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1. Introduction 

The IEEE 802.11p Task Group has recently released a new standard for wireless access in 
vehicular environments (WAVE). It constitutes an amendment to the 802.11 for Wireless 
Local Area Networks (WLANs) to meet the requirements of applications related to road-
safety involving inter- and intra-vehicle communications as well as communications from 
vehicle to the roadside infrastructure. Indeed, the importance of the targeted applications 
has forced authorities to allocate some dedicated bandwidth (nearby the 5.9GHz) to ensure 
the security of the communications. However, despite the suitability of this standard for use 
in high-speed vehicular communications, it is not possible to pass over the unprecedented 
market penetration of the popular 802.11 networks, the so-called WiFi networks. Before we 
can see a world where all the cars are equipped with 802.11p devices, current and near-
future applications might probably run on the original 802.11. Moreover, interaction 
between humans and vehicles will probably be carried out by means of the 802.11, which is 
the standard that is flooding most of personal tech devices, such as laptops, mobile phones, 
gaming consoles, etc. Therefore, it is important to keep on working in the improvement of 
the 802.11 Standard for its use in, at least, some vehicular applications.  
This is the main motivation for this chapter, where we focus on the Medium Access Control 
(MAC) protocol of the 802.11 Standard, and we propose a simple mechanism to improve its 
performance in densely populated applications where it falls short to provide users with 
good service. Envisioned applications include those were a high number of vehicles and 
pedestrians coexist in a given area, such as for example, a crossing in a city where all the 
cars share information to coordinate the drive along the crossing and prevent accidents. 
Into more detail, the Distributed Coordination Function (DCF) is the mandatory access 
method defined in the widely spread IEEE 802.11 Standard for WLANs [1]. This access 
method is based on Carrier Sensing Multiple Access (CSMA), i.e., listen before transmit, in 
combination with a Binary Exponential Backoff (BEB) mechanism. An optional Collision 
Avoidance (CA) mechanism is also defined by which a handshake Request to Send (RTS) – 
Clear to Send (CTS) can be established between source and destination before the actual 
transmission of data. This CA mechanism aims at reducing the impact of the collisions of 
data packets and to combat the hidden terminal problem. The DCF can be executed in either 
ad hoc or infrastructure-based networks and is the only access method implemented in most 
commercial hardware. Despite the doubtless commercial success of the DCF, the simplicity 
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of a CSMA-based protocol comes at the cost of a trial-and-error approach where a 
transmission attempt can result in a collision if several users contend for the access to a 
common medium as the traffic load of the network increases. Therefore, those networks 
based on the 802.11 suffer from really low performance when either the number of users or 
the traffic load is high.  
In this chapter, we introduce the idea of combining the DCF with the Point Coordination 
Function (PCF), also defined in the 802.11 Standard, to overcome its limitations under heavy 
load conditions. The PCF is defined as an optional polling-based access method for 
infrastructure-based networks where there is no contention to get access to the channel and 
the access point (AP) polls the stations of the network to transmit data. Therefore, collisions 
of data packets can be completely avoided and the performance of the network can be 
boosted. 
The hybrid approach of combining distributed access with reservation or polling-based 
access has been already used in the context of infrastructure-based networks [2]-[6] 
combining static Time Division Multiplex Access (TDMA) with dynamic CSMA access. 
Most of these works propose different alternatives to use the empty slots of TDMA in the 
case that the user allocated to a given slot has no data to transmit. However, to the best 
knowledge of the authors, there are very few works in the literature dealing with this 
approach in a distributed manner, i.e., for ad hoc networks without infrastructure. This is 
the main motivation for the work presented in this chapter, where we define the Distributed 
Point Coordination Function (DPCF) as a hybrid combination of the distributed access of the 
DCF and the poll-based access of the PCF to achieve high performance in highly populated 
networks with heavy traffic load. Indeed, the work presented in this chapter has been 
motivated by the successful results presented in [7]. In that paper, a spontaneous, 
temporary, and dynamic clustering algorithm has been integrated with a high-performance 
infrastructure-based MAC protocol, the Distributed Queuing Collision Avoidance (DQCA) 
protocol, in order to extend its near-optimum performance to networks without infrastructure. 
Upon the conclusion of that work, we realized that the same approach could be applied to the 
IEEE 802.11 Standard access methods and thus be able to extend the high-performance of the 
PCF under heavy load conditions to the distributed environments where the DCF runs.  
We have observed that there are very few works dealing with the PCF, which can indeed 
potentially achieve better performance than the DCF under heavy traffic conditions. Some 
contributions related to the PCF improve the overall network performance through novel 
scheduling algorithms [8]-[12] or by designing new polling mechanisms that can reduce the 
overhead associated to the polling process [13]. However, there have been almost no efforts 
in extending the operation of the PCF to ad hoc networks in order to provide them with 
some degree of QoS. The only exception can be found in [14] where a virtual infrastructure 
is created into a MAC protocol called Mobile Point Coordinator MAC (MPC-MAC) in order 
to achieve QoS delivery and priority access for real time traffic in ad hoc networks 
maintaining both the PCF and the DCF. In summary, a clustering based mechanism is used 
to achieve the correct operation of the PCF in a distributed environment. The duration of the 
PCF and DCF periods and the criterion upon which a terminal is chosen to be the MPC 
(acting as AP) are fixed and they are determined by the MAC protocol configuration. This 
approach works well in low dynamic environments where the topology does not vary 
frequently. In this situation the overhead associated to the “hello” messages required for the 
clustering mechanism can be kept to a minimum. However, it may not be convenient for 
spontaneous and highly dynamic environments, such as those present in some vehicular 
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applications, where the clustering overhead could impact negatively on the efficiency of the 
network. In addition, this protocol does not consider that the responsibility of becoming 
cluster head should be shared among all the users of the network to ensure certain fairness 
regarding the extra energy consumption associated to the role of coordinating a cluster. 
Taking into account this background and motivated by the success of extending DQCA to 
become DQMAN [7], we contribute to the field by presenting the DPCF as an extension of 
the PCF to operate over infrastructure-less networks through smooth integration with the 
DCF. By combining the DCF and the PCF using a spontaneous and dynamic clustering 
mechanism at the MAC layer it is possible to extend the higher performance of the PCF to 
networks without infrastructure. We present a description of the protocol as well as a 
comprehensive performance evaluation based on computer simulation both for single-hop 
and multi-hop networks.  
The chapter is organized as follows. The DCF and the PCF of the IEEE 802.11 Standard are 
overviewed in Section II. The DPCF protocol is then described in Section III. In Section IV, 
we present a comprehensive performance evaluation of the protocol by means of computer 
simulation. Finally, Section V concludes the chapter and outlines some future lines of 
research. 

