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1. Introduction 

The usual operations on the distribution network such as switching loads and circuits, the 
proliferation of power electronic equipment and non-linear loads and the distributed 
generation with renewable energy are several of the most common causes that are leading to 
an increasing polluted power system in terms of voltage signal distortion. 
One way of improving the power quality (PQ) parameters consists of analyzing these 
disturbances efficiently and understanding them deeply (Dugan, 2000) and PQ monitoring 
is one major task in order to achieve it. PQ monitoring is not an easy task usually involving 
sophisticated hardware instrumentation and software packages. Many recent approaches in 
PQ monitoring try to achieve it through the automated classification of different 
disturbances. 
The different approaches in this field lead their efforts in two directions, the main parts that 
form an automated classification as depicted in Fig. 1. The first make focus to obtain a 
 

 
 

Obtaining  

Pattern 
Classifier 

Classification 

Results 

 

Fig. 1. Automated classification scheme 

suitable pattern that allow distinguish clearly each disturbance, by the use of signal 
processing tool. Among existing signal processing tools the Fourier Transform (FT) results 
inadequate for analysis of non-stationary events and Short-Time Fourier Transform (STFT) 
although improves this drawback, it does not achieve good resolution in both time and 
frequency. Nowadays time-frequency transforms are used to get feature extraction, such as 
Wavelet transform (WT) (Santoso, 1994) and S-transform (ST) (Dash, 2003). WT extracts 
information from the signal in time and frequency domains, simultaneously, and provide 
greater resolution in time for high frequency components of a signal and greater resolution 
in frequency for the low frequency components of a signal. The ST can conceptually be 
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interpreted as a hybrid of STFT and WT. It uses variable window length and, by using the 
FT kernel, it can preserve phase information during the decomposition (Stockwell et al., 
1996). The frequency-dependent window produces higher frequency resolution at lower 
frequencies, while at higher frequencies, sharper time localization can be achieved. 
The second approach is oriented to use a classifier able to assign each disturbance correctly 
in its class, so the most of the artificial intelligent techniques have been combined with WT 
or ST, as Artificial Neural Networks (ANN), Decision Tree Fuzzy Logic, Hidden Markov 
Model, Support Vector Machines, etc. 
In this chapter two different classification systems have been developed, using the WT and 
ST for pattern extraction, and an ANN as classifier algorithm. 
The features obtained from WT are not completely distinctive and it is necessary to add 
features that give clear information about the signal magnitude. The real mean squared 
(RMS) value of the voltage signal have been obtained to achieve it. 
On the other hand, the features obtained from ST analysis are sufficient to achieve a pattern 
that can properly classify the disturbances. In order to increase accuracy, simplicity and 
reliability, this chapter proposes a reduced and simple set of features extracted from the ST. 
Even in the presence of complex disturbances with different levels of noise, these features 
characterize the signals in a suitable way. 
This chapter is organized as follows. In the second section the time-frequency transforms 
used in power quality are presented, particularly the WT and ST, and the obtaining pattern 
using these two transforms. A brief description of ANN used as classifier algorithm used in 
this chapter is given in section three. In section fourth the classification results obtained 
using the resulting classification system are presented. These systems are checked by signals 
obtained from electric power simulation in section fifth. Finally, conclusions are presented. 

2. Time-frequency transforms and obtaining pattern 

2.1 Fourier transform 
The most used classical signal processing is the FT. This transform represents a signal as a 
sum of sinusoidal terms of different frequencies, named the frequency spectrum. This 
technique is suitable for stationary signals, but it is not efficient when the signal contents 
short-term transient disturbances. 
In order to solve this drawback, a technique based on the FT is applied to short time 
intervals. This method is known as “Short Time Fourier Transform” (STFT), and consists of 
analyzing by the FT a sliding window of the signal. It is not possible reaching a good 
resolution in time and frequency simultaneously, and therefore it is necessary to adopt a 
compromise solution between the frequency and time resolutions. 
The STFT is obtained by choosing a sliding window (short time interval) where the FT is 
applied. For narrow windows (or short time intervals) a good time resolution is obtained, 
suitable for short-term transients; on the other side a relative wide window enables a good 
frequency resolution but gives inaccurate time resolution. 
Therefore, the problem lies in the fact that the window width is a parameter that must be 
fixed before analyzing the signal, before knowing what resolution is more suitable. At last, 
the total number of operations for computing STFT is N⋅logN. 

