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1. Introduction  

Soybean (Glycine max (L.) Merr.) is the world’s primary source of protein feed supplement 

for livestock and accounts for much of the world’s vegetable oil supply. Additionally, 

healthy aspects of soyfoods go beyond the oil and protein and include minor compounds 

with nutraceutical properties such as isoflavones, saponins and tocopherols (Rajcan et al., 

2005). Over the past three decades, world production of soybean has tripled, from 75 449 966 

t in 1978 to 230 952 636 t in 2008 (www.fao.org), what is attributed to the scientific and 

technological developments in most regions as well as increasing world population, 

consumer acceptance and consumption of soybean in non-traditional regions of the world. 

All the sectors, involved with the entire soybean production and processing chain, have 

responded accordingly to comply with the demands of a globalize economy.  

The genetic improvement of soybean, based on breeding strategies, contributes to advances 

in production and food processing industry by developing high-yielding and high-quality 

soybean cultivars, hereby enhancing value-added, healthy and safe properties of final soy 

products. Yield has been and remains the trait of greatest emphasis by breeders, as it is the 

trait with the greatest effect on a producer’s net income. Studies of genetic progress reported 

that yields increased about 15 to 38 kg ha-1 annually over the period of seventy years (Specht 

et al., 1999; Wilcox, 2001; Ustun et al., 2001; Egli, 2008). Besides yield, progress has also been 

made in selecting for resistance to pathogens, insects and nematodes, tolerance to other 

production hazards, improvement in seed protein and oil, as well as other agronomic 

characteristics.  

The genetic improvements have been accomplished mainly through the use of conventional 
(also termed empirical or traditional) breeding. The conventional breeding strategies are 
based on crossing, selection and fixation of superior phenotypes to develop improved 
cultivars and breeds suited to specific conditions with the aim to fulfill the needs of farmers 
and consumers. As the result of soybean self-pollinating reproductive behavior, 
conventional breeding procedures such as pedigree breeding, single pod descent, 
backcrossing and bulk population breeding are some of the more common procedures used 
to develop soybean cultivars. Although progress in soybean breeding accomplished only by 

www.intechopen.com



 Soybean - Molecular Aspects of Breeding 

 

58 

conventional breeding methods is significant, for further genetic advances in soybean 
germplasm the use of conventional breeding methods exclusively is no longer sufficient. 
There are multiple reasons for that. First of all, the development of new cultivar with 
conventional breeding methods requires at least ten generations. The length of this process 
is often in disproportion with rapid changes in market demands. In fact, on global level, 
changes in climate, soil structure and fertility, production technology, appearance of new 
phytopathogen races etc. became so rapid that the cultivar developed by conventional 
hybridization of parents with desired traits about ten years ago is no longer capable of 
accomplishing its genetic potential due to environmental stress factors. In addition, the 
burden of undesired genetic material (material incompatible with set breeding aims) 
constitutes a big problem in conventional breeding, because the elimination of undesired 
phenotypes requires more area, more time and thus bigger investments. In classical genetic 
improvement programs, selection is carried out based on observable phenotypes of the 
candidates for selection and/or their relatives but without knowing which genes are 
actually being selected. Plant scientists have made significant advances in understanding the 
agronomical, species-specific, breeding, biochemical and molecular processes that underlie 
important genetic, physiological and developmental traits, or that affect the ability of plants 
to cope with unfavorable environmental conditions for several decades (Gepts, 2002). The 
discoveries and implementations of biotechnology and molecular biology for selection 
purposes provide a stable background for generating of new knowledge and practical use in 
agricultural research and practice as well as to meet the growing demand for more and with 
better quality food and feed (Todorovska et al., 2010).  
Main objectives of plant biotechnology are attempts to engineer metabolic pathways for the 
production of tailor-made plant polymer or low molecular weight compounds and the 
production of novel polypeptides for pharmaceutical or technical use. In general, goals of 
plant biotechnology are not much different from classical breeding goals. They can be 
divided into attempts to optimize input and output traits. Input traits refer to increased 
resistance towards abiotic and biotic stress, strategies to increase crop yield and to improve 
post-harvest characteristics. Attempts to improve output traits include production of foreign 
proteins for pharmaceutical and technical use, production of endogenous or novel polymers 
for food and non-food applications as well as synthesis of low molecular weight compounds 
including vitamins, essential aminoacids and pharmaceutically relevant secondary plant 
products (Sonnewald & Herbers, 2001). Scientists in the laboratory can genetically engineer 
soybean plants with unique genes, but plant breeding is necessary to put the new transgenes 
via sexual reproduction into the proper genetic background so that it is adapted to the 
intended areas of use. Recent  developments in molecular biology and genomics are greatly 
accelerating the speed with which knowledge gained in basic plant science can be applied to 
species improvement (Dekkers & Hospital, 2002). Therefore, the molecular based plant 
breeding techniques are assuming an increasingly more important role in genetic 
improvement of soybean germplasm. Currently, conventional breeding strategies have 
priority, and in combination with molecular technologies have provided the possibility of 
broadening genetic variability of cultivated soybean as well as development of new 
germplasm that is better adapted to new market, production and environment demands 
(Verma & Shoemaker, 1996; Orf et al., 2004; Sudarić et al., 2008, 2010; Vratarić & Sudarić, 
2008; Mladenović Drinić et al., 2008; Cober et al., 2009).  
Modern biotechnology application in soybean breeding can be divided in two major 
categories:  
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- molecular genetics and,  
- genetic transformation.  
Molecular genetics studies how genetic information is encoded within the DNA and how 
biochemical processes of the cell translate the genetic information into the phenotype. 
Genetic transformation involves the alteration of the genetic constitution of cells or 
individuals by directed and selective modification, insertation of native or foreign gene, or 
deletion of an individual gene or genes. According to Shoemaker et al. (2004), soybean has 
emerged as a model crop system because of its densely saturated genetic map, a well-
developed genetic transformation system and the growing number of genetic tools 
applicable to this biological system.  
The emphasis in this chapter will be on selected information about new technological 
developments derived from molecular biology for soybean breeding purposes. Two main 
aspects will be considered: the use of genetic markers and transformation (genetic 
modification). 

