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1. Introduction

Parallel manipulators, often called parallel kinematics machines (PKM), are controlled
non-linear dynamical systems. From a mechanical point of view PKM are (holonomically)
constrained mechanical systems characterized by a power transmission between input and
output. A so-called end-effector (EE), representing the mechanical output, is connected to
a fixed platform by several (often identical) serial linkages, and the constraints reflect the
existence of closed loops formed by these chains. Each chain is equipped with one or more
actuators, representing the mechanical inputs. The modeling, identification, and control of
PKM have advanced in the last decades culminating in successful industrial implementations.
Yet the acceptance of PKM is far beyond that of the well-established serial manipulators. This
is mainly due to the limited workspace, drastically varying static and dynamic properties, the
abundance of singularities within the workspace, and the seemingly complex control.
Traditionally the number of mechanical inputs of a PKM equals its mechanical
degree-of-freedom (DOF) so that the PKM is non-redundantly actuated. A means to overcome
the aforementioned mechanical limitations is the inclusion of additional actuators, commonly
by adding further limbs to the moving platform without increasing the DOF of the PKM.
As a simple example consider the PKM in figure 1. The EE can be positioned in the plane
thus possesses 2 degrees of freedom. Also the PKM as a whole has the DOF 2 so that
two actuators would be sufficient for controlling this PKM. Yet the PKM is actuated by 3
actuators, which gives rise to actuation redundancy in the sense that the actuator forces are
not independent. Such actuation redundancy has the potential to increase the EE-acceleration,
to homogenize stiffness and manipulability, and to eliminate input singularities (where the
motion of the moving platform is not controllable by the actuators), and thus to increase the
usable workspace. The design of RA-PKM, and the possible dexterity improvement were
addressed in several publications as for instance Garg et al. (2009); Gogu (2007); Krut et al.
(2004); Kurtz & Hayward (1992); Lee et al. (1998); Nahon & Angeles (1989); O’Brien & Wen
(1999); Shin et al. (2011); Wu et al. (2009).
The existence of redundant actuators allows for control forces that have no effect on the PKM
motion but rather lead to mechanical prestress within the PKM. This effect can be exploited
for different second-level control tasks such as backlash avoidance and stiffness control. In

*All control concepts proposed in this chapter were implemented by Timo Hufnagel at the Heilbronn
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Fig. 1. Multibody model of a 2 DOF planar RA-PKM.

a power port representation of the PKM control system this means that control forces are
possible without a (mechanical) power inflow into the system. This also means that in the
non-linear control system there are more control vector fields than the dimension of the state
space manifold, and that the control forces are not unique. Several strategies for redundancy
resolution were proposed exploiting redundancy for second-level control tasks, see Lee et al.
(2005); Müller (2005; 2006).
While the described advantages make the redundant actuation scheme attractive its
implementation raises several challenges, however. These challenges are due to model
uncertainties, synchronization errors in decentralized control schemes, as well to the lack
of a globally valid dynamics model. The effect of uncertainties has been analyzed in
Müller (2008) and Müller (2010) and it was show that geometric imperfections cause a
qualitative change of the way in which actuation forces act upon the PKM. This is in sharp
contrast to non-redundantly actuated manipulators where geometric uncertainties simply
cause quantitative control errors and so impair the control performance. Moreover, geometric
uncertainties of redundantly actuated PKM (RA-PKM) lead to antagonistic control forces
proportional to the linear feedback gains. It turns out that this can severely deteriorate the
integrity of the controlled RA-PKM.
Although model-based control concepts have been proposed for a long time and implemented
recently, robotic manipulators are dominantly controlled by means of decentralized control
schemes in practice. Now the indiscriminate application of decentralized control methods
to RA-PKM leads again to the problem of antagonistic control forces. In contrast to
intentionally generated counteracting control forces, generating desired prestresses, the latter
are uncontrolled parasitic control forces. This is an inherent problem of the decentralized
control of RA-PKM that can be observed even for a perfect matching of model and plant. To
eliminate such antagonistic control forces a so-called antagonism filter (AF) was proposed in
Müller & Hufnagel (2011).
The motion equations governing the PKM dynamics form the basis for any model-based
control. Aiming on an efficient formulation, the motion equations are usually derived in
terms of a minimal number of generalized coordinates that constitute a local parameterization
of the configuration space. A well-known problem of this formulation is that such minimal
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Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy 3

coordinates are not globally valid on the entire configuration space. Configurations where
these coordinates become invalid are called parameterization singularities. That is, it is
not possible to uniquely determine any PKM configuration by one specific set of minimal
coordinates. The most natural and practicable choice of minimal coordinates is to use the
actuator (input) coordinates as they can be measured. Then, the parameterization singularities
are also input singularities. An ad hoc method to cope with this phenomenon is to switch
between different minimal coordinates as proposed in Hufnagel & Müller (2011). This is a
computationally expensive approach since it requires monitoring the numerical conditioning
of the constraint equations, and the entire set of motion equation must be changed accordingly.
To avoid such switching a novel formulation of motion equations that does use minimal
coordinates was proposed in Müller (2011). This formulation is robust with respect to input
respectively parameterization singularities and hence does not require switching between
different parameterizations. Exponentially stable trajectory tracking can be shown when this
formulation is employed in a computed torque and augmented PD control scheme.
These observations call for robust modeling and control concepts. This chapter reports some
recent developments in modeling and control of RA-PKM.