2.2 Wavelet transform 
Wavelet analysis is a powerful tool widely used in many scientific applications, especially in 
transient, non stationary, or time-varying situations. 
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A wavelet can be considered as a small wave which has its energy concentrated in time, and 
fits certain mathematic properties (Burrus et al., 1998). Fig. 2 shows three examples of 
wavelet. 
 

Fig. 3. Three examples of wavelet 

The mother wavelet ψ(t) can be scaled and translated in the time, generating a family of 
functions  named the wavelet expansion set (Wavelet system): 

 2
, ( ) 2 (2 )j j

j k t t kψ ψ= −  (1) 

A function f(t) can be expressed as a linear decomposition of this wavelet system as follows: 

 , ,( ) ( )  ,  ,j k j kf t c t j k Zψ= ∈∑  (2) 

where j and k  are integer indices, cj,k  are real coefficients, and ψj,k(t)  is the expansion set. The 
set of expansion coefficients cj,k  is called the wavelet spectrum of the function f(t). 
If the wavelet expansion system is orthogonal, then: 

 , , or      ( ), ( ) 0j k l mj l k m t tψ ψ≠ ≠ ⇒ =  (3) 

where < > denotes the inner product defined as:  

 , , , ,( ), ( ) ( ) ( )j k l m j k l mt t t t dtψ ψ ψ ψ= ⋅∫  (4) 

When the expansion wavelet system is orthogonal the Wavelet spectrum can be computed 
as follows: 

 , , ( ) ( )j k j kc t f t dtψ= ⋅ ⋅∫  (5) 

The index j is related with the frequency and the index k with time. 
In practical applications a minimum frequency have to be established. 
For a mother wavelet a basic scaling function ϕ(t) is defined. A set of scaling functions is 
defined in terms of integer translates of ϕ(t) by 

 ( ) ( )k t t kϕ ϕ= −  (6) 

A two-dimensional family of scaling functions can be defined by scaling and translation by 

t t 

Magnitude 

t

Haar Mexican hat Daubechies 4 

Magnitude Magnitude
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 2
, ( ) 2 (2 )j j

j k t t kϕ ϕ= −  (7) 

Let consider the minimum frequency is the corresponding to the value j=J0. 
The equation (2) becomes to 

 
0 0

0

, , , , , ,( ) ( ) ( ) ( ),j k j k J k J k j k j k
k j k j J k

f t c t a t d t t Rϕ
∞

=
= Ψ = + Ψ ∈∑∑ ∑ ∑∑  (8) 

where J0  is an integer. Equation (4) is a linear combination of wavelet coefficients, (aJo,k,dj,k ), 
a set of functions ϕJo,k(t), called scaling functions and Ψj,k(t), called wavelet functions. 
Coefficients aJo,k and dj,k are the Discrete Wavelet Transform (DWT) of f(t), and can be 
calculated as: 

 
0 0, ,( ), ( )J k J ka f t tϕ= 〈 〉     , ,( ), ( )j k j kd f t t= 〈 Ψ 〉  (9) 

Equation (4) can be truncated for j=J-1, obtaining:  

 
0

0 0

0

12 1 2 1

, , , ,
0 0

( ) ( ) ( ),

J jJ

J k J k j k j k
k j J k

f t a t d t t Rϕ
−− −

= = =
= + Ψ ∈∑ ∑ ∑  (10) 

The first summation in (6) is a broad representation of f(t) that has been expressed as a linear 
combination of 02 J  translations of the scaling function, ϕJo,0. The second summation contains 
the details of f(t). For each level j, a linear combination of 2j translations of the wavelet 
function, ψj0, are added to obtain a more accurate approximation of f(t). 
 

