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1. Introduction

Over the last two decades , quantum-dot cellular automata (QCA) has received significant
attention as an emerging computing technology (Lent et al., 1993). The basic elements in this
technology are the QCA cells, as shown in Fig. 1. Each cell contains two mobile electrons and
four quantum dots located in the corners. As per the occupancy of the electrons in the dots, a
QCA cell can take different states. A null state (polarization 0) occurs when the electrons are
not settled. The other two states are referred to as polarization +1 and −1, denoted as P = +1
and P = −1 respectively. In these states due to Coulombic interactions, the electrons occupy
the two diagonal configurations as shown in Fig. 1(b) and (c). These two states are identified
with the so-called ground (stable) states. Any intermediate polarization between +1 and −1 is
defined as a combination of states P = +1 and P = −1. By encoding the polarizations −1 and
+1 into binary logic 0 and logic 1, QCA operation can be mapped into binary functions. For
clocking and to allow QCA cells to reach a ground state, an adiabatic four-phased switching
scheme has been introduced (Lent & Tougaw, 1997). By modulating the tunneling energy
between the dots in a cell, this clocking scheme drives each cell through a depolarized state, a
latching state, a hold phase, and then back to the depolarized state, such that the information
flow is controlled through the QCA devices.

Fig. 1. Schematic of QCA cells: (a) null state, (b) polarization -1, and (c) polarization +1.

Different fabrication technologies (Amlani et al., 1998)–(Jiao et al., 2003) have been proposed
to implement QCA devices; QCA logic circuits have also been extensively reported in the
literature (Ottavi et al., 2006)–(Tougaw & Lent, 1994). As a common challenge spanning
all emerging technologies, the stochastic behaviors of QCA devices impose a significant
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hurdle to reliable system integration for high performance and scalability. These stochastic
behaviors stem from the nondeterministic quantum mechanisms in combination with the
large number of defects and variations from fabrication. In particular, it is anticipated that
the defect rates of emerging technologies could be several orders of magnitude higher than
today’s CMOS. Defect characterization of different QCA implementations has been discussed
in (Momenzadeh et al., 2005)–(Niemier et al., 2006).
To achieve reliable operation, defect tolerance is a significant concern. Among many possible
alternatives, redundancy-based defect tolerance is one of the most effective approaches. By
using shorter QCA lines and exploiting the self-latching property of clocked QCA devices,
a triple modular redundancy (TMR) with shifted operands has been proposed in (Wei et al.,
2005) to design a 1-bit full adder with the same level of fault/defect tolerance as a conventional
TMR. In (Fijany & Toomarian, 2001), a defect-tolerant block majority gate has been proposed
for the design of various QCA devices. In (Huang et al., 2006)–(Dysart, 2005), tile-based
designs were proposed to improve the reliability of QCA devices. All of these techniques
employ spatial redundancy for achieving an improvement in reliability.
While effort has been directed towards the improvement of reliability for emerging
technologies, current literature has also shown that it is very difficult to deal with
defects/variations at device and circuit levels alone. For QCA devices, analysis of reliability
is usually performed on a probabilistic basis. A study in (Liu, 2006) has analyzed the
robustness with respect to defects and temperature of clocked metallic and molecular QCA
circuits. Methods based on statistical mechanics have been proposed in (Wang & Lieberman,
2004) to investigate the total number of QCA cells that could correctly operate together
in a molecular QCA device prior to thermal fluctuations (as causing errors at the output).
In (Niemier et al., 2006), the probability of a correct output in molecular QCA devices has been
established with respect to spacing and cell size by utilizing a statistical quantum mechanical
analysis. In (Dysart & Kogge, 2007), probabilistic transfer matrices were employed to study
the effectiveness of TMR on the reliability improvement for a 1-bit full adder. A probabilistic
model based on Bayesian networks has been proposed in (Bhanja & Sarkar, 2006), (Srivastava
& Bhanja, 2007) to model the cell state probabilities of QCA devices for input polarizations.
The reliability of QCA devices subject to variations in temperature has been also assessed
in (Bhanja et al., 2006), (Ungarelli et al., 2000).
Few results exist in determining the fundamental limit on achievable reliability given the
stochastic nature of emerging technologies. In the past, this problem was investigated for
conventional logic gates. In (von Neumann, 1955), a multiplexing technique was proposed
to obtain reliable synthesis from unreliable components. Since then, several approaches have
been reported in deriving the error bounds for individual gates. It was theoretically proved
in (Pippenger, 1985), (Pippenger, 1989) that with constant multiplicative redundancy, a variety
of Boolean functions built upon unreliable components may be operated reliably. The error
bounds were derived for three-input majority gates (Hajek & Weller, 1991), arbitrary-input
majority gates (Evans & Schulman, 1999), and two-input NAND gates (Evans & Pippenger,
1998). A nonlinear mapping and bifurcation approach was proposed in (Gao et al., 2005)
to provide a new solution to this problem. In (Bhaduri & Shukla, 2005), entropy was used
to describe the energy of noisy logic states thereby reflecting the uncertainty inherent in
thermodynamics. It should be pointed out that most of these studies were based on the general
von Neumann model of basic gate errors, which is more suitable to describe transient errors
caused by signal noise in conventional digital logic. The information storage capacity of a
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crossbar switching network was derived in (Sotiriadis, 2006). This work, however, does not
consider the defects in molecular devices explicitly.
In this chapter, we present an information-theoretic framework to investigate the relationship
between stochastic behaviors and achievable reliable performance in QCA technology.
The central idea is that QCA devices can be modeled as a network of unreliable
information processing channels. In contrast to probabilistic measures at device/circuit
levels, this model allows us to employ information-theoretic concepts (Shannon, 1948)
and study some fundamental issues associated with the QCA technology. Specifically, we
employ an information-theoretic analysis to QCA devices by explicitly considering the
quantum mechanisms of this technology. By employing statistical channel models, we
derive information-theoretic measures to quantify various nano/molecular effects such as
cell displacement and misalignment. We determine the information transfer capacity that,
from the information-theoretic viewpoint, can be interpreted as the achievable bound on the
reliability for QCA devices. One key problem that we will address is what level of redundancy
is needed to achieve reliable operation out of unreliable QCA devices. The proposed method
provides us with a common framework to evaluate the effectiveness of redundancy-based
defect tolerance in a quantitative manner.
We will review the relevant information-theoretic concepts that provide the basis of this
work. We will then discuss various stochastic behaviors in QCA devices and develop an
information-theoretic framework for the analysis of reliable operation in the presence of
defects and variations. By applying the proposed method, we determine the achievable bound
on the reliability of QCA devices.