2. The PKM control problem

2.1 Manipulator dynamics

Aiming for efficient real-time implementations model-based control schemes for PKM are
based on a dynamic model in terms of minimal coordinates as pursued in Cheng et al. (2003);
Müller (2005); Nakamura & Ghodoussi (1989); Thanh et al. (2009). A PKM is a force-controlled
mechanism with kinematic loops. Following the standard approach in multibody dynamics
the Lagrangian motion equations of first kind are first derived for the unconstrained system
(opening kinematic loops), and the Lagrange multipliers are eliminated by projecting these
equations to the configuration space defined by the (holonomic) geometric constraints. This
approach is know as the coordinate partitioning method, see Wehage & Haug (1982).
Denote with q ∈ V

n the vector of joint variables qa, a = 1, . . . , n of the unconstrained system,
obtained by opening the kinematic loops, where in each kinematic loop one joint is removed.
The loop closure is enforced by the corresponding loop constraints giving rise to a set of r
geometric and kinematic loop constraints

0 = h (q) , h (q) ∈ R
r

0 = J (q) q̇, J (q) ∈ R
r,n. (1)

The PKM in figure 1, for instance, comprises two independent kinematic loops that can be
opened by removing the two joints at the EE connecting the kinematic chain formed by joints
2 and 5 with that formed by joints 1 and 4, and joints 3 and 6, respectively. The resulting
unconstrained tree-system in figure 2 has n = 6 generalized coordinates qa, a = 1, . . . , 6.
With the constraints (1) the Lagrangian motion equations of the PKM are

G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t) + JT (q)λ = u. (2)

G is the generalized mass matrix of the tree-system, Cq̇ represents generalized Coriolis
and centrifugal forces, Q represents all remaining forces, including EE loads, and u are
the generalized control forces. The Lagrange multipliers λ can be identified with the

209Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy
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Fig. 2. Definition of loop constraints for the planar 2 DOF RA-PKM.

constraint reactions in cut-joints. The vector q ∈ V
n represents the PKM configuration. The

configuration space (c-space) of the PKM model is defined by the geometric constraints:

V := {q ∈ V
n|h (q) = 0} . (3)

If J has locally full rank r, one can select δ := n − r joint variables, called independent
coordinates, such that the admissible configurations q ∈ V are functions of these independent
coordinates. This induces a coordinate partitioning. If the rank of J is constant, the c-space
is smooth δ-dimensional manifold and δ is the DOF of the PKM, see Müller (2009). A
configuration q where the rank of J changes is called a c-space singularity since then V is
not a smooth manifold in q.
Denote with q1 and q2 respectively the vector of dependent and independent coordinates, the
velocity constraints can be written as

J1q̇1 + J2q̇2 = 0, (4)

where J = (J1, J2), with J1 (q) ∈ R
r,r, J2 (q) ∈ R

r,δ. By definition of independent coordinates
J1 has full rank, and the generalized velocities can be expressed as

q̇ = Fq̇2, where F :=

(
−J−1

1 J2

Iδ

)
. (5)

where the matrix F is an orthogonal complement of J because JF ≡ 0 . The time derivative of
(5) yields the accelerations q̈ = Fq̈2 + Ḟq̇2.
Due to the existence of kinematic loops, PKM comprise passive joints and only the m control
forces corresponding to the active joints are present in u. Denote with c ≡ (c1, . . . , cm) the
vector of generalized control forces in the actuated joints, and let A be that part of F so that
FTu = ATc. This means that if qa denote the vector of m actuator coordinates, then q̇a = Aq̇2.
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Projecting the motion equations (2) of the tree-system to the configuration space V, with the
help of the orthogonal complement F, and with (5), yields

G(q) q̈2 + C (q, q̇) q̇2 + Q(q, q̇, t) = AT(q) c (6)

where
G := FTGF, C :=FT(CF + GḞ), Q := FTQ. (7)