 f(n)

g(n) h(n)

↓2 ↓2

g(n) h(n)

↓2 ↓2

d1(n)

a1(n

d2(n)

a2(n)

 

Fig. 2. Mallat algorithm schematics 

The Mallat algorithm (Mallat, 1999) has been used in the practical implementation of DWT. 
The DWT acts as two FIR (Finite Impulse Response) quadrature filters defined by two 
sequences h(n) and g(n). h(n) is a high frequency filter and g(n) is a low frequency filter. Both 
filter have the same cut frequency fN/2, where fN is the Nyquist frequency. Therefore the 
function f(n) is split in two parts, the high frequency part d1 that contains the higher octave 
and is called detail function, and the low frequency part a1, that contains the frequencies 
lower than fN /2, and is called smoothed function. Decimation by 2 is done for eliminating 
redundant information. The algorithm is iterated for a1, obtaining a second level detail 
function d2 and a second level smoothed function a2, that is again splitted, obtaining a series 
of detail and broad functions. The total number of operations for computing DWT is N. 
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The original function f(n) is split into a series of detail functions d1, d2, …, dk, and a smoothed 

function ak , that correspond to the frequencies:  

d1 : fN – fN/2; d2: fN/2 – fN/4; ….. dk: fN/2n – fN/2k+1; and an contains the frequencies lower than 

fN/2k+1. 

Fig. 3 and Fig. 4 show an example of the application of the Mallat multi-resolution algorithm 

to the wavelet spectrum computation of a signal with a sag to 40%.  

 

 

Fig. 3.Voltage sag to 40% and 400 samples length 

 

 

Fig. 4. Voltage sag detail levels wavelet analysis, from d1 to d5, (a) to (e), respectively 

It is important to note that the wavelet is not a single specified function but a framework 

within which can design different wavelets. In this work, Daubechies 3 (db3) has been used 

as wavelet mother, performing 5 levels of decomposition. A voltage sag signal is shown in 

Fig. 3, and its wavelet transform decomposition, using db3, can be seen in Fig. 4. 

2.3 Wavelet based pattern 

The pattern used in this work is based on Parseval’s Theorem. This Theorem states that the 

energy of a signal f(t) remains the same whether it is computed in a signal domain (time) or 

in a transform domain (frequency) as follows: 
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 [ ] 22

00

1
( )

T N

signal
n

E f t dt F n
T =

= =∑∫  (11) 

where T and N are the time period and the length of the signal, respectively, and F(n) is the 
Fourier transform of the signal. In the case of the DWT, the signal is decomposed in terms of 
bands of frequencies, thus the energy of a signal can be given as: 

 
22 2

00

1
( ) ( ) ( )

T

DWT j
l j k

E f t dt a l d k
T

∞ ∞ ∞

=−∞ = =−∞
= = +∑ ∑ ∑∫  (12) 

with the energy in the expansion domain partitioned in time by k and scaled by j. 
The sampling frequency of the signals is 3.2 kHz, which is equal to 64f1 where f1 is the 
power system frequency (50 Hz in Europe). The wavelet spectrum contains the total 
information of the original waveform as shown in Table 1. 
 

DWT coefficients Frequency band 

d1 32f1 ÷ 16f1 

d2 16f1 ÷ 8f1 

d3 8f1 ÷ 4f1 

d4 4f1 ÷ 2f1 

d5 2f1 ÷ f1 

Table 1. Frequency band information contained in the wavelet spectrum. 

In certain signals an energy-based pattern is not completely discriminatory because the 
energy of the magnitude disturbance depends on the depth of the disturbance and its 
duration in time.  
The spectra of normal signals, sags and swells do not contain energy in the bands up to the 
fundamental frequency, as these signals only differ in the magnitude of the fundamental 
frequency component, and present very few energy in the high frequencies. 
Therefore, it is necessary to provide a feature based on the magnitude of the signal. The 
RMS value is a widely accepted tool that provides information about how much the 
magnitude of the voltage changes. It is a fast and simple algorithm (13) that requires very 
few computational resources. 