2. Genetic marker systems 

The term genetic markers refers to genes with known locations in chromosomes, that are 
clearly visible on phenotypic level, and are easy to track in series of consecutive generations. 
Furthermore, it is defined as any DNA fragment that displays some form of observable 
polymorphism in analysed individuals (Hill et al., 1998; Liu, 1998; Konstantinov et al., 2004). 
Three types of genetic markers have been used in soybean genomic analysis:  
- morphological markers,  
- protein based markers (biochemical markers), 
- DNA based markers (molecular markers).  
According to Liu (1998), to be a genetic marker, the marker locus has to show 
experimentally detectable variation among the individuals in the test population. The 
variation can be considered at different biological levels, from the simple heritable 
phenotype to detection of variation at the single nucleotide. Once the variation is identified 
and the genotypes of all individuals in the test population are known, the frequency of 
recombination events between loci is used to estimate linkage distance between markers.  
Different types of markers may identify different polymorphisms. The utilisable value of the 
certain genetic marker system depends on several parameters such as: reliability determined 
by the analysis results, reproducibility, universality or independence from specific plant 
material in tests, high level of observed polymorphism, random distribution of marker in 
the genome and interesting location on genetic map, which implies the existence of gene–
marker relationship for the trait of interest. Likewise, the genetic interpretation of markers 
strongly depends on the sequence complexity of the genome and the kind of variation the 
marker identifies. 

2.1 Morphological markers 

Morphological traits such as shape, colour, size or height often have one to one 
correspondence with the genes controlling the traits. In such cases, the morphological 
characters (the phenotypes) can be used as reliable indicators for specific genes and are 
useful as genetic markers on chromosomes. Since the number of morphological traits of 
certain species is limited, so is the number of morphological markers. Morphological 
markers are usually easy to observe, but it is difficult to have a large number of them 
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segregating in a single or few populations. To obtain a reasonable number of polymorphic 
morphological markers, many mapping populations are needed (Liu, 1998). Furthermore, 
many morphological traits are visible only on certain plant part and only in certain stage of 
plant development (Fig. 1) which further limits the time of use. Morphological markers are 
in selection process used mainly in early generations, for description and/or identification 
of genotypes in germplasm collections (gene banks) and in the procedure of variety’s official 
released (lists of descriptors from the International Union for the Protection of New 
Varieties of Plants (UPOV). 
 

  

Fig. 1. Flower colour of soybean – morphological marker (photo: Vratarić, M.) 

2.2 Protein based markers 
Proteins are result of gene expression. Different alleles of genes may result in proteins with 
different aminoacid compositions, size or modifications. Differences in charge and size can 
be easily detected using gel electrophoresis and can be used as genetic markers. Protein 
markers are divided in two groups:  
- storage proteins; 
- functional proteins or isozymes.  
Seed proteins, as specific gene products, could indicate genetic specify of genotypes, and 
therefore could be used as markers for characterization of varieties, to resolve taxonomic 
relationships or for seed purity testing (Bushehri et al., 2000; Nikolic et al., 2004, 2005; 
Konstantinov et al., 2005; Malik et al., 2009). The SDS-PAGE is a practical and reliable 
method for species identification because seed storage proteins are largely independent of 
environmental fluctuation (Gepts, 1989). Genetic diversity and the pattern of variation in the 
soybean genotypes have been evaluated with seed protein (Alipour et al., 2002; Bushehri et 
al., 2000, Nikolic et al., 2005, Malik et al., 2009). In soybean, plant with a narrow genetic base 
in their pool, protein markers are not sufficient for characterization and study genetic 
diversity (Nikolic et al., 2005). Srebric et al (2010) identified Kunitz –free progeny of cross 
between common varieties Kador and Kunitz by electrophoresis of seed proteins (Fig. 2). 
The isozymes are commonly used type of protein marker, which have been used for several 
decades. Isozymes are proteins with small differences in amino acid content, which catalyze 
the same chemical reaction, but are under the control of different genes.  
Isozymes as markers are co-dominant, they don't undergo epistatic interactions with other 
molecular markers, and their expression does not stand under the influence of environment. 
They are limited in number and tissue and are developmental-stage dependent. Before DNA 
markers were discovered, isozymes were extensively used in many plant species and are 
still often used in conjunction with DNA markers. 
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Fig. 2. SDS PAGE patterns of protein from soybean genotypes. KTI-Kunitz Trypsin 
Inhibitor. 1,9,10 genotypes without KTI; 2-8 genotypes with KTI (photo: Srebric, M.) 