The δ = n − m equations (6) together with the r dynamic constraints Jq̈ + J̇q̇ = 0 yield a
system of n ODE’s in the n generalized coordinates q that govern the PKM dynamics when
controlled via the generalized control forces c. The equations (6) have been first proposed by
Voronets (1901) and are a special kind of Maggi’s equations, Maggi (1901). They have been
proposed for use in multibody dynamics in Angles & Lee (1988); Wehage & Haug (1982), and
were put forward for PKM modeling in Cheng et al. (2003); Müller (2005); Thanh et al. (2009).
The PKM control problem can now be represented as the control-affine control system

ẋ = f (x) +
m

∑
i=1

gi (x) ci (8)

with state vector x := (q2, q̇2), where

f :=

(
q̇2

−G
−1(

Cq̇2 + Q
)
)

, g :=

(
0

G
−1

AT

)
. (9)

f is the drift vector field, and the columns gi, i = 1, . . . , m are the control vector fields that
determine how the control forces affect the system’s state.

2.2 Actuation concepts

Based on the control system (8) different actuation schemes can be distinguished. Actuation
refers to the immediate effect of control forces in a given state of the PKM. Apparently the
degree of actuation has to do with the number of independent control vector fields. The degree
of actuation (DOA) can be defined as the number of independent input vector fields gi in the
control system (8). With regular G the DOA is

α (q) := rank M (q) . (10)

If α (q) < δ, the system is called underactuated, and if α (q) = δ, it is called full-actuated at q.
The system is called redundantly actuated at q, if m − α (q) > 0 and non-redundantly actuated
at q, if m = α (q). Apparently a system can be redundantly underactuated. Configurations q
where the DOA changes, i.e. when α is not constant in a neighborhood of q, are called input
singularities, see Müller (2009); Zlatanov & Fenton (1998).

2.3 Inverse dynamics solution

The inverse dynamics problem is to find the control forces c required for controlling the
PKM along a prescribed target trajectory q (t). The system (6) has no unique solution
for c. Moreover, it is clear that only those c in the range of the control matrix AT are
effective control forces, and that arbitrary forces c0 (prestress) in the null-space of AT can
be superposed. If c0 is the vector of desired prestress, for given q, q̇, q̈, a solution such that

211Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy
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(
c − c0

)T
W

(
c − c0

)
→ min is given by

c =
(

AT
)+

W
FT(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇)) + NAT ,Wc0

=
(

AT
)+

W
(G (q) q̈2 + C (q, q̇) q̇2 + Q (q, q̇) ) + NAT,Wc0 (11)

where
(
AT

)+
W

:= W−1A
(
ATW−1A

)−1
is the weighted right pseudoinverse, and NAT ,W :=

(Im −
(
AT

)+
W

AT) is a projector to the null-space of AT. W is a symmetric positive
definite weighting matrix for the drive forces in accordance with the drive capabilities. The
pseudoinverse solution in (11) delivers the controls that produce the desired motion, where
the drive load is balanced between the individual drives according to the weights. The second
part of the control vector c is the null-space component generating prestress that is closest to
the desired c0. The possibility of generating control forces in the null-space has been used
for backlash avoidance and stiffness control Müller (2005; 2006); Valasek et al. (2002); Yi et al.
(1989).

3. Decentralized control schemes

3.1 Peculiarities of PKM with actuation redundancy

Decentralized control of individual actuators without taking into account the dynamics of the
controlled system is still the standard control method in industrial applications. Moreover the
majority of contemporary robotic manipulators are controlled by a decentralized PD law in
favor of its simple computation and low-cost setup. In contrast to model-based control, the
actuators are controlled independently, without reference to the dynamics of the non-linear
control system, exclusively upon the individual commands obtained from motion planning
and inverse kinematics. In other words, it is assumed that all actuators can be independently
controlled without mutual interference. This applies to serial manipulators as well as to
PKM without actuation redundancy as summarized in Paccot et al. (2009) and Thanh et
al. (2009). However, since in case of RA-PKM more actuators are activated than required,
decentralized control of RA-PKM naturally leads to conflicting control forces, reflected by
undesired prestresses and an increased power consumption as observed in Saglia et al.
(2009),Valasek et al. (2005), Wang et al. (2009). Hence antagonistic control forces cannot
be attributed to model uncertainties alone, as analyzed in Müller (2010), which could be
minimized using model identification methods. Even more such counteraction is inherent
to the decentralized control method. In order to eliminate contradicting control forces the
actuation redundancy must be resolved also within decentralized control, which requires a
kinematic model. In the following the interplay of measurement errors and decentralized
control is discussed.
As above denote with q and qa the actual generalized coordinates of the plant (which is
unknown). Further a measurement error is assumed caused by a constant (calibration) offset
∆qa. The vector of measured actuator coordinates is then introduced as q̃a := qa + ∆qa. If
qd

a (t) denotes the desired actuator motion, ea := qa − qd
a is the actual tracking error. Due to

the calibration offset the measured tracking error is ẽa = q̃a − qd
a = ea + ∆qa.

