present modification to 

depict the dendrite evolution features, including the growing and coarsening of the primary 

trunk, the branching of the secondary and tertiary dendrite arms, as well as the solute 

segregation patterns. 
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Tl Liquidus temperature [K] 
928.0 (2mass%Cu) 
922.0 (4.5mass%Cu) 

Tm Melting temperature [K] 933.0 

k Partition coefficient  0.17 

m Slope of the liquidus line [ K/mass%] -3.36 

Cp Specific heat [J/kg·K] 1086 

ρ Density [kg/m3] 2780 

λ Thermal conductivity [W/m·K] 192.5 

ΔHv Volumertic latent heat [J/m3] 1.107×109 

Dl Solute diffusion coefficient in liquid [m2/sec] 10-9 

Ds Solute diffusion coefficient in solid [m2/sec] 10-12 

Γ Gibbs-Thomson coefficient [mK] 2.4×10-7 

 
 
 
 
 
 

Table 1. Thermal and physical properties of Al-Cu alloy (Zhu & Hong, 2001; Kurz & Fisher, 
1998) used in the present calculation. 
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Crystallographic orientation 0o 

 
 

       

Crystallographic orientation 45o 

             (a)                      (b)                      (c)                      (d)                     (e)                      (f) 
 

Fig. 1. The simulated dendritic shapes during the isothermal growth of an Al-2.0mass%Cu 
alloy 

 
 
Prediction of the Structures formed in the directional solidification. The present model is 
applied to predict the evolution of dendritic grain structures of Al-2.5mass%Cu and Al-
4.5mass%Cu alloys unidirectionally solidified over a copper chill plate with a constant 
temperature of 298 K. the nucleation parameters are listed in table 2. The symbols indexed 
“s” and “b” correspond to nucleation parameters on the mold surface and in the bulk liquid, 
respectively. Fig. 2 indicates the simulated and experimental macro- and micro- structures 
of Al-Cu alloys unidirectionally solidified with a pouring temperature of 1013 K. Fig. 2(c) 
and 2(f) indicate the simulated structures by the proposed method and Fig. 2(a), 2(b), 2(d) 
and 2(e) the experimental ones (Zhu & Hong, 2001). The left three figures indicate the case 
of the Al-2.5mass%Cu and the others for the case of the Al-4.5mass%Cu. Fig. 2(c) and 2(f), 
indicating the dendritic structures simulated by the proposed method, are also in good 
agreement with 2(c) and 2(f). The case of Al-4.5mass%Cu has smaller undercooling in the  
 
 

 

 
nmax,s 

[m-2] 
ΔTmn,s 

[K] 
ΔTσ,s 

[K] 

nmax,b 

[m-3] 
ΔTmn,b 

[K] 
ΔTσ,b 

[K] 

Al-2.5mass%Cu 1.8×108 0.5 0.1 8×109 5.0 0.1 

Al-4.5mass%Cu 1.8×108 0.5 0.1 1.6×1010 2.0 0.1 

 

Table 2. The nucleation parameters of Al -Cu alloy (Zhu & Hong, 2001) used in the present 
calculation. 
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                                                      (a)                (b)                    (c) 
 

   
 
                                                     (d)                (e)                      (f) 

Fig. 2. Simulated and experimental results in directional casting of Al-Cu alloys.  

bulk liquid, resulting in the nucleaction of equiaxed structures. For this simulation, a 

calculation domain is divided into 400×400 cells with a cell size of 3 μm, which is larger than 
the critical radius calculated by Eq. (16). It is seen that the proposed method can be applied 
to predict both the columnar and equiaxed dendritic morphology in a casting process of a 
binary alloy. 

5. Conclusions 

The proposed model, which is based upon the coupling of a modified cellular automaton 
model with the growth calculation of a nucleus in a given nucleation cell, has been 
developed to simulate the evolution of the dendritic structure in solidification of alloys. For 
a free dentritic growth in the undercooled melt, it is found that the proposed model can 
quantitatively describe the evolution of dendritic growth features, including the growing 
and coarsening of the primary trunks, the branching of the secondary and tertiary dendrite 
arms, as well as the solute segregation patterns. Moreover the directional solidification with 
the columnar and equiaxed grains is simulated by the proposed method and the evolution 
from nucleation to impingement between grains is observed. 
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