 ( )2

1

1
( )

N

RMS
n

V f n
N =

= ∑  (13) 

where f(n) is the signal of length N. 
The digital measurement instruments perform the computation of this parameter from 
instantaneous values of the samples, choosing a temporary window depending on the 
frequency of the steady state signal. If the RMS values are updated when a new sample is 
acquired, the method is called RMS continuum. If the RMS values are updated at a certain 
interval, usually half cycle, then it is called RMS (1/2). In this work the RMS (1/2) has 
beencomputed, selecting the maximum and minimum values. These values provide a 
feature based on the signal magnitude, as shown in Table 3. 
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 RMS voltage values

Signal Max Min 

Perfect  signal 1.001 0.999 

Normal to 0.91 in 4.5 cycles 1.001 0.909 

Sag to 0.8 in 1 cycle 1.001 0.799 

Table 3. Maximum and minimum RMS voltage value for different signals 

Therefore the pattern is made up in two stages. The first part has five values, the energy of 
the signal in each frequency band of wavelet decomposition (feature extraction). These 
values have been normalized with reference to the values obtained from an ideal sinusoidal 
signal. The second part of the pattern is formed for two values the maximum and minimum 
RMS value calculated directly (feature selection) from each signal. 

2.4 S-transform 

The S-Transform (Stockwell et al., 1996) is a time-frequency transform generated by the 

combination of WT and STFT. The S-transform s(τ,f) of the signal x(t) is defined as follows: 

 ( , ) ( ) ( )exp( 2 )fS f X t g t j ft dtτ τ π
∞

−∞

= − −∫  (14) 

where 

 
( )22

( ) exp
22

f

f f t
g t

τ
τ

π

⎛ ⎞− −
⎜ ⎟− =
⎜ ⎟
⎝ ⎠

 (15) 

gf(τ-t) is the Gaussian window function, τ is a shift parameter for adjusting the position in 
the time axis and f is the scale parameter.  
X(f) is defined as the Fourier transform of x(t). The relationship between the S-transform and 
the Fourier transform is: 

 ( ) ( , )X f S f dxτ
∞

−∞

= ∫  (16) 

The discrete ST is defined by: 

 
2 2 21

2
0

22
, exp exp

N

m

i njn m n m k
S jT X

NT NT Nn

ππ−

=

⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  (17) 

In order to obtain the ST, the FFT of the original signal is computed [17]. The total number of 

operations for computing ST is N⋅(N+logN). 
The multi-resolution ST is a complex matrix whose rows and columns values are frequency 
and are time values, respectively. Each column represents the local spectrum in time. 
Frequency-time contours having the same amplitude spectrum are also obtained. This 
information is used to detect and characterize power disturbance events.  
A mesh-dimensional output of the ST yields frequency-time, amplitude-time and frequency-
amplitude plots. Examples of multi-resolution ST analysis for signals containing harmonics 
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and oscillatory transients are presented in Fig. 2 and 3, respectively. Each figure plots the 
disturbance signal (a), the time-frequency contours (b), and 3-D mesh giving amplitude, 
frequency and time plots (c). 
 

 

Fig. 2. Signal with 3rd and 7th harmonic content (a). S-transform Time-Frequency contours 
(b). 3D mesh Time-Frequency-Amplitude (c). 

 

Fig. 3. Oscillatory transient (a). S-transform Time-Frequency contours (b). 3D mesh Time-
Frequency-Amplitude (c). 
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2.4 S-transform based pattern 

An efficient pattern can be defined from observation of ST contours. Below some examples 

of signals with different disturbances are analyzed in order to illustrate the pattern 

proposed in this approach. 

A sinusoidal signal without any disturbance is depicted in Figure 4 (a). The fundamental 

frequency contour (b) shows a horizontal line. Other frequency contours (c), (d) and (e), 

corresponding to 150, 250 and 700 Hz show the non-existence of these frequencies in the 

signal. 