In soybean, isozyme polymorphism has been used for characterising and identifying 
genotypes and varieties (Cardy & Beversdorf, 1984; Doong & Kiang, 1987), for studying 
population genetics (Miroslav & Jiri, 1996), for examining geographical patterns of variation 
(Griffin & Palmer, 1995; Hirata et al., 1999), in seed production for determining uniformity 
and genetic purity of cultivars and identifying different varietals impurities in seed material. 
Bushehri et al. (2000) evaluated twenty one soybean (Glycine max) cultivars 
electrophoretically for the banding pattern of storage proteins and suggested that SDS-
PAGE is a more powerful tool to characterize soybean cultivars compared to isozyme 
patterns. 

2.3 DNA based markers (molecular markers) 

Molecular marker refers to the DNA sequence with exactly defined nucleotide order and 
distribution, strictly specific for different organisms. According to Liu (1998) two basic 
approaches have been used to detect variation in the small region of DNA. The fragment 
can be detected by nucleic acid hybridization, which uses another fragment from the same 
locus which has been isolated and purified from the same or related species. The previously 
known segment must share considerable DNA sequence homology with the fragment of 
interest and can be labelled and used as a probe to detect the fragment of interest by 
complementary base pairing. The second approach is based on the amplification of 
sequences using polymerase chain reaction (PCR). To amplify a target segment, two primers 
designed using known sequences of the segment are needed.   
In plant breeding, molecular markers have several advantages over the traditional 
phenotypic markers: accuracy, reliability, speed, indifference to the conditions under which 
the plants are grown and detectability in all stages of plant growth. Mode of action, level of 
polymorphism, informativeness, developmental cost, number of sample that could be run, 
level of skill, reliability are important considerations when selecting markers for specific 
applications. Although each marker system is associated with some advantages and 
disadvantages, the choice of the system is dictated by the intended application, equipment 
and the cost involved. 
In soybean breeding, molecular marker applications are currently focused in four areas: 
- germplasm characterization,  
- marker-assisted selection (MAS),  
- marker-assisted backcrossing and  
- gene discovery.  

KTI 
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Knowledge of genetic diversity in soybean elite breeding material has a significant impact 
on the improvement of plants, efficient utilization of eligible germplasm polymorphism and 
genotype selection for different breeding objectives. Genetic diversity can be assessed based 
on pedigree analysis, phenotypic data or molecular markers. Pedigree analysis and 
phenotypic evaluation of genetic diversity have a number of limitations, which have largely 
been exceeded by the development of molecular markers. Their advantage is based on fact 
that molecular markers are almost unlimited in number and are not influenced by 
environmental factors. Therefore, molecular markers have a significant role in estimating 
the diversity degree and genetic constitution of the existing germplasm, as well as, in the 
predicting of the heterotic effects based on the genetic distance between the parents in 
hybrid programmes. Genetic marker information in parental selection could have a 
favourable impact on breeding efficiency and contribute to the faster achievement of genetic 
improvement in soybean.  
The implementation of molecular markers closely associated with desirable traits is being 
used to increase the efficiency and effectiveness of conventional breeding by indirect 
selection of the desirable plants in segregating population. Such selection approaches, based 
on the use of markers and called in general MAS has been used to increase the probability of 
identifying truly superior genotypes, by focusing on determination of genotypes with 
superior potential, and by enabling simultaneous improvement for traits that are negatively 
correlated (Knapp, 1998; Dekkers & Hospital, 2002; Todorovska et al., 2010). MAS is used 
more readily than the usual techniques to screen single traits, such as resistance or restorer 
genes: nematode resistance, insects resistance, pathogen resistance.  
The combination of reliable phenotyping and MAS has been particularly important in 
transferring desirable alleles by simple backcrossing into elite germplasm. Application of 
markers of introgression programs can result in a reduction in the number of breeding 
cycles by improving selection efficiency, particularly at the early stage. 
Also, molecular markers allow us to identify and map the Quantitative Trait Loci (QTLs), 

i.e. the relevant loci responsible for genetic variability of quantitatively-inherited traits. 

Because of the genetic by environment interactions on most quantitative traits, breeding for 

them requires replicated field trials conducted over 2 or more years in different locations. 

This is obviously time consuming and expensive. The ability to select for an easily 

identifiable marker that is a good predictor of the presence or absence of a QTL trait can 

save time and money in a breeding program. Discovery and tagging of QTL is a prerequisite 

of this type of MAS (Shoemaker et al., 2004). 

In soybean, different DNA marker systems such as Restriction Fragment Length 

Polymorphism (RFLP), Randomly Amplified Polymorphic DNAs (RAPD), DNA 

Amplification Fingerprinting Markers (DAF), Simple Sequence Repeats (SSR), Amplified 

Fragment Length Polymorphism (AFLP) and Single Nucleotide Polymorphism (SNP) have 

been developed and applied. 