2. IEEE 802.11 MAC protocol overview 

An overview of the operation of the DCF and the PCF of the IEEE 802.11 Standard is 
included in this section. A comprehensive description of them can be found in [1]. Following 
the naming of the standard, we will refer herein to a vehicle or pedestrian equipped with a 
communications terminal as a mobile station, or simply, a station. 

2.1 DCF overview 

The DCF is the mandatory coordination function implemented in all standard compliant 
devices. Two access modes of operation are defined in the DCF: 
1. Basic access (BASIC) mode; the station which seizes the channel transmits its data packets 

without establishing any previous handshake with the intended destination. 
2. Collision avoidance access (COLAV) mode; a handshake RTS/CTS is established between 

source and destination before initiating the actual transmission of data. These RTS and 
CTS get the form of special control packets. The COLAV access mode is aimed at 
reducing the impact of collisions of data packets and at combating the presence of 
hidden terminals.  

Two examples are illustrated in Figure 1 and Figure 2 representing the operation of the 
BASIC and the COLAV access modes, respectively. In summary, any station with data to 
transmit listens to the channel for a DCF Inter Frame Space (DIFS). If the channel is sensed 
idle for this DIFS period, the station seizes the channel and initiates the data transmission 
(or the RTS transmission in the COLAV mode). Otherwise, if the channel is sensed busy, the 
station backs off and executes a BEB algorithm by which the size of the contention window 
is doubled up upon any transmission failure and reset to the minimum value upon success. 
When a data packet is received without errors, the destination sends back an ACK packet 
after a Short Inter Frame Space (SIFS). This SIFS is necessary to compensate propagation 
delays and radio transceivers turn around times to switch from receiving to transmitting 
mode. It is worth noting that since a SIFS is shorter than a DIFS, acknowledgments have 
more priority than regular data traffic. 
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Fig. 1. Example: DCF Operation (Basic Access mode) 
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Fig. 2. Example: DCF Operation (Collision Avoidance mode) 