 

 

Fig. 4. Pure sinusoidal signal and 50 Hz, 150 Hz, 250 Hz and 700 Hz ST contours (a) to (e), 
and voltage sag, 50 Hz, 150 Hz, 250 Hz and 700 Hz ST contours from (f) to (j), respectively. 

A sinusoidal signal with voltage sag and several frequency contours are depicted in Fig. 4 (f-j). 

The 50 Hz contour (g) is observed to decrease its value during the voltage sag. In the case of 

an interruption (not shown), a similar behaviour can be observed, but with a deeper 

diminution. The frequency contours corresponding to other frequencies (h-j) present a low 

energy value at the beginning and end of the sag. 

An oscillatory transient disturbance is depicted in Figure 6 (a) and the 150 Hz, 250 Hz, 350 

Hz and 700 Hz contours in (b) to (e), respectively. A big amount of energy can be noted in 

the contour corresponding to the frequency present in the transient signal, 700 Hz in this 

particular case. 

Figure 6 (f) depicts a sinusoidal signal with a third and a fifth harmonic simultaneously, and 

several frequency contours. It clearly shows a big amount of energy in the contours 

corresponding to the frequencies present in the signal, 150 and 250 Hz, Fig. 6 (h-i). 

The examples shown above illustrate the way of taking advantage of this particularity of the 

ST in order to search for specific frequency disturbances such as any order harmonics or 

particular oscillatory transients. The results shown above have been taken into account in 

the election of the characteristic features. 
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Fig. 4. Oscillatory transient, 50 Hz, 150 Hz, 250 Hz and 700 Hz ST contours (a) to (e), 
respectively, and signal with third and fifth harmonic component, 50 Hz, 150 Hz, 250 Hz 
and 700 Hz ST contours from (f) to (j), respectively. 

The fundamental frequency contour has proven to contain valuable information about sags, 
swells and interruptions. Hence, the mean value of the 50 Hz contour has been taken as a 
distinctive feature. But this value does not clearly discriminate among sags and 
interruptions, and therefore the minimum value of the 50 Hz contour, which gives an idea 
of the severity of the disturbance, has been taken as the second feature. 
In order to discriminate disturbances with presence of harmonics, the energy of the third, 
fifth and seventh harmonic (150 Hz, 250 Hz and 350 Hz) contours are used as distinctive 
features. This approach has been restricted to these frequencies although it could be 
extended to other harmonics within the Nyquist condition. 
The sum of the energies from 600 Hz to 1600 Hz (Nyquist frequency) has also been taken as 
another characteristic feature. A high value of this energy gives information related to high 
frequency transient events.  
A summary of the distinctive features used in ST based pattern is listed below: 

F1: Mean of the fundamental frequency contour (50 Hz) 
F2: Minimum of the fundamental frequency contour 
F3: Energy of the 3rd harmonic contour (150 Hz) 
F4: Energy of the 5th harmonic contour (250 Hz) 
F5: Energy of the 7th harmonic contour (350 Hz) 
F6: Sum of energy from 600 to 1600 Hz contours 

3. Artificial neural network 

As algorithm in the automated classification scheme has been selected ANN. Neural 
networks have emerged as an important tool for classification, and have been successfully 
applied to a variety of real world classification tasks in industry, business and science 
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(Widrow et al., 1994). Applications include classification of power quality disturbances 
(Borras et al. 2001). 
An ANN is composed of very simple elements operating in parallel. These elements are 
inspired by biological nervous systems. As in nature, the network function is determined 
largely by the connections between elements. An ANN can be trained to perform a 
particular function by adjusting the values of the connections between elements. The ANNs 
can approximate any function with arbitrary accuracy, and they are nonlinear models, 
which makes them flexible in modeling real world complex relationships. Moreover ANNs 
are data driven self-adaptive methods in that they can adjust themselves to the data without 
any explicit specification of functional or distributional form for the underlying model 
(Zhang, 2000). In this chapter two different ANNs have been used, backpropagation and 
probabilistic. 