2.3.1 Restriction Fragment Length Polymorphism   

Restriction Fragment Length Polymorphism  (RFLP) represents the first generation of DNA 
markers used for plant genomes (Weber and Helentjaris, 1989). The basis of RFLP is using 
restriction enzymes (endonucleases), which recognise short DNA fragments (3-6 bases) and 
cut the DNA at sequence-specific sites. Polymorphism of genomic DNA detected through 
DNA fragment length after its digestion with restriction enzymes is due to variability in 
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number and array of restriction sites, which are recognised by restriction endonucleases. 
The next step is to separate the paired strands of the DNA fragments (denaturation) by 
putting the gel in alkali. The denatured single-strand DNA fragments are usually 
transferred to a nylon or nitrocellulose membrane filter such that the fragments retain the 
same pattern on the membrane as on the gel. This blotting procedure was first applied to 
DNA analysis by E. Southern and is still referred to as a Southern blot (Southern, 1975). The 
final step of the Southern blotting is to visualize specific DNA fragments using a 
radioactively labelled probe. Alternatively, non-radioactive probes can be used. In this case, 
the hybridized fragments are then detected by non-radioactive assays involving 
chemiluminescence of colorigenic detection. The result is ideally a series of bands on a gel 
which can then be scored for presence or absence of particular bands. Differences between 
genotypes are usually visualised as an altered pattern of DNA restriction fragments. 
Application of RFLPs has advantages and disadvantages. The main advantages of RFLP 
methodology are: results are highly reproducible between laboratories, co-dominant  
markers and simplicity of the method. Disadvantages are: time consuming, expensive to 
perform and using radioactively labelled probes. 
In soybean, the use of RFLPs started in the late 1980s (Apuya et al., 1988; Keim et al., 1990) 
which contributed the development of first genetic map of soybean genome which 
contained 150 RFLP markers with a total length of about 1200 recombination units (Keim et 
al., 1990). This map, developed jointly by the USDA-ARS (U.S. Department of Agriculture-
American Research of Soybean), Iowa State University and ASA (American Soybean 
Association) and referred to as the ˝Public˝ map saw further expansion during the 1990s 
with the addition of RFLP loci (over 350) (Shoemaker and Olson, 1993). At the same time, 
the soybean genome map with over 600 identified loci was developed (Rafalski and Tingey, 
1993). These initial maps were constructed using populations created from crosses among 
cultivated and wild soybean, because large proportion of the loci on these maps would not 
be expected to segregate in crosses among cultivated soybean genotypes. Despite the great 
utility of RFLP based molecular genetic linkage maps substantial effort was expended in the 
development of alternative markers that detected greater levels of molecular genetic 
variation. In addition, the duplicated nature of the soybean genome, to which RFLP probes 
will hybridize on an average of 2.55 times (Shoemaker, et al., 1995) created complications 
with the use of RFLP. Thus, in the early 1990’s, PCR-based marker systems including RAPD, 
SSR and AFLP markers began to be developed and used by soybean geneticists (Cregan, 
1999). 

2.3.2 Randomly Amplified Polymorphic DNA  

The basis of Randomly Amplified Polymorphic DNA (RAPD) markers is the polymerase chain 
reaction (PCR) amplification with arbitrarily chosen primers that initiate DNA synthesis from 
sites to which the primer is matched. So, RAPDs were designed to solve the problem of lack of 
pre-existing DNA sequence information. A single, arbitrarily chosen short oligonucleotide can 
be used as a primer to amplify genome segments flanked by two complementary primer-
binding sites in inverted orientation (Williams et al., 1990). If the sites occur on opposite 
strands of a segment of DNA in inverted orientation and the distance between the sites is short 
enough for PCR, then the segment flanked by the sites can be amplified. Polymorphism of 
genomic DNA is detected through  the length of synthesized DNA fragments. If 
polymorphism exists in the binding sites among different genotypes or the fragment length 
differs at the same site from genotype to genotype, then a RAPD marker is obtained.  
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In practice, only small amounts of DNA from each genotype are needed as templates. PCR 
reaction can be carried out in a 96-well plate using a programmable thermocycler. The 
amplification products are separated on an agarose gel and visualized using ethidium 
bromide staining. The key point about this technique is that nothing is known about the 
identity of the amplification products. However, the amplification products are extremely 
useful as markers in genetic diversity studies. Other important features of the technique are: 
simplicity, unit costs per assay are low, RAPDs are dominant, and reproducible results can 
be obtained if care is taken to standardise the conditions used (Ford-Lloyd & Painting, 1996). 
RAPD markers for analysing plant genome were developed by Welsh & McClelland (1990), 
and by Williams et al. (1990). The use of RAPDs for analyzing soybean genome  was started 
in the early 1990s. The RAPD markers have been widely used  for genetic diversity study of  
soybean germplasm (Correa et al., 1999; Baranek et al., 2002; Nikolic et al., 2007; Peric et al., 
2008a) (Fig. 3.). 
 