2. Preliminaries

Emerging technologies such as QCA present a large degree of uncertainty in operation due
to the underlying quantum mechanisms; these mechanisms inevitably lead to a large number
of defects and variations in the implementation and operation of QCA devices and circuits.
Therefore, it is necessary to develop a common framework for evaluating these non-ideal
effects and their impact on system-level performance. In this work, we model QCA devices
as defect-prone information processing media and employ information-theoretic measures
to investigate the reliability problems associated with them. This section will review the
information-theoretic concepts relevant to the proposed analysis.

Consider a discrete variable X with alphabet X and probability distribution function p(x) �
Pr{X = x}, where x ∈ X . From Shannon’s joint source-channel coding theory (Shannon,
1948), the entropy H(X) of this variable is defined as

H(X) � − ∑
x∈X

p(x) log2(p(x)), (1)

where H(X) is expressed in bits.
The entropy H(X) is a measure of the information content in the variable X. A higher entropy
implies a greater uncertainty in this variable and thus, the larger information content it carries.
Assume that the variable X is passed through a transformation F : X → Y, where F is a
non-ideal (e.g., error-prone) mapping function from X ∈ X to Y ∈ Y . The mutual information
I(X; Y) between X and Y is defined as

I(X; Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X),
(2)
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where H(Y|X) is the conditional entropy of Y conditioned on X, and it is expressed as

H(Y|X) = − ∑
x∈X

∑
y∈Y

p(x, y) log2(p(y|x))

= − ∑
x∈X

∑
y∈Y

p(x)p(y|x) log2(p(y|x)),
(3)

where p(x, y) and p(y|x) are the joint probability and conditional probability, respectively,
of variables X and Y. For a given F , the values of p(x, y) and p(y|x) are determined by the
distribution of the input X.
The conditional entropy H(Y|X) can be viewed as the residual uncertainty in Y given the
knowledge of X. Thus, the mutual information I(X; Y) measures the reduction in uncertainty
in Y (by an amount H(Y|X)) due to the information transferred through F .
The maximum information content that can be transferred through the transformation F with
an arbitrarily low error probability, is given by its capacity as

Cu = max
∀p(x)