The simple PD control law that independently regulates the m actuator positions upon these
measurements is

c = −KPẽa − KD
˙̃ea. (12)

212 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics
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KP and KD are diagonal positive definite gain matrices. The effect of measurement errors
can be understood considering the pose q̃a that is attained as result of a constant setpoint
command qd

a . The stationary control forces, not producing any motion, are those c0 in the
null-space of AT (q), i.e.

0 = AT (q) c0 = −AT (q)KPẽa = −AT (q)KP (ea + ∆qa) . (13)

If there are no measurement errors (and no model uncertainties) it is ∆qa = 0, and the PKM
converges to ea = 0 since qa and qd

a satisfy the geometric constraints. Since generally ∆qa do
not comply with the geometric constraints the PKM converges to a qa such that ea + ∆qa is
in the null-space of ATKP. The exact value of q depends on external forces, e.g. gravity and
process loads. The attained steady state error is

ea = −K−1
P

(
AT

)+
KP∆qa (14)

with the right pseudoinverse
(
AT

)+
= A

(
ATA

)−1
of AT. In this equilibrium configuration

the PD controllers yield the steady state actuator forces c0 = KP (ea + ∆qa). Since they are in
the null-space of AT the RA-PKM stays at rest.
The consideration so far applies to constant calibration offsets. A further source of
systematic measurement errors is the encoder resolution within the actuators. Assuming
exact calibration, for simplicity, the error measurement, and thus ∆qa, change discontinuously
according to the resolution. Then the solution for the steady state error (14) is only piecewise
valid and may not be unique. Moreover the interplay of antagonistic forces and the
quantization of q̃a can cause alternating control forces, and hence excited vibrations. This
is clear by noting that ∆qa changes in discrete steps so that during the settling process the
components of ea + ∆qa in the null-space of ATKP are changing discontinuously and thus
cause discontinuous control forces.
The crucial point is that the decentralized control scheme (13) is not restricted to the range
of AT , and so yields antagonistic control forces in the null-space of AT. Such contradictory
control forces are on the one hand due to measurement errors but are on the other hand
inevitably caused by the uncoordinated control of individual actuators with (12). In the
decentralized PD control the individual controller for each kinematic chain, connecting the
EE to the base, acts independently without respecting the coordination within the closed
kinematic loops of the RA-PKM. Consider this phenomenon for the 2 DOF RA-PKM in
figure 1. The manipulator can be viewed as the cooperation of two (virtually independent)
non-redundantly actuated 5-bar linkages as shown in figure 3. Consider the situation when
the EE is to follow a straight line depicted in figure 3. The three base joints, with coordinates
q1, q2, and q3, are actuated. Two of these actuators are sufficient for this 2 DOF system,
however. For instance, the PKM can be controlled by joints 1 and 2, or joints 2 and 3.
Consequently the motion control of the 5-bar loop consisting of joints 1 and 2, and the other
5-bar loop with joints 2 and 3 must be synchronized. Controlling the loops independently,
the control commands for steering the EE along the straight line, determined from (12), drive
either 5-bar loop along a straight line in the q1 − q2 and q2 − q3 joint subspace, respectively. The
latter correspond to EE-curves depicted in figure 3. It is apparent that the control commands
of the 5-bar linkages are contradicting due to the missing synchronization of the two loops.
This is an inherent problem of the decentralized control, which does exist for the model-based
control schemes that a priori respects such interdependencies.

213Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy
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Fig. 3. Explanation of the synchronization error in decentralized control.

3.2 Antagonism filter - a method for reducing counteraction

Apparently the antagonistic actuator forces are those control commands that are
(unintentionally) in the null-space of AT. Elimination of these antagonistic control forces is
hence equivalent to the removal of those components of the control forces c that are in the
null-space of AT . This is readily achieved using the projector

RAT := I − NAT =
(
AT)+AT (15)

onto the range of AT , where NAT is the null-space projector. This projector can be applied to
any actuator force commands (not necessarily computed from (12)), and return the effective
control forces

ceff = RAT c. (16)

These control forces can be applied to the PKM without changing the drive action since
ATRAT = AT . Because RAT eliminates the antagonistic actuator forces it is called the
antagonism filter (AF) in Müller & Hufnagel (2011).
In practice the individual actuators are position/velocity controlled rather than force
controlled. Since this splitting concerns the actuator forces it needs to be transformed to the
position and velocity command. Therefore the error vector in (12) is projected to the range of
ATKP and ATKD, respectively, so that

eeff = RATKP
ẽa, ėeff = RATKD

˙̃ea. (17)