  
(a) (b) 

Fig. 3. (a) RAPD polymorphism in 6 soybean genotypes with primer GEN 4-70-9 (arrow 
marked unique band  in genotype 4) photo: Mladenović Drinić, S.) (b) RAPD polymorphism in 
13 soybean genotypes (photo: Mladenović Drinić, S.) 

In studies of genetic diversity, researchers are interested in clustering similar individuals, so 
that the greater difference occurs among the formed groups. Statistical methods, as cluster 
analysis, factor analysis and principal component analysis can be applied to help in this 
kind of study. Among them, cluster analysis stand out as it does not demand an initial 
hypothesis regarding the probability distribution of the data and as it provides easy 
interpretation. Considering that the results of clustering can be influenced by the similarity 
coefficient choice, these coefficients need to be better understood so that the most efficient 
ones in each specific situation can be employed. For example, Mladenovic Drinic et al. (2008) 
were investigated the influence of four similarity coefficients (Sorensen-Dice (D), Jaccard (J), 
Roger & Tanimoto (RT), Simple-matching (SM)) over the following cluster analysis, based 
on data from RAPD marker analysis of twenty soybean genotypes. PCR amplification of 
genomic DNA was performed using 27 RAPD primers. Eighteen RAPD primers showed 
clear and reproducible bands, while 9 primers didn’t showed amplification at all, or bands 
were smeared and weak. Totally 86 RAPD fragments of different molecular weight were 
observed out of which 37.2% were polymorphic. Results were indicated on a low genetic 
diversity of soybean. Genetic similarity ranged from 0.845 to 0.986 (D); 0.607-0.954 (RT), 
0721-0.977 (SM) and 0.7317-0.9718 (J). When dendograms were contrasted by the CIc index, 
small differences among them were made evident (Fig. 4).  
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(a) 

 

(b) 

Fig. 4. (a) Dendogram of  20 soybean genotypes based on RAPD markers using Sorens-Dice  
coefficients (b) Dendogram of 20 soybean genotypes based on RAPD markers using Roger & 
Tanimoto coefficients  

The dendogram obtained by Rogers & Tanimoto coefficient was identical to that of Simple 
matching as were Sorensen-Dice and Jaccard. Consequently, results of RAPD markers 
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analysis can provide the previous information on the genetic similarity of parents, and 
based on it, the performance of traits in the progeny can be predicted, as well as proportion 
of superior progenies generated by each cross in advanced generations of selfing (Barroso et 
al., 2003; Peric et al. 2006, 2008b). 

2.3.3 DNA Amplification Fingerprinting Markers 

Similar to RAPD markers, the basis of DNA Amplification Fingerprinting Markers (DAFs) is 

the use of PCR with arbitrarily chosen primers, i. e. DAF markers are amplified with the use 

of a single arbitrarily chosen primer. The procedure  was described by Caetano-Anolles et al. 

(1992). The basic differences between RAPD and DAF technologies are: DAF has shorter 

arbitrarily chosen primers (usually 5-8 nucleotides), so for the electrophoresis of DAFs we 

use polyacrylamid gel with silver staining, and for RAPDs we use agarose gel. 

The use of DAF markers in soybean genome analyses started during 1990s. A limited 

number of DAF-generated polymorphisms were mapped in the University of Utah, Minsoy 

x Noir 1 RIL population (Prabhu & Gresshoff, 1994). The authors noted that DAF-generated 

polymorphic markers occur frequently and reliably, that they are inherited as Mendelian 

dominant loci and that they can be used in genome mapping.  

2.3.4 Simple Sequence Repeats (microsatellites)  

The use of simple (short) sequence repeats (SSRs) (small DNA fragments, usually 2-5 bp 

long) is based on amplification of short DNA fragments with repeating core motif (repeats 

9-30 times). Polymorphism of genomic DNA is detected through the number of short repeat 

units after amplification in polymerase chain reaction with the use of primers which limit 

the loci of satellite DNA. 

Microsatellites have high level of variability in many plant and animal species. Most 

common forms of repeat units are simple di-nucleotides like (CA)n:(GT) n, (GA) n:(CT) n, (CG) 

n:(CG):(GC) n, and (AT) n:(TA) n (n is number of repeats), while microsatellites with 3 or 4 

nucleotides are rare. The most common motifs in soybean are: AT, ATT, TA, TAT, CT, CTT 

(Mohan et al., 1997). 

First applications of SSRs in plant genome analyses were in soybean. In early 1990s, two 

scientific groups (Akkaya et al., 1992; Morgante & Olivieri, 1993) published similar results 

demonstrating high levels of polymorphism, co-dominance and locus specificity for SSR 

markers in soybean. Because of the numerous advantages (high level of polymorphism, 

single locus nature, random distribution in the genome), SSR markers are excellent 

complement to RFLP markers for soybean researches in the fields of molecular biology, 

genetics and plant breeding.  