A relevant feature of the DCF is the Virtual Carrier Sensing (VCS) mechanism. Stations not 

involved in an ongoing transmission defer from attempting to transmit for the time that the 

channel is expected to be used for an effective transmission between any pair of source and 

destination stations regardless of the actual physical carrier sensing. To do so, stations 

update the Network Allocation Vector (NAV) which accounts for the time the channel is 

expected to be occupied. This information is retrieved from the duration field attached to 

the overheard RTS, CTS, and data packets. This mechanism is mainly aimed at combating 

the presence of hidden terminals. 

2.2 PCF overview 

The PCF can only run on infrastructure-based networks wherein an AP sequentially polls 

stations to transmit data and thus collisions are totally avoided. This mechanism was 

initially designed for the provision of QoS over WLANs. 

When the PCF is executed, time is divided into Contention Free Periods (CFP), wherein the 

AP sends poll messages to give transmission opportunities to the stations, and Contention 

Periods (CP), where the DCF is executed. Since the PCF is an optional coordination function 

and is not implemented in all standard-compliant devices, DCF periods are necessary to 

ensure access to DCF-only stations. The interleaving of CFPs and CPs is illustrated in Figure 

3. As also shown in this figure, a CFP is initiated and maintained by the AP, which 

periodically transmits a beacon (B). The first beacon after a CP (DCF access) is transmitted 

after a PCF Inter Frame Space (PIFS). The duration of a PIFS is shorter than a DIFS but 

longer than a SIFS, providing thus the initialization of a CFP with less priority than the 
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transmission of control packets, but with higher priority than the transmission of data 

packets. The periodically transmitted beacons contain information regarding the duration of 

both the CFP and the CP and allow a new arrived station to associate to the AP during a 

CFP. The CFP is finished whenever the AP transmits a CFP End (CE) control packet.  

 

Contention Period 

DCF Access

Contention Free Period

Polling Access

NAV

Access Point (AP)

802.11 Station

B CE

CFP

B

Time +

B B

PIFS

NAV

 

Fig. 3. IEEE 802.11 PCF Interleaves CFPs with CPs 

During a CFP, the only station allowed to transmit data is the one being polled by the AP or 

any destination station which receives a data packet and has to acknowledge (ACK) it, if 

applicable, and can combine the ACK with data in a same packet. In PCF, some packets can 

be combined together in order to reduce the number of MAC and PHY headers and thus 

increase the efficiency of the communications. In any case, the access to the channel is 

granted one SIFS after the reception of either the poll or the data packet, respectively. A 

polled user can either transmit a data packet to the AP or to any other station in the 

network, establishing a peer-to-peer link. If a polled station has no data to transmit, it 

responds with a special type of control packet, referred to as NULL packet.  

 

Access Point (AP)

Station 1

Station 2

B POLL 1+Data (1)

Contention Free Period (CFP)
SIFS

ACK+Data (AP)

ACK+POLL 2+Data (2)

ACK+Data (1)

ACK

CE

Time+  

Fig. 4. Example: PCF Operation 

An example of PCF operation is illustrated in Figure 4. In this example, the AP initiates a 

CFP by transmitting a beacon (B). After a SIFS, it combines a poll packet with data to station 

1. Upon the reception of this combined packet, station 1 acknowledges the data packet 

received and responds to the poll by transmitting a data packet to the AP. Note that this is 

also a combined packet. Then, the AP acknowledges the data packet received from station 1 

and combines a poll packet with data to station 2. Upon the reception of the packet, station 2 

acknowledges the packet to the AP and transmits data to station 1. Upon the reception of the 

packet, station 1 acknowledges the received packet. The CFP is finished with the 

transmission of a CE packet.  

3. A new MAC protocol: DPCF 

The Distributed PCF (DPCF) protocol is presented in this section as an adaptation and 

extension of the PCF to operate on distributed infrastructureless wireless ad hoc networks. 
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As already mentioned before, the main idea is to use the DCF to create spontaneous and 

temporary clusters wherein the PCF can be executed, having a station acting as the AP for 

the life time of each cluster. 