I(X; Y), (4)

where Cu is the information transfer capacity per use obtained by maximizing over all possible
distributions of the input X.
The information transfer capacity Cu represents the achievable bound on the reliable operation
in a non-ideal information processing medium. The following example illustrates these
information-theoretic measures as applied to a conventional CMOS gate.
Example 1: Consider a 2-input NAND gate in conventional CMOS technology. Assume that
the implementation of this gate is non-ideal such that the output will generate errors (e.g., due
to variations of process parameters, voltage and temperature) at a probability ε = 10−6. By
employing (1)−(3), the information transfer capacity of this error-prone gate can be obtained
as

Cu = max
∀p(x)

{H(Y)− H(Y|X)}

= 1 + ε log2 ε + (1 − ε) log2(1 − ε)

= 0.99997 bits/use.

(5)

As indicated, the information transfer capacity is very close to 1 bit per use. Note that an ideal
error-free NAND gate is able to transfer at most 1 bit of information per use; thus for an error
rate as low as 10−6, this gate is quite reliable.
Figure 2 compares the information transfer capacity under different error rates. The
information transfer capacity of the NAND gate is symmetric around an error rate of 0.5. This
indicates that from an information-theoretic viewpoint, the NAND gate is able to achieve the
same level of reliability under a pair of error rates ε1 and ε2 = 1 − ε1. This is not surprising
because for an error rate larger than 0.5, we can deliberately interpret the output by its
complement as the gate actually produces more errors than correct results.
Note that the above example concerns transient output errors, of which the error rate
is typically obtained by averaging over time (Wang & Shanbhag, 2003). In emerging
technologies, defects from fabrication have become a critical problem. The defect rate pd

reflects the spatial variations over different fabricated samples. Thus, although defects are
permanent in a given sample, the nature of randomness stands when considering a large
number of samples. In other words, the occurrence and location of defects vary with great
uncertainty across these samples. Without conducting an exhaustive test, one can only say
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Fig. 2. Information transfer capacity of a NAND gate under different error rates.

that a circuit may be defective with a probability of pd. The following example illustrates the
information-theoretic measures for nanowire crossbars under this scenario.
Example 2: Consider a 2-input AND gate implemented by two different nanowire crossbar
columns, one with 2 crosspoints and the other providing 3 crosspoints where one crosspoint
is redundant. In both cases the defect rate is assumed to be pd = 0.1.
Case 1: In this case, a 2-crosspoint column is employed to implement the 2-input AND gate.
Note that this implementation does not provide any redundancy. It can be shown (Dai et al.,
2009) that the conditional probability of the output Y conditioned on the input X is

P(Y = 1|X = 00) = 0.01,

P(Y = 1|X = 01) = 0.09,

P(Y = 1|X = 10) = 0.09,

P(Y = 1|X = 11) = 1,

P(Y = 0|X) = 1 − P(Y = 1|X).

(6)

Substituting these values into (1)−(3), we obtain Cu = 0.959 bits/use. Comparing this result
with the Example 1, the achievable bound on reliability as measured by Cu is reduced due to
the high defect rate in nanowire crossbars.
Case 2: The second case introduces one redundant crosspoint in implementing the 2-input
AND gate. Applying the method in (Dai et al., 2009), we get

P(Y = 1|X = 00) = 0.001,

P(Y = 1|X = 01) = 0.0145,

P(Y = 1|X = 10) = 0.0145,

P(Y = 1|X = 11) = 1,

P(Y = 0|X) = 1 − P(Y = 1|X),

(7)

and proceeding in the same way, we obtain Cu = 0.994 bits/use.
Apparently, the bound on reliability is improved by exploiting the redundancy in nanowire
crossbars. Information-theoretic measures enable us to quantify this improvement and thus
evaluate the effectiveness of redundancy-based defect tolerance in an analytical manner.
Questions arise on how much redundancy is needed in order to obtain a desired level of
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reliable performance. Naturally, we would also like to compare the achievable reliability of
OCA devices with conventional CMOS technology. These problems will be addressed in the
following sections.

3. Information-theoretic analysis of QCA

In this section, we will show that the stochastic behaviors of QCA enable us to
model these devices as unreliable information processing channels. While different QCA
implementations (Amlani et al., 1998)–(Jiao et al., 2003) have been proposed, we will focus
on lithographically made QCA devices which are electrostatic based. We will first discuss the
possible defects in QCA technology and then develop statistical channel models for various
QCA devices. Based on these models, we will derive the information-theoretic measures to
quantify the uncertainties in the operation of QCA devices.