The development and mapping of a large set of soybean SSR markers was initiated in 1995 
with the support of the United Soybean Board, resulting in development of more than 600 
SSR loci. These loci were mapped in three different mapping populations (Cregan et al. 
1999). One of these was the USDA/Iowa State population. Second was the 240 RIL 
University of Utah populations developed from a cross of the cultivated soybean genotypes 
Minsoy and Noir 1. The third was the University of Nebraska Clark x Harosoy  isoline 
population consisting of 57 F2-derived lines. These  three separate maps provided useful 
information relative to the consistency of marker order and genetic distance among the 
different populations. Song et al. (2004) reported that the 420 newly developed SSRs were 
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mapped in one or more of five soybean mapping populations: Minsoy x Noir 1, Minsoy × 
Archer, Archer × Noir 1, Clark × Harosoy, and A81-356022 × PI468916. The JoinMap 
software package was used to combine the five maps into an integrated genetic map 
spanning 2,523.6 cM of Kosambi map distance across 20 linkage groups that contained 1,849 
markers, including 1,015 SSRs, 709 RFLPs, 73 RAPDs, 24 classical traits, six AFLPs, ten 
isozymes, and 12 others. The number of new SSR markers added to each linkage group 
ranged from 12 to 29. In the integrated map, the ratio of SSR marker number to linkage 
group map distance did not differ among 18 of the 20 linkage groups. However, the same 
authors noted that the SSRs were not uniformly spaced over a linkage group, clusters of 
SSRs with very limited recombination were frequently present. These clusters of SSRs may 
be indicative of gene-rich regions of soybean, indicating the significant association of genes 
and SSRs. The creation of a high-density, integrated soybean linkage map with more 
precisely positioned markers would permit a better overall assessment of the distribution of 
SSR loci in the soybean genome.  
Genetic diversity of Asian soybean germplasm (Abe et al., 2003; Wang et al., 2006) as well as 
European soybean germplasm (Tavaud-Pirra et al., 2009) is studied by microsatellites. 
Sudaric et al (2008, 2009) evaluate the genetic diversity of the selected soybean germplasm 
using SSR markers, as well as to compare the effectiveness of breeding procedures with and 
without the use of genetic markers in parental selection. Based on SSR marker data and 
phenotypic data, an association was found between the agronomic performance of the 
derived lines and the genetic distance between the parental lines. Crosses between more 
diverse parents resulted in derived lines with greater values for grain yield (Table 1) and 
grain quality (Table 2) compared with the parents than crosses between similar parents. The 
results indicated on usefulness of genetic marker information in parental selection, 
contributing to breeding efficiency.  
 

Derived line (F4) 

Deviation of 

 
Code of 
derived 

line 

 
Female 

component 
 

 
Male 

component 
 

 
Value Female 

component 
Male 

component 

Small genetic distance between parental lines 

L-86-03         3.14 3.62 3.50 + 0.36 - 0.12 

L-104-03       3.14 4.20 3.65 + 0.51* - 0.55* 

L-165-03       4.22 3.67 3.98 - 0.24 + 0.31 

L-224-03       4.22 4.14 4.20 - 0.02 0.06 

Large genetic distance between parental lines 

L-23-03         3.28 3.66 3.92 + 0.64* + 0.26 

L-96-03 3.28 3.94 4.20 + 0.92* + 0.26 

L-115-03       4.09 3.89 4.52 + 0.43* + 0.63* 

L-193-03       4.09 3.67 4.38 + 0.29 + 0.71* 

* signficant at P=0.05 according to F-test 

Table 1. Grain yield (t/ha) of tested soybean lines (2007, Osijek, Croatia) 
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Derived line (F4) 

Deviation of 
Code of 
derived 

line 

Female 
component 

 

Male 
component 

 
 

Value Female 
component 

Male 
component 

Small genetic distance between parental lines 

L-48-03 38.51 39.96 39.40 + 0.89* - 0.56* 

L-94-03 38.51 40.50 39.56 + 1.05* - 0.94* 

L-136-03 40.88 39.27 40.35 - 0.53* + 1.08* 

L-212-03 40.88 40.52 40.62 - 0.26 + 0.10 

 

L-11-03 38.87 39.28 39.43 + 0.56* + 0.15 

L-65-03 38.87 39.61 39.75 + 0.88* + 0.14 

L-170-03 40.06 39.79 40.18 + 0.12 + 0.39* 

L-205-03 40.06 40.16 40.46 + 0.40* + 0.30 

* signficant at P=0.05 according to F-test 

Table 2. Protein content in grain (% in ADM) of tested soybean lines (2007, Osijek, Croatia) 

The SSR markers linked to the major QTL will be useful for marker-assisted selection in 
soybean-breeding programs (Funatsuki et al., 2005; Panthee et al., 2006). A set of SSR 
markers have been subjected to continuous development and utilization for high 
throughput molecular mapping in soybean (Akkaya et al., 1992, 1995;  Narvel et al., 2000; 
Burnham et al., 2003; Shultz et al., 2007). 