We consider a set of terminals equipped with WLAN cards forming a spontaneous ad hoc 
network. Any station must be able to operate in three different modes regarding the 
clustering mechanism: idle, master, and slave. Initially, all the stations operate in idle mode 
but they must be able to change the mode of operation when necessary. 
Idle stations with data to transmit get access to the channel using the regular DCF. 

Whenever a station gets access to the channel, it transmits an RTS targeted to the intended 

destination of the data packet. This packet initiates a clustering process. Upon the reception 

of the RTS, the intended destination of the packet becomes master and responds to the RTS 

with a beacon (B) followed by a poll targeted to the station which transmitted the RTS. A 

cluster is established and a CFP is initiated inside this cluster. All the idle stations which 

receive the beacon become slaves and get synchronized to the master at the packet level. 

Cluster membership is spontaneous and soft-binding: there are no explicit association and 

disassociation processes and a station belongs to a cluster as long as it can receive the 

beacons broadcast by the master. As in the PCF, a cluster is broken when the master 

transmits a CE packet. Upon the reception of this CE packet, all the slaves revert to idle 

mode and execute a backoff in order to avoid a certain collision if more than one station has 

data to transmit and initiates the DCF access period. Therefore, according to this operation, 

the clustering algorithm of DPCF is spontaneous in the sense that the first idle station with 

data to transmit initiates the clustering algorithm. 
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RTS
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Station 1

Cluster

PCF

POLL 1Station 2

SIFS

DATA for station 2

Station N

Time +

Station 2 becomes Master, and 
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All the stations are idle

CW

CW
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Fig. 5. Example: DPCF Operation 

An example of operation is represented in Figure 5. In this example, station 1 has data to 

transmit to station 2. Once the station 1 successfully seizes the channel executing the rules of 

the DCF, it transmits an RTS to station 2. Upon the reception of the packet, station 2 

becomes master and transmits a beacon. The first poll is then sent to station 1, which has a 

data packet ready to transmit. Station 1 transmits the data packet to station 2. Then, station 2 

acknowledges the reception of the packet and polls station N with a combined packet. Since 

station N has no data packets to transmit, it sends a NULL packet. Finally, station 2 

transmits the CE packet to indicate the end of the cluster phase. All the slave stations revert 
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to idle mode and execute a backoff to reduce the probability of collision if more than one 

station has data to transmit. 

Within a cluster, the master can poll the slaves following any arbitrary order. Regardless of 
the specific polling policy, the master has to have some knowledge of the local 
neighborhood in order to be able to carry out the polling mechanism. To do so, all the 
stations overhear the ongoing packet transmissions in their vicinity in order to create a 
neighbor table with an entry for each station in the local neighborhood. This table should be 
updated along time. The specific scheduling of the polling mechanism is out of the scope of 
the basic definition of DPCF. Only as an example, a round robin polling scheme can be 
executed following the entries of the neighbor table. In any case, once a station is polled by 
the master, it may transmit a data packet to any other slave (peer-to-peer communication 
model) without routing all the data through the master. Therefore, the master only acts as 
an indirect coordinator of the communications, but not necessarily as a concentrator of 
traffic (as the AP does in a regular centralized network). 
The duration of a cluster is variable and depends on the traffic load of the network. An 
inactivity mechanism is considered to avoid the transmission of unnecessary polls when there 
are no more data packets to be transmitted. This mechanism consists of the following: any 
master maintains a counter that is incremented by one unit upon each NULL packet 
received from a polled station with no data to transmit. This counter is reset to zero 
whenever a station responds to a poll with the transmission of a data packet. If the counter 
gets to a specified value (tunable), the cluster is broken and a CE packet is sent. 
On the contrary, it may happen that under heavy traffic conditions once a station becomes 
master it operates as such for the whole operation of the network due to the absence of idle 
periods. This would be unfair in terms of sharing the responsibility of being master in the 
network among all the stations. Therefore, it is necessary to upper-bound the maximum 
time that a station can operate as master without interruption. This limit is especially 
important in infrastructureless networks where fair energy consumption is a must. The 
approach in DPCF is the following: any master has a Master Time Out (MTO) counter which 
determines the maximum duration of a cluster. The value of the MTO corresponds to the 
maximum number of beacons (MTO=Nbeacons) that a master can transmit without 
interrupting the operation of its cluster. The MTO counter is decremented by one unit after 
each beacon is transmitted. Whenever the MTO counter expires, a CE packet is transmitted 
and the cluster is broken regardless of the traffic load or activity of the stations. Therefore, 
the maximum time that a station can operate as master is denoted by TMAX and can be 
computed as  