3.1 Defects in QCA

Under their manufacturing process, lithographically made QCA devices are likely to have
defects. It has been reported that defects can occur in both the synthesis and the deposition
phases (Momenzadeh et al., 2005), (Taboori et al., 2004) of QCA devices. In the synthesis
phase, a cell may have missing or extra (additional) dots and/or electrons, while in the
deposition phase cell misplacement may occur. It has been projected that defects caused by
cell misplacement will be dominant in QCA devices due to the difficulty in precise control of
the cell location at nanoscale ranges. The various types of cell misplacement that may occur,
are as follows:

Fig. 3. Three types of misplacement: (a) defect-free, (b) displacement, (c) misalignment, and
(d) omission.

1.) Cell displacement represents a type of defect in which the distance between cells does not
match the nominal value. As shown in Fig. 3(b), the distance between cell1 and cell2 should
be equal to d in the correct (ideal) design. Due to displacement, the distance becomes d1 in the
fabricated device.
2.) Cell misalignment indicates the deviation in cell location along certain directions. As shown
in Fig. 3(c), cell1 has a vertical misalignment equal to d2, whereas in the ideal case this value
should be zero.
3.) Cell omission occurs when a particular cell is missing from its pre-specified location in the
layout. This is shown in Fig. 3(d). Cell omission may not be a dominant type of defects in
lithographically made QCA devices.
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(a) QCA Line (b) QCA Inverter

(c) QCA fanout (d) QCA Majority

(e) QCA Crossbar

Fig. 4. Statistical channel models for different QCA devices.
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In addition to the above defects, device size and temperature will also affect the operation of
QCA devices. As shown in the following section, these factors affect the density matrices and
thus the values of statistical mapping pij in the channel model (refer to Fig. 4). This in turn
will affect the values of the information-theoretic measures such as channel capacity.

3.2 Statistical channel models of QCA devices

For an error-free logic function, the mapping between the input and output is well-defined,
i.e., P(Y = yo|X = xi) ≡ 1, where X = xi is the input and Y = yo is the corresponding
output determined by the logic function. However, QCA devices are nondeterministic because
each input will only generate an output with certain probability. This phenomenon is further
complicated by the presence of defects as discussed previously in section 3.1. Therefore,
mappings between the input and output of QCA devices may not follow predefined functions.
These uncertainties can be modeled by employing statistical information processing channels,
as illustrated in Fig. 4 for QCA devices. In these models, the unreliable logic operation is
quantified by the probability pij = p(Yj|Xi), i.e., the probability of the output Y = Yj

conditioned on the input X = Xi. The solid lines in these models indicate the desired
mappings (e.g., the correct output determined by the logic function), whereas the dotted lines
represent the erroneous mappings induced by defects and variations.
For QCA, the desired output is generated with certain probability even when the
implementation is perfect. Therefore, the pij’s of the desired mappings are not equal to 1 in the
general case. For erroneous mappings the pij’s are also a function of defects and variations.
By employing the statistical channel models, we can assess the impact of these stochastic
behaviors using information-theoretic measures, as discussed in the next subsection.
The proposed statistical channel models can also be applied to assess other features
of QCA. Different QCA implementations are affected by different types of defects and
fabrication variations. This diversity may result in changes of topology (e.g., when the
entire parts of a circuit are missing) or numerical values of the mapping pij (e.g., when
defects/variations have different statistics) in the corresponding channel model in Fig. 4.
However, the information-theoretic measures and the relationship between defects/variations
and performance can be determined in the same manner using the proposed method, thus
showing its flexibility in various applications.

3.3 Information transfer capacity of QCA devices

We now derive the information-theoretic measures for investigating the uncertainties in the
computing process performed by unreliable QCA devices. As clocking schemes for QCA
are typically implemented in a relatively reliable technology such as CMOS (Momenzadeh
et al., 2005), (Hennessy & Lent, 2001), (Niemier et al., 2007), we assume these schemes to
be highly reliable relative to QCA; thus only defects/variations related to QCA devices and
circuits (which operate under an adiabatic four-phased clocking scheme) are considered in the
following analysis.
From section 2, to derive information-theoretic measures such as entropy and information
transfer capacity, the conditional probabilities pij’s between the input and output of QCA
devices (modeled by the statistical channels in Fig. 4) must be established. These conditional
probabilities can be determined by examining the underlying quantum mechanisms of QCA.
Unlike conventional CMOS in which computation is performed by voltage/current levels,
QCA operates through Coulombic interactions among neighboring cells by affecting their
polarizations. The Coulombic interaction between any two cells can be characterized by the
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so-called kink energy Ek. Let E
i,j
opposite and E

i,j
same denote the energy between two cells i and j

with opposite polarization and with same polarization, respectively. The kink energy between
these two cells can be expressed as