2.3.5 Amplified Fragment Length Polymorphism  

The use of Amplified Fragment Length Polymorphism (AFLP markers) is based on 
combining the use of restriction enzymes (endonucleases) and selective amplification with 
polymerase chain reaction. Polymorphism of genomic DNA is detected through the length 
of DNA fragments after its digestion with restriction enzymes and amplification in 
polymerase chain reaction. The amplification products are then separated on highly 
resolving sequencing gels and visualised using autoradiography. Where radio-labelled 
nucleotides are not used in the PCR step, fluorescent or silver staining techniques can be 
used to visualise the products (Ford-Lloyd & Painting, 1996). AFLP analysis is a highly 
sensitive, highly reproducible and widely applicable method for detecting polymorphisms 
throughout the genome. Disadvantages of AFLP system are: expensive, technically 
demanding, uses radioisotopes and problems in interpreting banding patterns. 
In soybean, less attention was focused on the development of AFLP markers than in other 
plant species, mostly because of the successful application of SSRs. The use of AFLPs in 
soybean started as late as mid 1990s (Vos et al., 1995). However, one of the largest available 
AFLP maps of any plant species was developed in soybean (Keim et al., 1997). This map has 
the total of 840 loci from which 650 are AFLPs, while the USDA/Iowa State map has 1004 
loci, most of which are RFLPs and SSRs. In the development of AFLP map, authors used 
somewhat altered protocol according to Travis et al. (1996). The AFLP has proven very 
useful to saturate specific genomic regions using bulked segregate analysis or the 
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comparison of near isogenic lines for a trait of interest because of the large amount of 
marker data that can be obtained with AFLP without the need for previous knowledge of 
DNA sequence (Muehlbauer et al., 1988, Cregan, 1999). Still, AFLP technologies are 
continuously being modified and perfected (Lin et al., 1999; Mano et al., 2001). 

2.3.6 Single NucleotidePolymorphism  

Differences in individual DNA bases between homologous DNA fragments along with 
small insertions and deletions are collectively referred to as single-nucleotide polymorphism 
(SNP). SNPs can serve as genetic markers that can complement and greatly augment 
existing genetic linkage maps and are therefore useful as genetic markers in QTL analysis or 
other DNA marker based genetic analysis (Cregan, 1999). SNP is the most abundant source 
of DNA polymorphism in humans (Collins et al., 1998), while in plants, SNPs nature and 
frequency researches have just started to acquire significance (Gupta et al., 2001; Rafalski, 
2002; Shoemaker et al., 2004). Many SNP detection methods have been developed, such as 
oligonucleotide ligation, denaturing high-performance liquid chromatography (DHPLC) 
and primer extension (Wu & Wallance 1989; Hoogendoorn et al. 1999; Pastinen et al. 2000; 

Wolford et al. 2000). 
In soybean, SNPs nature and frequency researches have intensified (Cahill, 2000, Zhu et al., 
2003; Kim et al., 2004; Van et al., 2004, 2005), and thus are likely to have an important role in 
the future of soybean genome analyses and manipulation. 