3.1 Backpropagation 
Feedforward backpropagation (BP) is a gradient descent algorithm, in which the network 
weights are moved along the negative of the gradient of the performance function. The term 
BP refers to the manner in which the performance function is propagated from the output to 
backward, and feedforward to the direction of the different connection between elements.   
Once the network weights and biases have been initialized, the network is ready for 
training. The training process requires a set of examples of proper network behaviour, 
network inputs and target outputs. During training the weights and biases of the network 
are iteratively adjusted to minimize the network performance function. The default 
performance function for feedforward networks is mean square error, (i.e. the average 
squared error between the network outputs and the target outputs). 
The BP has been set with two layers, one of them is a hidden layer. This structure can 
uniformly approximate any continuous function (Cybenko, 1989). The number of nodes in 
the hidden layer has been chosen as a function of number of inputs (Hecht-Nielsen, 1989), 
i.e. the number of pattern features, according to the expression (2n+1), where n is the 
number of inputs. So for each pattern used, the hidden layer has different number of nodes, 
and the output layer only has one. The transfer functions for the hidden and output layer 
are tansigmoidal and lineal, respectively. The learning ratio has been 0.1, the epoch 3500 and 
the training algorithm Levenberg-Marquadt. 

3.2 Probabilistic 
The basic principle of probabilistic neural network (PNN) is implemented using the 
probabilistic model, such as Bayesian classifiers (Specht, 1990). The training examples are 
classified according to their values of probabilistic density function. When an input is 
presented, the first layer computes distances from the input vector to the training input 
vectors, and produces a vector whose elements indicate how close the input is to a training 
input. The second layer sums these contributions for each class of inputs to produce a vector 
of probabilities as output. Finally, a complete transfer function on the output of the second 
layer picks the maximum of these probabilities (Mishra et al., 2008). The most obvious 
advantage of this network is that training is trivial and instantaneous. 

4. Classification results 

Once the algorithm classifier is selected it has to be trained. At this stage, the classification 
algorithm is adjusted so that the function that assigns data to its corresponding class has the 
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lowest possible error based on a particular set of training data. In this way the system learns 
to match the output of the function with the tag or class for each data.   
Once the classifier has been adjusted, the results are validated with a different data set, in 

order to check the effectiveness of the whole system.  

The data set consists 6000 signals, where 10% are used to verify the effectiveness of the 

network, so 900 and 100 for each class, have been used for training and verification stage, 

respectively. 

In this section the most usual power quality disturbances have been considered, sags, 

interruptions (int), swells, oscillatory transients (OT), harmonics (harm) and signals 

considered as normal voltage (normal). These signals are generated following mathematical 

models presented in (Gargoom et al., 2008), simulated in Matlab [Matlab, 2000] with a 

fundamental frequency of 50 Hz and a virtual voltage of 1V. The signals have a five cycles 

length (100 ms) and the sampling frequency is 3.2 kHz.  

4.1 Classification using WT based pattern and ANN 

The resulting classification system using WT based pattern is presented in Fig. 8. It can be 

observed that the obtained pattern is composed of a feature selection (RMS value) and 

feature extraction. Selection chooses distinctive features from a set of candidates, while 

extraction utilizes some transformations, WT in this case, to generate useful and novel 

features from the original ones (Xu & Wunsch, 2005).  

The classification results obtained are presented in Table 4 and 5, using BP and PNN as 

algorithm classifier, respectively. 

 

 

Fig. 8. Resulting classification system using wavelet based pattern and ANN 

As can be observed the classification results are slightly better with BP than PNN except 
with high level of noise, 20dB. For disturbances, the worst results are obtained for sag and 
interruptions. 
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 No noise 40 dB 30 dB 20 dB 

Normal 0.97 0.99 0.97 0.8 

Sag 1 1 0.95 0.91 

Int 0.99 0.97 1 0.94 

Swell 1 1 0.99 0.98 

OT 0.9 0.96 1 1 

Harm 1 1 1 0.86 

Total 0.977 0.987 0.985 0.915 

Table 4. Classification results using WT based pattern and BP 

 