 MAX beacons polls pollsT N N MIFS MTO N MIFS· · · · .= =  (1) 

Npolls denotes the number of polls transmitted between beacons, which can also be tuned, 
and MIFS is the Maximum Inter Frame Space whose duration corresponds to the maximum 
time between two consecutive polls. The duration of a MIFS can be computed as the time 
elapsed when: 
1. The master station combines an ACK of a recently received data packet with a poll and 

a data packet. 
2. The station polled acknowledges the reception of the data packet from the master and 

combines the ACK with data for a third station. 
3. The third station transmits the ACK of the data packet received from the second station. 
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Fig. 6. Definition of MIFS 
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Fig. 7. DPCF Clustering Flowchart 
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The definition of a MIFS is illustrated in Figure 6. Note that it also corresponds to the 
minimum period of time that a station has to listen to the channel before establishing a new 
cluster in order to reduce the probability that another master is present. 
In order to summarize the whole operation of DPCF, a general flowchart is shown in Figure  
7. The left branch of the chart models the operation of any station becoming master when 
requested by any other stations and the right branch of the chart represents the operation of 
the station initiating the clustering algorithm when it has data to transmit.  

4. Performance evaluation 

In order to evaluate the performance of DPCF, we have implemented the protocol rules in a 

custom-made C++ link-level simulator. The simulator works in an object-oriented basis and 

the source code of each station runs in parallel. The implemented code could be directly 

integrated in a wireless card to execute the protocol rules. The main motivations for 

implementing the protocol in a custom-made C++ simulator rather than in any other well 

known system simulation platform (such as ns-2, for example) are: 

1. The faster execution of the simulations. 
2. The possibility of isolating the MAC protocol performance from the rest of the network. 
3. The possibility to implement the protocol in a hardware testbed.  
The system parameters have been set according to the PHY layer of the IEEE 802.11g 
Standard [1] and they are summarized in Table 1. 
 

Parameter Value Parameter Value 

Data Packet 
Length 

(MPDU) 
1500 bytes 

Constant Message 
Length 

1500 bytes 

Data Tx. Rate 54 Mbps Control Tx. Rate 6 Mbps 

MAC header 34 bytes PHY preamble 96 μs 

SIFS, PIFS, DIFS 10, 30, 50 μs SlotTime (σ) 10 μs 

RTS, BEACON, 
CF_END and 
POLL packets 

20 bytes 
CTS and ACK 

packets 
14 bytes 

CWmin 16 CWmax 256 

MTO 3 Polls per beacon 19 

Table 1. System Parameters for Evaluation of DPCF 

4.1 Single-hop networks 

We first consider the case of a single-hop network composed of 20 stations, all of them 

within the transmission range of each other. All the stations generate data packets of fixed-

length following a Poisson arrival distribution and they contribute equally (homogeneously) 

to the total aggregate data traffic of the network. The destination of each packet is randomly 

selected among all the stations of the network with equal probability. In order to focus on 

the MAC layer, all the packets are assumed to be received without errors and thus the 

results herein presented correspond to an upper-bound of the performance of the protocol. 
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It is also assumed that an ideal round robin scheduling is performed to poll all the stations 

once a cluster is established. Three different networks have been studied (they all have been 

implemented in the simulator): 

1. DCF: a network wherein all the stations only execute the DCF with the collision 
avoidance access method. 

2. PCF: a network wherein an AP manages the access to the channel. However, stations 
transmit directly to the intended destination without routing traffic through the AP. In 
this network, we consider that the AP also has data to transmit as any other regular 
station. 