E
i,j
k = E

i,j
opposite − E

i,j
same, (8)

and E
i,j
opposite and E

i,j
same can be calculated from

Ei,j =
1

4πε0εr

4

∑
n=1

4

∑
m=1

qi
nq

j
m

|ri
n − r

j
m|

, (9)

where ε0 is the permittivity of free space, εr is the dielectric constant, qi
n and q

j
m are the charges

in dot n of cell i and dot m of cell j, respectively. The positions of dot n of cell i and dot m of

cell j are denoted by ri
n and r

j
m, respectively. From (9), the kink energy between cells i and j

depends on their relative locations.
By employing the kink energy, the matrix representation of the Hamiltonian using the
Hartree-Fock approximation is given by (Timler & Lent, 2002)

H =

[

− 1
2 ∑j∈Ωi

E
i,j
k Pj −γi

−γi
1
2 ∑j∈Ωi

E
i,j
k Pj

]

, (10)

where E
i,j
k is given by (8), Ωi represents the set of neighboring cells of cell i within the

so-called "radius of effect", Pj indicates the polarization of the jth neighboring cell, and γi

is the tunneling energy between the two states of cell i.
From (Timler & Lent, 1996), (Mahler & Weberrruss, 1998), QCA cells tend to settle to the
ground states due to inelastic dissipative heat bath coupling. When QCA cells achieve thermal
equilibrium, the steady-state density matrix can be derived from (10) as

ρss =
e−H/KT

Tr[e−H/KT ]
, (11)

where H is defined in (10), K is Boltzmann constant, and T is the operating temperature. Using
the diagonal entries ρss

11 and ρss
00 of this density matrix, we can get the steady-state polarization

of cell i as

Pss
i = ρss

11 − ρss
00 =

E

Λ
tanh(∆), (12)

where

E =
1

2 ∑
j∈Ωi

E
i,j
k Pj, (13)

Λ =
√

E2/4 + γ2
i , (14)

∆ =
Λ

KT
. (15)

Applying a self-consistent approximation by factorizing the joint wave function over all cells
into a product of individual cell wave functions, the polarization of the output cells can be
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determined under a specific polarization (as applied to the input cells). Let Pss
ij denote the

polarization of the ith output cell under the given polarization of a set (indexed by j) of
neighboring cells (e.g., cells in Ωi as in (10)). These neighboring cells can be considered as
the inputs of the ith output cell, so the conditional probabilities with respect to the logic value
corresponding to the polarization between the set of input cells {xj} and the output cell yi can
be obtained as (Bhanja & Sarkar, 2006)

P(yi = 1|{xj}) = 0.5(1 + Pss
ij ), (16)

P(yi = 0|{xj}) = 0.5(1 − Pss
ij ), (17)

where Pss
ij is given by (12) with the set of input cells {xj} expressed explicitly. The above

expressions on conditional probabilities can also be applied to the case in which the input
cells themselves are out of the radius of effect of the output cells, however they are connected
to the output cells via some intermediate cells. In this case, the polarization of the primary
input cells will affect their neighboring cells which in turn will affect the final output cells.
Thus, the value of Pss

ij is determined iteratively from the primary input cells to the final output

cell. In section 4, a design tool QCADesigner (Walus et al., 2004) is employed to compute Pss
ij

for various QCA devices. Note that we do not make any assumption on the polarization of
neighboring cells when deriving (16) and (17).
Based on the conditional probabilities in (16) and (17), the information-theoretic measures
(such as output entropy and mutual information for a generic QCA circuit) can be derived as

H(Y) = − ∑
Yi∈Y

( ∑
Xj∈X

0.5L ∏
ym∈Yi

ym=1

∏
yn∈Yi

yn=0

(1 + Pss
mp,Xj

)(1 − Pss
nr,Xj

))

× log2( ∑
Xj∈X

0.5L ∏
ym∈Yi

ym=1

∏
yn∈Yi

yn=0

(1 + Pss
mp,Xj

)(1 − Pss
nr,Xj

)), (18)