 No noise 40 dB 30 dB 20 dB 

Normal 1 0.99 0.99 0.99 

Sag 0.91 0.93 0.96 0.96 

Int 0.74 0.82 0.92 0.92 

Swell 0.96 1 1 1 

OT 1 0.96 0.99 0.99 

Harm 1 1 0.99 0.99 

Total 0.935 0.950 0.975 0.943 

Table 5. Classification results using WT based pattern and PNN 

4.2 Classification using ST based pattern and ANN 

The resulting classification system using ST based pattern is presented in Fig. 9. The 

classification results are presented in Table 6 and 7, using BP and PNN as algorithm 

classifier, respectively. 

 

 

Fig. 9. Resulting classification system using ST based pattern and ANN 
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 No noise 40 dB 30 dB 20 dB 

Normal 1 0.98 0.99 0.94 

Sag 0.99 0.96 0.99 0.93 

Int 0.79 0.98 1 0.99 

Swell 0.97 0.95 0.96 0.99 

OT 1 1 1 0.99 

Harm 1 1 1 1 

Total 0.958 0.978 0.990 0.973 

Table 6. Classification results using ST based pattern and BP 

 

 No noise 40 dB 30 dB 20 dB 

Normal 1 1 1 0.99 

Sag 0.79 0.65 0.57 0.62 

Int 0.61 0.73 0.69 0.76 

Swell 0.89 0.95 0.7 0.94 

OT 0.62 0.97 1 1 

Harm 0 0 0.64 1 

Total 0.652 0.717 0.795 0.885 

Table 7. Classification results using ST based pattern and PNN 

The obtained results using ST based pattern are hardly better with BP than PNN.  As can be 
observed the classification results are quite robust against the noise using BP. For 
disturbances the worst results are obtained for sag and interruptions.  
Anyway, the results using ST based pattern and BP are better than WT based pattern and 
any ANN used, moreover the ST based pattern no needs additional features, as occurs with 
WT based pattern. On the other hand, the total number of operations to compute ST is 
greater than WT.  

5. Checking the resulting classification systems 

In this section, a data set of power quality disturbances has been generated using the power 
network simulation environment PSCAD/EMTDC (PSCAD, 2005). This application is an 
industry standard simulation tool for studying the transient behaviour of electrical 
networks. 
The aim is to obtain different power quality disturbances of data set used for training and 
validation, in order to check the implemented system.  
Several electrical systems with different events, typical and simple, as faults, switching big 
loads, non linear loads, etc., have been simulated to obtain different power quality 
disturbances. Moreover different signals can be obtained from a single system by using a 
facility of software simulation.  
One example consists of a low voltage load fed by two parallel lines through a power 
transformer as shown in Fig. 6. A three phase fault occurs in the middle of one of the two 
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parallel transmission lines at a given time. Approximately two cycles after (t=0.045 s) the 
fault is cleared. In Fig. 7 (a) can be seen the signal generated, where it can be observed an 
oscillatory transient produced by the fault, voltage sag during two cycles, and other 
oscillatory transient produced when the fault is cleared. 
 

 

Fig. 6. 3 bus test system scheme in PSCAD 

The signals shown in Fig. 7 (b)-(c) belong to initial data set used for training stage of 

classifier systems. In Fig. 7 (b) it is shown a normal voltage to 0.9, just in the boundary with 

voltage sag. Fig. 7 (c) depicted a very light oscillatory transient and, just after, a slightly 

magnitude diminution.  

The values of the features in WT based pattern for signals of Fig. 7 (a)-(c) are shown in Table 

8, in rows A to C, respectively. As can be observed the signal A(simulation) present a higher 

value of energy in relative high frequencies D1 (32f1 ÷ 16f1) than C, therefore A has an 

oscillatory transient. The minimum of RMS value for A, lower than B, gives information 

about the diminution of the magnitude, voltage sag. 