Then the corrected command sent to the individual PD controllers is

qd
eff = qa − eeff, q̇d

eff = q̇a − ėeff. (18)

3.3 Case study: Planar 2 DOF RA-PKM

The AF has been applied to decentralized control of the planar 2 DOF redundantly
full-actuated PKM in figure 1. The testbed was developed at the Heilbronn University as
reported in Hufnagel & Müller (2011) and Müller & Hufnagel (2011), where all experiments
were carried out. The prototype consists of arm segments with a length of 200 mm. The
three revolute joints are located at an equilateral triangle with lateral length 400 mm. The base
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Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy 9

joints are actuated with DC motors (Maxon Re30). The RA-PKM can be controlled either with
individual PD controllers or a model-base control scheme (see section 4.5). The PD controllers
are designed for a load corresponding to the weight of one arm (134 g). In the following results
for the PD controller are reported.
As example the PKM is controlled within 5 s along the triangular EE trajectory in figure 4.
The trajectory is planned according to the maximal acceleration of about 0.5 m

s2 . The required
actuator motions are determined from the inverse kinematics that are the target trajectories of
the PD controllers. The manipulator was calibrated manually in order to reduce calibration
errors. The required joint torques are shown in figure 5 and the joint errors in figure 6. The
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Start/Terminal

EE-Path

Fig. 4. Triangular EE-path along which the RA-PKM is controlled with the CTC.
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Fig. 5. Joint torques when the RA-PKM is controlled by decentralized PD controllers.
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Fig. 6. Actuator tracking errors when the RA-PKM is controlled by decentralized PD
controllers.
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Fig. 7. Joint torques when the AF is applied to decentralized PD control of the RA-PKM.

initial and final torques and errors in the actuator joint angles when the PKM is at rest are due
to the remaining calibration uncertainty and encoder quantization. These steady state drive
torques are in accordance with (13) and (14). Application of the AF (15) reduces the overall
drive torques as shown in figure 7. The antagonistic actuator torques are almost removed
by the AF. A small part of the constant initial and final actuator torques remain, however.
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Motor i Electric Energy Consumption Eel
i

1
2
3

without AF with AF

1.3347 Ws 0.4574 Ws
1.5414 Ws 0.7010 Ws
1.6844 Ws 1.0801 Ws

Table 1. Energy consumption if the PKM is manually recalibrated.

This can be explained by noting that the control matrix AT and the AF are computed upon
the measurement q̃a, and that there are always model imperfections. A reduction of electric
energy translates directly to the reduction of actuator torques, and the reduced actuator
torques are reflected by a reduced electrical power consumption Eel

i of motor i. Table 1 shows
the energy consumptions when the RA-PKM is controlled with and without application of the
AF. A significant reduction of electrical energy consumption and thus of the drive torques is
apparent. The performed mechanical work is indeed not altered by AF.

4. Model-based control schemes

4.1 Augmented PD and computed torque controller

Two accepted methods for the model-based control of robotic manipulators are the augmented
PD (APD) and computed torque control (CTC) schemes Asada & Slotine (1986); Murray et
al. (1993). Both schemes consist of a non-linear feedforward term, that delivers the control
forces required for steering the PKM along the desired trajectory, and a linear feedback term
to compensate drifts from the desired motion. Now the feedforward term requires the inverse
dynamics solution (11). These control methods, originally derived for non-redundantly
actuated systems, can be directly adopted for RA-PKM as in Cheng et al. (2003); Müller (2005);
Paccot et al. (2009). The APD can be used in the form (omitting null-space components)

c =
(

AT(q)
)+ [

G (q) q̈d
2 + C (q, q̇) q̇d

2+Q (q, q̇)− KDė2 − KPe2

]
, (19)

wherein qd (t) is the desired path, and e2 (t) := q2 (t) − qd
2 (t) is the tracking error of the

independent coordinates. The gain matrices KD and KP are diagonal and positive definite.
An adopted form of the CTC law for RA-PKM is

c =
(

AT(q)
)+ [

G (q) v2 + C (q, q̇) q̇2+Q (q, q̇)
]
, (20)

with v2 := q̈d
2 − KDė2 − KPe2. Perfect matching of model and plant presumed, both control

laws applied to (6) result in exponentially stable trajectory tracking for sufficiently large gains
KD and KP, provided G is regular. The latter assumption only fails in configuration space
singularities of the PKM and in singularities of the parameterization of the model. This is in
particular critical for RA-PKM as explained in the next section.