H(Y|X) =

− ∑
Xj∈X

∑
Yi∈Y

p(X = Xj)× 0.5L ∏
ym∈Yi

ym=1

∏
yn∈Yi

yn=0

(1 + Pss
mp,Xj

)

(1 − Pss
nr,Xj

)× log2(0.5L ∏
ym∈Yi

ym=1

∏
yn∈Yi

yn=0

(1 + Pss
mp,Xj

)(1 − Pss
nr,Xj

)), (19)

where Xj ∈ X is the primary input, Yi ∈ Y is the final output, ym and yn are the 1-value and
0-value bits, respectively, of Yi, Pss

mp,Xj
and Pss

nr,Xj
are the polarizations of the output cells ym

and yn with neighboring cells xp and xr, respectively, under a specific input Xj.
The information transfer capacity of the QCA circuit can be determined accordingly as

Cu = max
∀p(x)

(H(Y)− H(Y|X)), (20)

where the maximization is taken over all possible inputs under the assumption that
independent defects and variations are applicable. This assumption reflects the worst case
scenario (i.e. it is pessimistic) because independent defects/variations incur the largest
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information loss (Shannon, 1948). Thus, the resulting information transfer capacity will be
lower than for correlated defects/variations. Moreover, the information transfer capacity
represents the upper bound on reliability that a QCA circuit can achieve.
Using information-theoretic measures, uncertainties in the operation of QCA devices can be
studied based on the polarizations provided at the input cells and the topological structure of
the QCA devices. A QCA line is used next as an example to illustrate this process.
Example 3: Consider a QCA line as shown in Fig. 4(a), where cells c1 and c6 are the input and
output, respectively. The size of these cells is 20nm, the cell-to-cell pitch is d = 20nm, and the
radius of effect is assumed to be 80nm. The clocking scheme is not shown as it won’t affect
our analysis (i.e., it is much more reliable than the QCA line). Initially the polarization of all
six cells is in the −1 state. After the polarization +1 is applied at the input cell, a multiple
iterative process (Walus et al., 2004) is carried out to determine the polarization of all cells in
the QCA line, including the output cell c6. Initially, c2 is taken as the target cell under the new
input polarization. Based on the radius of effect, the polarization of c2 is calculated under the
influence of neighboring cells c1, c3, c4, and c5, as indicated by Ω2 = {c1, c3, c4, c5} in (10)
for cell c2. Using the relative distances between the dots in c2 and the dots in other cells (e.g.,

|ri
n − r

j
m| in (9)), the charges qi

n, q
j
m of each dot in these cells are determined. Substituting these

values into (9) and (10), we can determine the values of the kink energy between c2 and its
neighboring cells c1, c3, c4, and c5. From these kink energies and the initial polarizations of
the neighboring cells, the matrix representation of the Hamiltonian H can be formed and a
new polarization of c2 will be determined by solving (11) and (12). This procedure is repeated
iteratively for all cells in the QCA line. Once all cells have settled in the stable states, the
polarization of the output cell can be obtained for the given input polarization. For this
example, the polarization of the output cell c6 is found to be 0.95425 when the input c1 is
+1.
Similarly, it is possible to determine the polarization of the output cell under other values of
input polarization. Therefore, from (16)−(19) we get

H(Y) =

− ∑
Yi∈{0,1}

( ∑
Xj∈{0,1}

0.5 × S)× log2( ∑
Xj∈{0,1}

(0.5 × S)), (21)

H(Y|X) =

− ∑
Xj∈{0,1}

∑
Yi∈{0,1}

p(X = Xj)× 0.5 × S × log2(0.5 × S), (22)

where

S =

⎧

⎪

⎨

⎪

⎩

(1 + Pss
1p,Xj

) for Yi = 1, X = Xj,

(1 − Pss
1p,Xj

) for Yi = 0, X = Xj.

Finally, the information transfer capacity of this QCA line can be determined as Cu = 0.8427
bits/use. Note that this result is obtained for a defect-free implementation. Compared with
the CMOS gate in Example 1 (in which an ideal implementation achieves Cu = 1 bit/use), the
achievable bound on reliable operation (as measured by the information transfer capacity) is
significantly lower in QCA devices. This is not surprising because QCA devices are inherently
nondeterministic.
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Fig. 5. Defects due to (a) displacement and (b) misalignment.