3. DPCF: a network wherein all the stations execute the proposed DPCF protocol. 
According to the parameters presented in Table 1, the number of polls between beacons has 

been set to 19 and it indicates that all the slaves within a cluster are polled exactly once by 

the master between the transmission of two consecutive beacons. In addition, the setting 

MTO=3 indicates that all the slaves are polled at most three times when a cluster is 

established unless the inactivity mechanism is triggered by the master. 
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Fig. 8. Throughput Comparison DPCF, PCF, and DCF in a Single-hop Network 

The throughput of the three different networks is plotted in Figure 8 as a function of the 

total aggregate offered load to the network. As expected, the three curves grow linearly until 

they reach the saturation throughput. The three protocols are stable for heavy traffic 

conditions without entering in congestion and thus they can operate under sporadic 

situations of peak high traffic loads without collapsing the network. The saturation 

throughput of DPCF is remarkably higher than that of DCF, achieving an improvement of 

approximately 250%. Collisions and backoff periods are reduced in the DPCF network 

compared to the DCF network, thus yielding higher performance. In addition, the 

performance of DPCF is even superior to the regular PCF, attaining 25% higher saturation 

throughput.  
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Fig. 9. Probability of Transmitting when Being Polled in a Single-hop Network 

In order to further analyze this apparently counter-intuitive result, Figure 9 shows the 

probability that a station transmits a data packet when it is polled. It has been considered for 

this calculation that the AP (in the PCF network) and the masters (in the DPCF network) are 

virtually polled every time they poll a station as they have the possibility to combine the 

polls with data and ACK packets. The probability of transmitting data when being polled is 

quite similar in the two networks for low traffic loads. However, this probability is much 

higher in the DPCF network than in the PCF network for high traffic loads. While the 

efficiency of the polling in DPCF gets close to 98% for high traffic loads, it remains close to 

55% in the PCF network. This efficiency translates directly into a higher efficiency of DPCF, 

since the ratio of data packets transmitted per control overhead is higher. The reason for 

these figures is that there is a severe unbalance between the channel access opportunities 

between the AP and the regular stations in the PCF network. This can be seen in Figure 10, 

where we plot again the probability of actually transmitting when being polled. Now, two 

different curves for the PCF network are represented corresponding to the average 

probability among of all the regular stations and to the probability for the AP alone, 

separately. The AP has a channel access opportunity every time it polls another station, but 

most of these transmission opportunities are not used for the actual transmission of data 

(note that the probability of transmitting when being polled is below 10% in all cases for the 

AP), decreasing the overall efficiency of the polling mechanism.  

This unbalance between the AP and the stations is avoided in DPCF by sharing the 

responsibility of being master among all the stations of the network. It is well known that 

the DCF is fair in the long-term, and so is the clustering algorithm of DPCF. Since all the 

stations of the network get the role of master periodically, the unbalanced access of the AP 

in the PCF network is shared in the DPCF network. Every time a station is set to master it 

can transmit all its backlogged data packets and thus take advantage of the prioritized 

access to empty its data buffers while operating as master. Indeed, the fact that a station 
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operating in master mode has more channel access opportunities than a slave station can be 

seen as an implicit mechanism to provide with some incentive to stations to become master 

despite the extra actions they must carry out and the corresponding increase in energy 

consumption. 
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Fig. 10. Probability of Transmitting when Being Polled in a Single-hop Network 
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Fig. 11. Average Packet Transmission Delay in a Single-hop Network 
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The performance in terms of average packet transmission delay is plotted in Figure 11. We 
define this delay as the average time elapsed since a packet arrives at the MAC layer until it 
is successfully acknowledged by the intended destination. It is worth seeing that for low 
offered loads, the best performance is attained in the DCF network. This is an expected 
result since every time a station has data to transmit it can successfully seize the channel 
immediately without needing to wait for being polled (the probability of finding the channel 
busy and the probability of collision are low due to the low offered traffic load). However, 
as the offered load grows, the average packet transmission delay in the DCF network grows 
sharply for traffic loads over 10 Mbps. On the other hand, the DPCF attains average delays 
below 200 ms for traffic loads up to 22 Mbps, increasing the throughput of the standard DCF 
network and attaining superior performance than the PCF. These results confirm the idea 
that PCF-like mechanisms are worthy when the traffic load and the number of transmitting 
stations are relatively high. 

4.2 Multi-hop networks 

We now consider a multi-hop network. Without loss of generality and as a representative 
example, we consider a tandem network formed by 5 static stations set in line and equally 
spaced as the one represented in Figure 12. The distance between the stations, the 
transmission powers, and the channel propagation parameters have been adjusted so that: 
1. Every station can transmit directly to immediate neighbors at one-hop distance. 
2. Every station at two hops of a transmitting station can sense the channel busy, but 

cannot decode the transmitted information. 
3. Every station at three hops of a transmitting station is oblivious to the transmission. 
 