 

 

Fig. 7. Signal generated by model simulation (a). Normal voltage to 0.9 (b). Oscillatory 
transient and a slightly magnitude diminution.  
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From Table 8 the obtained values of the features for these signals, any efficient classifier can 

properly assign the disturbance to each corresponding class. 
 

 Energy RMS 

Signals D1 D2 D3 D4 D5 Max Min

A 407.9 336.6 3.164 0.920 0.675 1.043 0.457

B 2.426 1.281 0.959 0.885 0.897 1 0.9 

C 351.4 27.22 0.722 0.794 0.801 1.012 0.849

Table 8. Feature values of WT based pattern for different signals 

In order to compare the ST based pattern for these same signals are shown several ST 

contours. In Fig. 8 (a) it is shown the signal from simulation. The fundamental frequency ST 

contour for this signal and the normal one to 0.9 is showed in (b). The 700 Hz ST contour of 

the simulation signal and the oscillatory transient is depicted in (c). It can be observed that 

the simulation signal contours advise the presence of voltage sag, the 50 Hz ST contour for 

simulation signal (A) is below normal voltage to 0.9 (B), moreover an oscillatory transient 

because the energy in 700 Hz ST contour for simulation signals (A) is higher than oscillatory 

transient (C) used as reference. These graphs show that any efficient classifier can properly 

allocate the disorder to each corresponding class. 

 

 

Fig. 8 . Signal generated from simulation (a), comparison of 50 Hz ST contours (b) and 
comparison of 700 Hz ST contours (c) 

Others systems have been simulated using PSCAD and the power quality disturbances 

obtained are showed in Table 9, which also indicates the classification results using resulting 

classification systems.  

These signals verify the behaviour of the implemented system with power quality 

disturbances based on electrical models, and therefore close to real ones. 
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  pattern-ANN 

Disturbance Number WT-BP WT-PNN ST-BP 

Normal 10 0.90 0.90 1 

Sag 40 0.875 0.80 0.9 

Int 10 0.80 0.70 0.9 

Swell 30 0.933 0.866 0.933 

OT 30 0.866 0.933 0.933 

Harm 30 0.933 0.933 0.933 

Total 150 0.893 0.866 0.926 

Table 9. Classification results for signals obtained by simulation software 

As can be observed the results with signals obtained by electrical networks simulation are 
worse than those obtained with generated following mathematical models. The BP results 
do not worsen than PNN. At last the classification system using ST based pattern are better 
than WT based pattern. 

7. Conclusion 

Two different automated classification systems has been implemented, based on time-
frequency transforms, WT and ST, in combination with Artificial Neural Network as 
algorithm classifier.  
The classification results are very similar using two different algorithm classifiers, a BP and 
PNN, so it can be affirmed that is more important designing a properly and suitable pattern 
that the election of the algorithm. Any efficient classifier algorithm can do its expected job. 
Therefore the extraction and selection features both are very crucial to the effectiveness of 
classification applications. Suitable features can greatly decrease the workload and simplify 
the subsequent process. Generally, ideal features should be of use in distinguishing patterns 
belonging to different class, immune to noise, easy to extract and interpret. 
It can be appreciate that the detail signals of Wavelet transform analysis are very similar in 
the different disturbances, and in some cases almost identical, therefore becomes necessary 
to add other features, RMS value, which can distinguish magnitude disturbances. The S-
transform generates several contours that put in evidence the nature of the disturbance, and 
these contours have certain characteristics that are suitable for automated pattern 
recognition.  
On the other hand, the computational cost for Wavelet transform is less that for S-transform, 

N and N⋅(N+logN) respectively.  
The implemented systems have been tested with signals generated with simulation program 
obtaining similar results. 
A further limitation of many of the studies is that both training and testing are based in 
signals obtained following mathematical models. In this paper signals generated by power 
network simulation have been used to verify the classification system. In any case it 
becomes necessary to have power quality disturbances available to all researchers in this 
field that can be reliably used to compare classification results of each approach and not 
every researcher uses their own signals, whether synthetic, simulated or acquired. 
The implemented system has been tested with signals generated with simulation program 
obtaining very good results. 
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