4.2 Parameterization-singularities of the dynamic model

It is well-known that there is generally no choice of minimal coordinates that is valid for the
entire motion range of the manipulator. Parameterization-singularities refer to configurations
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where a selected set of independent coordinates becomes invalid. This problem is usually
solved ad-hoc by switching between different mathematical models as proposed in Hufnagel
& Müller (2011). There is, however, no general approach to cope with this problem. While
this is essentially a numerical problem of the particular PKM model it does have a great
significance for PKM control. In particular the improper selection of generalized coordinates
can severely deteriorate the stability of model-based control schemes.
The inherent problem of the minimal coordinate formulation is the need for selecting
independent minimal coordinates q2. Since they are local coordinates on the c-space V the
PKM configuration cannot be expressed globally in terms of these minimal coordinates. That
is, any such minimal coordinates are only valid in a limited range of motion, and a collection
of different sets of minimal coordinates is necessary to cover the entire c-space. The switching
method proposed in Hufnagel & Müller (2011) switches between such local coordinates.
From a practical point of view it makes sense to use δ actuator coordinates as independent
coordinates in the motion equations (6). That is, q2 is a subset of qa. In other words the
PKM is considered as non-redundantly actuated and its motion equations are parameterized
in terms of δ actuator coordinates. Consequently, parameterization-singularities are exactly
the input-singularities of the non-redundantly actuated PKM. For example, the planar 2
DOF RA-PKM in figure 1 is naturally parameterized in terms of δ = 2 out of the m = 3
actuator coordinates. This leads to parameterization-singularities shown in figure 8. Figure
8 a) shows two configurations where the actuator coordinates q1 and q2 are not valid as
independent coordinates for the PKM model. In these configurations the PKM configuration
is not uniquely determined by the motion joints of 1 and 2 so that q1 and q2 fail as
independent coordinates. Alternatively joints 1 and 3 could be used to control the PKM.
That is, q1 and q3 would constitute independent coordinates of the minimal coordinate
model (6). This parameterization exhibits the singular configurations in figure 8 b), however.
Similar singularities exist when q2 and q3 are used as independent, and moreover there are
parameterization-singularities for any choice of two actuator angles.
Now it is important to notice that any switching to different independent coordinates
q2 causes a complete change of the motion equations (6). Such a switching method is
thus computationally rather complex and accompanied by a high implementation effort.
Its application to general RA-PKM requires monitoring the numerical conditioning of the
orthogonal complement F in (5) in order to detect switching points. Only for simple
mechanisms, such as the reported 2 DOF RA-PKM in figure 1, the switching points can be
determined explicitly giving rise to a switching map.

4.3 A robust formulation of the dynamic model in redundant coordinates

The minimal coordinate formulation (6) is prone to parameterization-singularities.
Coordinate switching methods, introduced to cope with this problem, are computationally
rather complex for general PKM. An approach that completely avoids the use of independent
coordinates was proposed in Müller (2011) where the motion equations are expressed in terms
of n redundant coordinates. The idea is to eliminate the Lagrange multipliers from (2) by
means of a projector to the null-space of J. That is, instead of premultiplication with FT,
(2) is premultiplied with a null-space projector determined from the pseudoinverse of J. As
long as the PKM does not encounter c-space singularities, where rank J drops, the constraint
Jacobian J is always full rank r, and its right pseudoinverse is given by J+ = JT(JJT)−1. The
corresponding projector to the null-space of J is then NJ = In − J+J. This projector does not
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a) b)1

32

EE

Fig. 8. Different parameterization singularities if the 2 DOF planer PKM is non-redundantly
actuated. The mechanism shown in color is the equivalent non-redundantly actuated
mechanisms being instantaneously in an input-singularity.

require the selection of minimal coordinates, it is a rank deficient n × n matrix with constant
rank δ = n − r, and NJ = NT

J = NJNJ.
As with the orthogonal complement the null-space projector must be partitioned according
to the coordinates of the passive and actuated joints. To this end the coordinate vector is
rearranged as q =

(
qp, qa

)
, Denote with qp and qa the vector consisting of the m coordinates

of passive joints and δ coordinates of actuator joints, respectively. With the assumption that
the PKM configuration is determined by the m actuator coordinates, δ actuator coordinates
serve as minimal coordinates, so that qa = (..., q2). Then the projector can be partitioned as

NJ =

(
P̃

Ã

)
− (n − m)× n
− m × n

(21)

where Ã corresponds to the actuator coordinates so that q̇a = Ãq̇. Premultiplication of the
motion equations (2) with NT

J = NJ and JNJ = 0 yields a system of n motion equations

NJ(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t)) = ÃTc. (22)

Only δ = n− r of these n equations are independent, however. The q̇ and q̈ in (22) must satisfy
the constraints. If this cannot be ensured, in particular if q are determined from measured
values, they must be projected according to q̇proj = NJq̇ and q̈proj = NJq̈ + ṄJq̇. This leads
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to
G̃ (q) q̈ + C̃ (q, q̇) q̇ + Q̃ (q) = ÃTc (23)

with
G̃:=NT

J GNJ, C̃ :=NT
J (CNJ + GṄJ), Q̃:=NT

J Q. (24)

The time derivative in (21) is readily found to be ṄJ = −
(
B+ḂNJ

)
−

(
B+ḂNJ

)T
.