IDLE

Transmission Range

Interference Range

SLAVE MASTERIDLEIDLE

 

Fig. 12. Tandem Multi-hop Network 

A collision occurs if two simultaneous transmissions are received within either the 
transmission or the interference range of the transmitters. We assume that all the stations 
have perfect routing information and thus route the packets through the station in its 
transmission range that is closer to the intended destination. The rest of the parameters have 
been set as in the previous section for the single-hop evaluation.  
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Fig. 13. Throughput to Destination of DPCF in a Multi-hop Network 

 

0

30

60

90

120

150

180

210

240

270

300

1 2 3 4 5 6 7 8 9 10 11 12

Total Offered Traffic Load (Mbps)

A
v
e

ra
g

e
 P

a
c
k
e

t 
T

ra
n

s
m

is
s
io

n
 D

e
la

y
 (

m
s
)

DPCF

DCF

 

Fig. 14. Average Packet Transmission Delay of DPCF in a Multi-hop Network 

The total throughput delivered to destination is plotted in Figure 13 as a function of the total 

offered load to the network. Note that the traffic delivered to the intermediate stations in a 

multi-hop route is not accounted for this calculation. The curves show that DPCF 

outperforms DCF for all traffic loads. Indeed, for low traffic loads both protocols behave 
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almost identically delivering all the data traffic offered to the network. However, while DCF 

saturates around 5 Mbps, DPCF is capable of delivering up to 9 Mbps (80% higher 

saturation throughput), almost doubling up the capacity of the legacy DCF. Comparing 

these results to the ones obtained for the single-hop case, it is possible to see that the total 

offered load that can be conveyed in the multi-hop network is considerably lower. This is 

mainly due to the fact that in the multi-hop environment some packets need to travel along 

several hops to get to the final destination. 

The average packet transmission delay is plotted in Figure 14 for both the DPCF and the 

DCF networks. In this case, this measure is defined as the average time elapsed from the 

moment a packet arrives at the MAC layer of the source station until it is successfully 

delivered to the final destination (end-to-end time). The curves show that the DCF attains 

lower average packet transmission delay for low traffic loads. Two are the main reasons for 

this lower average delay. First, the longer MIFS of DPCF (compared to the DIFS of DCF) 

adds latency to all the transmissions, increasing the average packet transmission delay in the 

DPCF network for low traffic loads. In addition, in the DPCF network, slaves cannot 

transmit immediately whenever they have data to transmit but they have to wait to be 

polled by a master, increasing thus the average access delay. However, note that the average 

delay is lower than 300 ms for loads up to 8 Mbps in the DPCF network and it gets 

unbounded in the DCF network for traffic loads over 6 Mbps. Therefore, the DPCF protocol 

attains better performance when the traffic load of the network is higher, attaining up to 

25% better performance than the DCF in this multi-hop setting. 

5. Conclusions 

We have presented in this chapter a simple mechanism to improve the performance of the 

802.11 Standard under heavy loaded conditions. These conditions appear in some vehicular 

scenarios, such as in traffic-light crossings, where vehicles and pedestrians meet together 

and a number of safety applications may arise.  

The key idea consists in combining both distributed and point coordinated access methods 

to manage the access of the users to the wireless channel. The specific approach has been 

based on an extension of the PCF of the IEEE 802.11 Standard to operate over distributed 

wireless ad hoc networks without infrastructure. The main idea of DPCF is that the stations 

of the network get access to the channel by executing the rules of the DCF. Any station 

which seizes the channel transmits its data and also establishes a temporary dynamic cluster 

to manage the pending transmissions of all the neighbors with data ready to be transmitted. 

The key of this mechanism is that there is no cluster head selection, but clusters are created 

in a spontaneous manner. This reduces the control overhead to establish a fixed clustering 

architecture and increases the capability of the network to dynamically adapt to the 

unpredictable nature of ad hoc networks. Comprehensive performance evaluation of the 

protocol through link-level computer simulation shows that the new proposal improves the 

performance of ad hoc networks when compared to current standards.  

The results presented in this chapter are rather promising and, in fact, future work will be 

aimed at theoretically evaluating and optimizing the design of DPCF and at implementing 

the protocol in a testbed to evaluate its actual performance in a real environment. Ongoing 

work is being carried out to evaluate the coexistence feasibility of this new approach with 

legacy implemented networks based on the 802.11. 
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