3.4 Effects of Defects on Information-Theoretic Measures

QCA devices also suffer from a large number of defects and variations in manufacturing and
design. Defects can affect the information-theoretic measures as derived previously. Consider
a pair of cells such that cell i is defect-free, but cell j is misplaced by an offset ηj from its
desired location. The difference in polarization energy between the defect-free and defective
implementations can be derived from (9) as follows

σi,j = E
i,j
f − E

i,j
d

=
1

4πε0εr

4

∑
n=1

4

∑
m=1

qi
nq

j
m

(

1

|ri
n − r

j
m|

−
1

|ri
n − (r

j
m + η j)|

)

, (23)

where E
i,j
d and E

i,j
f represent the Ei,j for the defective and defect-free cases, respectively.

The presence of σi,j will lead to a different kink energy between the two cells. Let E
i,j
k,d and E

i,j
k, f

denote the kink energy for the defective and defect-free cases, respectively. Thus,

E
i,j
k,d = E

i,j
k, f + δi,j, (24)

where δi,j can be obtained from (23) and (8). Substituting E
i,j
k,d into (10) and (11), the

matrix representation of the Hamiltonian can be obtained for cell i. The difference in matrix
representation compared to a defect-free device is given by

∆H =

[

− 1
2 ∑j∈Ωi

δi,jPj 0

0 1
2 ∑j∈Ωi

δi,jPj

]

. (25)

Due to this difference, the steady state matrix ρss in (11) and the steady state polarization
Pss

i in (12) of cell i are changed by the misplacement in cell j. According to (16) and (17), the
conditional probabilities between cells i and j will also be affected which in turn will affect the
information-theoretic measures of this QCA circuit.
Figure 5 illustrates two examples of cell misalignment and displacement defects. Assume d is
the cell-to-cell pitch in the defect-free case and dn is the defective misplacement. The actual
distances between the two cells are therefore

d1 = d + dn, (26)

d2 =
√

d2 + d2
n. (27)
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The cell misalignment and displacement defects will have a different impact on the
information-theoretic measures of QCA devices. In the next section, we will show the
application of the proposed method when analyzing these defects.

Fig. 6. Tile-based design of a QCA line under (a) displacement (b) misalignment defects.

4. Evaluation and discussion

Tile-based QCA design employs spatial redundancy to overcome various defects and
variations in QCA devices (Huang et al., 2006)–(Dysart, 2005). It is a modular approach based
on elementary building blocks to construct QCA circuits. The building blocks are referred to as
tiles. The width of a tile can be adjusted to achieve different levels of reliability. In this section,
we will study the effectiveness of this technique by using the proposed information-theoretic
measures. We will consider cell displacement and misalignment defects. The coherence
vector simulation engine QCADesigner v2.0.3 (Walus et al., 2004) is utilized to obtain an
accurate result on the polarization. The parameters used in the simulation are as follows:
cell dimension 18nm, cell-to-cell pitch 20nm, radius of effect 80nm, relative permittivity 12.9.
Lithographically made QCA devices require a very low temperature (few degrees Kelvin).
Therefore in the simulation, a temperature of 1K is chosen; this is consistent with many
existing works (Srivastava & Bhanja, 2007), (Schulhof et al., 2007). An adiabatic four-phased
clocking scheme is employed in the QCA circuits.
The QCA devices in Fig. 4 are evaluated under cell displacement defects first. QCA lines with
widths of 1 and 3 (shown in Fig. 6(a)) are utilized for the simulation setup. For each simulation
run, the same cell displacement d f is applied to all cell-to-cell pitches. As discussed in section
3.4, cell displacements affect the inter-cell quantum mechanisms and the Pss

ij in (16) and (17),

thus changing the information transfer capacity.
Figure 7 shows the information transfer capacity of different QCA devices implemented by
different widths (e.g., levels of spatial redundancy) subject to displacements from 0% to 30%
of the size of the QCA cells. As reported in (Timler & Lent, 1996), a displacement of 30% of cell
size is sufficient to affect the correct operation of a QCA device. For QCA crossbars, only the
width of horizontal lines is increased (as proposed in (Bhanja et al., 2006)). Some important
phenomena are observed from the simulation results. The information transfer capacity of
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(a) QCA Line (b) QCA Inverter

(c) QCA Majority (d) QCA Crossbar

(e) QCA Fanout

Fig. 7. Information transfer capacity of QCA devices under cell displacement defects.
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(a) QCA Line (b) QCA Inverter

(c) QCA Majority (d) QCA Crossbar

(e) QCA Fanout

Fig. 8. Information transfer capacity of QCA devices under cell misalignment defects.