The dynamics model (22) in redundant coordinates is globally valid in all regular
configurations as it does not involve any minimal coordinates.

4.4 Model-based control in redundant coordinates

4.4.1 Inverse dynamics

In order to use the dynamics formulation in redundant coordinates within a model-based
controller (22), respectively (23), must be solved for c. The general inverse dynamics solution
(neglecting prestress forces) is

c =
(
ÃT)+NJ(G (q) q̈ + C (q, q̇) q̇ + Q (q, q̇, t)). (25)

The crucial point here is the computation of the pseudoinverse. The n × m matrix ÃT is not
regular since rank ÃT = δ < m < n. Hence the closed form Moore-Penrose pseudoinverse is
not applicable. The singular value decomposition (SVD) can always be used to iteratively
determine the pseudoinverse. This is generally not applicable for real-time applications
due to its numerical complexity. Now if the redundantly actuated PKM does not poses
input-singularities, the PKM configuration is uniquely determined by the m > δ input
coordinates. Hence at any time rank Ã = δ, and a full-rank δ × n submatrix Ã1 can be
separated so that

Ã =

(
Ã1

Ã2

)
(26)

with the remaining (m − δ) × n matrix Ã2. Upon this partitioning the following explicit
expression for the pseudoinverse was presented in Müller (2011):

(
ÃT

)+
=

⎛

⎝
(
ÃT

1

)+ (
In − ÃT

2

(
Im−δ + BTB

)−1
BT(ÃT

1

)+)

(
Im−δ + BTB

)−1
BT

(
ÃT

1

)+

⎞

 (27)

with B =
(
ÃT

1

)+
ÃT

2 and the left pseudoinverse
(
ÃT

1

)+
=

(
Ã1ÃT

1

)−1
Ã1.

The partitioning (26) is equivalent to selecting δ independent coordinates. As already
discussed such a selection, and thus the submatrix Ã1, is not unique, which rises again
the problem of selecting δ independent coordinates out of the m actuator coordinates.
Consequently the full-rank δ × n matrix Ã1 must be selected depending on the actual PKM
pose. The important difference to the minimal coordinate formulation is that only the
submatrix Ã must be selected whereas the motion equations (22) and (23) are globally valid
and remain unaltered in the entire motion range. Switching is only performed within the
pseudoinverse computation for ÃT . The selection of a proper submatrix requires monitoring
the rank of the δ × δ matrix Ã1ÃT

1 .
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4.4.2 Augmented PD control

The control task is to minimize the tracking error of the actuator coordinates given a target
trajectory with qd

a (t). With the above formulation it is straightforward to introduce the
following APD control scheme

c =
(
ÃT)+ (

G̃ (q) q̈d+C̃ (q̇, q) q̇d+Q̃ (q, q̇, t)− KPe − KDė
)

(28)

=
(
ÃT)+NJ(G (q) q̈d+C (q, q̇) q̇d+Q (q, q̇, t)− KPe − KDė)

with error vector e := q − qd. Now the gain matrices measure the errors in the m actuator
coordinates. That is, assuming the coordinate partitioning q≡

(
qp, qa

)
, they have the form

K = diag (0, . . . , 0, K1, . . . , Km) . (29)

The closed loop dynamics, when (28) is applied to the model (23), is governed by

G̃q̈ − DG̃q̈d + C̃q̇ − DC̃q̇d + Q̃ − DQ̃ + DKD ė + DKPe = 0 (30)

with D = ÃT
(
ÃT

)+
�= In. The rank deficiency of Ã implies that D �= In.

It can be shown that the APD control scheme (28) achieves exponential trajectory tracking on
the c-space V using the Lyapunov function

V (ė, e, t) =
1

2
ėTG̃ (q) ė +

1

2
eTKPe +

1

2
εeTG̃ (q) ė (31)

with ε > 0. V (ė, e, t) is positive definite, and V̇ is negative definite for all trajectories in
V. These properties are directly inherited from the minimal coordinate formulation via the
projection onto V with the projector NJ.

4.4.3 Computed torque control

The standard CTC scheme is easily adapted to the redundant coordinate formulation as

c =
(
ÃT

)+ (
G̃ (q) v + C̃ (q̇, q) q̇ + Q̃ (q, q̇, t)

)

=
(
ÃT

)+
NJ (G (q) v + C (q, q̇) q̇ + Q (q, q̇, t)) (32)

with v = q̈ − KPe − KDė and the gain matrices in (29). It is readily shown that the CTC (32)
achieves exponential trajectory tracking on V. Choose local coordinates q2 on V, and let P1

be a projector to the vector space of dependent velocities q̇1, and P2 a projector to the vector
space of independent velocities q̇2. Then the dynamics of the closed loop splits into

P1

(
G̃q̈ + C̃q̇ + Q̃

)
= 0 (33)

P2G̃ (ë + KDė + KPe) = 0. (34)

The first n − δ equations are automatically satisfied for trajectories in V if the second system is
satisfied. The second system, consisting of δ equations, governs the error dynamics in term of
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independent coordinates. For trajectories in V this is equivalent to the system of δ equations

G
(

ë2 + FTKDFė2 + FTKPFe2

)
= 0 (35)

with positive definite G = FTG̃F in (7). The stability of the controller is ensured with positive
definite gains.

4.5 Case study: Planar 2 DOF RA-PKM

The proposed CTC control scheme in redundant coordinates was implemented in a prototype
of the planar 2 DOF PKM in figure 1, which is briefly described in section 3.3. As discussed in
section 2.1 the dynamic model is given in terms of n = 6 joint angles, giving rise to a system
of n = 6 motion equations (22). The projected 6 × 3 control matrix M̃ has rank 2.
The manipulator is controlled along the EE-path in figure 4. If two actuator joint angles are
used as independent coordinates the minimal coordinate model (6) exhibits parameterization
singularities as described in section 4.2. Moreover the EE-path passes such singularities
several times and the minimal coordinate model is not valid. The redundant coordinate
formulation does not suffer from such singularities.

0 2 4 6 8 10

-0.01

0

0.01

0.02

t [s]

3c

2c

1cc
[N

m
]

i

Fig. 9. Actuator torques when the RA-PKM is controlled along the EE-path of figure 4 by a
CTC model in terms of redundant coordinates.

Figure 9 shows the actuator torques when the RA-PKM is controlled by the CTC scheme
(32). Figure 10 shows the corresponding actuator tracking errors. Apparently the motion and
the torque evolution is smooth and unaffected by any singularities thanks to the redundant
coordinate formulation. Notice that also for this CTC method there are non-zero drive torques
even if the RA-PKM is at rest. This is again due to measurement errors in conjunction with
actuation redundancy. The crucial point in the inverse dynamics formulation (25) is the
computation of the pseudoinverse (27). This requires identification of a full rank submatrix
Ã1, i.e. δ actuator coordinates representing valid local coordinates on V. A straightforward

implementation is to select one of the three combinations q
(1)
2 = (q1, q2), q

(2)
2 = (q1, q3), and

222 Recent Advances in Robust Control – Theory and Applications in Robotics and Electromechanics

www.intechopen.com



Robust Modeling and Control Issues of Parallel Manipulators with Actuation Redundancy 17

t [s]

3e2e

1e

0 2 4 6 8 10

-0.005

0

0.005

0.01

0.015

e
[r
ad

]
i

Fig. 10. Joint tracking error when the RA-PKM is controlled by a CTC model in redundant
coordinates.

q
(3)
2 = (q2, q3) based on the infinity norm of the corresponding Ã1. That is, the submatrix Ã1,

corresponding to a certain q
(i)
2 , is selected for which ||Ã1||∞ is minimal.

5. Summary

Redundant actuation has the potential to improve the kinematic and dynamic performance of
PKM. This redundancy is easily taken into account within the design process so to optimize
dexterity. It turns out, however, that the control of RA-PKM poses several challenges. A
problem that is peculiar to RA-PKM is the existence of antagonistic control forces. Such
forces can be employed purposefully to avoid backlash or to modulate the EE stiffness,
but impair the performance and stability of decentralized control schemes for RA-PKM. In
this chapter the applicability of decentralized control schemes is analyzed, and it is shown
that they inherently cause antagonistic control forces. As remedy a so-called antagonism
filter is proposed that eliminates antagonistic control forces. Another problem arises in
the model-based control of RA-PKM. Since the dynamics model is commonly formulated
in terms of a set of independent actuator coordinates the model of the RA-PKM becomes
invalid at the input singularities of the non-redundantly actuated PKM. This would limit
the controllable motion range to that of the non-redundant PKM. To overcome this problem
a formulation in redundant coordinates was presented that does not require the selection
of independent actuator coordinates. This formulation is valid in the entire motion range.
Thereupon an augmented PD and computed torque controller was proposed. Experimental
results are reported for the planar 2 DOF RA-PKM that confirmed the robustness of these
control schemes.
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