17Information-Theoretic Modeling and Analysis
of Stochastic Behaviors in Quantum-Dot Cellular Automata

www.intechopen.com



QCA devices degrades quickly due to the probabilistic nature of their operation. This may be
a significant issue for robust nanocomputing. Also, to achieve the same level of reliability, a
higher level of spatial redundancy is needed if the displacement is large. For the example of
the QCA line shown in Fig. 7(a) with a displacement of 30% of cell size, a width = 5 is needed
to achieve an information transfer capacity of 0.69 bits/use (a width = 3 achieves the same
information transfer capacity at a displacement of 27.5%). Finally, although tile-based design
can improve the reliability of QCA devices, the effectiveness of this approach saturates quickly
with an increase in width. This shows that it is difficult to further improve the reliability
of QCA devices beyond a certain level of spatial redundancy. The simulated QCA devices
are single output gates. Under the ideal (error- and variation-free) operation, the information
transfer capacity will be equal to 1 bit/use while it will be less than 1 bit/use in the presence
of defects and variations.
The effect of cell misalignment on the reliability of QCA devices has also been studied.
A scenario of cell misalignment defects is shown in Fig. 6(b) for QCA lines; each pair of
neighboring cells has the same offset d f from the center line. This corresponds to the worst
case scenario, e.g., the largest difference in kink energy (refer to (23) and (24)).
Figure 8 shows the information transfer capacity of QCA devices under cell misalignment
defects ranging from 0% to 30% of cell size. The relationship of information transfer capacity,
defects, and level of spatial redundancy follows a similar trend as for the QCA devices
under cell displacement defects. Compared to the results in Fig. 7, the information transfer
capacity of QCA devices under cell misalignment is larger than under cell displacement.
This is consistent with the observation that QCA technology is relatively less sensitive to cell
misalignment defects.

Fig. 9. Information transfer capacity of QCA lines under different temperatures.

Another interesting observation drawn from Fig. 8 is that for some QCA devices,
the information transfer capacity does not monotonously decrease with an increase in
misalignment among QCA cells. For example in Fig. 8(a), the information transfer capacity of
the QCA line with a width of 5 increases slightly at a misalignment of 26.5% of cell size. This
seems to counter the well-prevalent intuition; however, a careful examination of this result
reveals that when the misalignment is nearly 26.5% of the cell size, the QCA line actually
acts like a QCA inverter due to entanglement among misaligned QCA cells, i.e., the QCA line
generates more flipped outputs. According to the discussion related to Fig. 2, the output can
be interpreted by its complement to get more correct results. While the QCA function is fixed,
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this interpretation is by default reflected in the information-theoretic measures (as shown in
Fig. 2). From these results, we can see that the proposed information-theoretic analysis can
effectively quantify the impact of various defects on reliable operation, e.g., cell displacement
will reduce the reliability monotonically, while cell misalignment may cause a sudden change
of device functionality.
Finally, we apply the proposed method to study the impact of temperature on QCA operation.
Figure 9 shows the information transfer capacity of QCA lines implemented with different
widths subject to variations in temperature from 1K to 32K; QCA lines become less reliable
for all implementations as temperature increases, but a high level of spatial redundancy
utilization achieves a better reliability.

5. Conclusion

An information-theoretic framework has been developed for the analysis of stochastic
behaviors in QCA devices. The proposed method establishes a direct correspondence between
spatial redundancy and the reliability of this technology in the presence of defects and
variations, thereby allowing to evaluate the capabilities and limitations of QCA-based
nanocomputing systems. We have conducted a comprehensive set of simulations on different
QCA devices. These results show that the proposed method can be used to address the
evaluation of the reliability as achieved under a specified level of spatial redundancy; also
the proposed method allows to quantitatively evaluate the uncertainties in the operation of
QCA devices.
From an information-theoretic perspective, reliability measured by the information transfer
capacity can be interpreted as an upper bound (of which the numerical values are determined
by specific design techniques ) that QCA devices can achieve. The proposed method does
not specify a design technique that would achieve this bound because the proposed method
is derived from (Shannon, 1948), i.e., to establish an achievable bound on the information
transfer capacity but not the method for achieving such a bound. In the absence of a general
theory, the method proposed in this paper focuses on determining the information transfer
capacity. The ability to determine this achievable bound has substantial implications on the
design optimization of QCA devices and circuits.
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