3. Genetic modification  

Tremendous progress in plant molecular biology over the last three decades has enabled 
development and use of techniques for manipulation with genetical structure of organisms, 
with the aim to ˝transfer˝ adequate genes and acquire desired combinational properties. 
Unlike traditional plant breeding, which involves the crossing of hundreds or thousands of 
genes, genetic transformation allows transfer of only one or a few desirable genes. This more 
precise technique allows plant breeders to develop crops with specific beneficial traits and 
without undesirable traits. Through traditional breeding methods, genes have been 
transferred from one individual to another with the aim of production individuals which 
clearly exhibit particular desirable traits. These crossing are usually between individuals of 
the same, or closely related species. The gene pool available for use, in traditional crossing, 
is thus limited to those genes present in individuals which can be induced to breed using 
natural crossing methods. The use of recombinant DNA technologies enables the movement 
of a single or a few genes within or across species boundaries to produce plants with new 
traits, transgenic plants. Also, it is possible to get rid of an undesirable trait by shutting 
down the ability of the cell to make the product specified by the gene (Konstantinov et al., 
2002; Drinic Mladenovic et al., 2004).  
The processes involved in developing genetically modified plants are the following: 
- identification and isolation of the desired gene, 
- gene cloning, 
- development of transgenes, 
- gene transfer and 
- introduction into breeding processes. 
The identification of a single gene is not sufficient. It is necessary to be acquainted with 
regulatory mechanisms of gene actions, as well as, with their secondary effects and 
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interactions with other genes. Prior to this, it is necessary to identify an organism containing 
the desires gene in its genome (Konstantinov et al., 2002). Todorovska et al. (2010) has noted 
that the main limitation of this technology is the availability of preliminary knowledge 
about the role of a gene in determining a given trait and is, at present, only applicable for 
traits that are determined by one or a relatively small number of genes. 
Transgenic plants represent completely new genotypes (plant with novel traits). Therefore, 
in order to confirm expected phenotypic expression of the new trait, selection after the gene 
transfer is necessary, the same after conventional hybridization.  
Nevertheless, there still are many unknowns and disputes concerning transgenic plants 
from many different aspects: ethical, philosophical, religious, economic, ecological, sanitary, 
legal etc, and much time will still be needed to put transgenic plants in their rightful place 
with the help of scientific research (Keller & Huttter Carabias, 2001; Taylor, 2007).  
Legislative framework that regulates cultivation and commercialisation of transgenic plants, 
and the use of their products, is made, exists, and is being changed under the influence of 
science, business and national interests. According to the Cartagena Protocol on Biosafety 
(http://bch.cbd.int/protocol/) entered into force 2003 signed by 103 world countries and 
with 160 parties to Protocol by 2010, each country has the right to protect its biodiversity. 
Researches show that transgenic plants can transfer some of their features by pollen to 
related species that grow in the same area. Natural crossing between transgenic and 
conventional cultivars of the same species can occur in the same way, creating progeny that, 
beside desired traits, has novel genetic combinations with insufficiently known outcomes. 
Furthermore, it still isn't completely known how transgenic plants would behave if they 
escaped controlled cultivation and entered into the ecosystem. Their presence can affect the 
genome of some native forms of the same species that are considered ˝gene bank˝ of the 
certain area and are of unique significance for breeding. Congruently, 28 European countries 
signed Berlin Manifesto for GMO-free Regions and Biodiversity in Europe (www.gmo-free-
regions.org/gmo-free-conference-2005/berlin-manifesto.html) in 2005, which points out 
that European regions have the right to determine their own ways of farming, producing 
and selling food, thus protecting the environment, landscapes, culture and heritage, their 
seed, their rural development and their future. This includes the right to decide about the 
use of genetically modified plants in agriculture and ecosystems.  
To date, genetic modifications were made on several important crops such as: soybean, corn, 
canola (rapeseed), sugar beet, potato, cotton, wheat, barley, rice and beans. One of the first 
important practical uses of genetic engineering in agriculture was development of 
glyphosate tolerant cultivars of soybean, corn, canola (rapeseed) and cotton (Moll, 1997). 
Glyphosate (N-(phosphonomethyl) glycine) is translocational, nonselective, post-emergence 
broad-spectrum herbicide. It's toxic effect on plants consists of inhibition of 5-enolpyruvyl 
shicimic acid-3-phosphate synthase (EPSPS) enzyme. EPSPS is very important in 
biosynthetic metabolism of aromatic amino acids – tryptophan, tyrosine and phenylalanine 
(Haslam, 1993). Glyphosate functions by occupying the binding site of phosphoenol 
pyruvate in EPSPS and blocking its activity, which in turn prevents aromatic amino acid 
production. Aromatic amino acids are very important for many biochemical processes such 
as: protein synthesis, cell membrane formation, protection against pathogens etc. Prevention 
of their biosynthesis leads to withering of plants. EPSPS is present in all plants (localised in 
chloroplasts or plastids), bacteria, fungi, but not in animals, which instead obtain aromatic 
amino acids from their diet. Researches done by Padgette et al. (1995, 1996) show that it is 
very difficult to accomplish significant endogenous tolerance to glyphosate in plant species 
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with conventional breeding and induced mutations. Nevertheless, in 1983 glyphosate 
resistant CP4 gene was identified in Agrobacterium sp. strain CP4 (Padgette et al., 1996). 
Using biotechnology, gene was cloned and transferred into plants. As a result, new 
transgenic plants contained two types of genes in their genetic material: native genes for 
glyphosat-intolerant form of EPSPS and foreign, bacterial CP4 genes for glyphosat-resistant 
form of EPSPS. Inserted CP4 genes enabled plants to normally biosynthesize aromatic 
amino acids, so even after glyphosat application plants wouldn’t wilt. 
Greatest commercial success with glyphosate-tolerant (GT) cultivars was made in soybean. 

First GT soybean cultivars were named Roundup Ready (RR), after the commercial 

herbicide Roundup, which contained glyphosate as an active ingredient. Development of 

RR soybean cultivars enabled broad use of Roundup herbicide in arable crops, and thus 

very successful wide spectrum weed control in soybean. Before RR soybean cultivars, 

producers applied adequate herbicide regime, which was sometimes phytotoxic for soybean 

plants and/or left residues in the soil that were harmful for the following crop (Gianessi and 

Carpenter, 2000). Introduction of RR soybean into production resulted in reduction of 

herbicide treatment of crops. Single treatment with Roundup was sufficient which added to 

decreasing of production costs, and increasing of productivity. Commercialization of RR 

soybean started in 1996 in the USA. Production of RR cultivars had advantage over 

production of conventional cultivars from economic aspect, and thus they were rapidly 

accepted by American farmers. From 1996 to 1999, RR cultivars have been sown on 7, 17, 44 

and 57% of total field area under soybean in USA, and from year 2000 to 2005, on 54, 68, 75, 

81 and 87% (USDA, National Agric. Statistics Service). In 2009, GT soybeans are planted in 

nine countries covering 69,2 million hectares (52% of global biotech area of 134 mill ha) or 

77% of total area planted with soybean (90 mil ha) (James, 2009). Results of the researches 

conducted by Minor (1998), Oplinger et al. (1998) and Elmore et al. (2001) showed that GT 

soybean cultivars didn’t have considerably better agronomic properties than conventional 

cultivars concerning seed yield, seed quality and resistance to diseases. The only advantage 

of GT cultivars is the cheaper production process because of the lower costs of weed control. 

In general, herbicide tolerance is considered the first generation of soybean fears obtained 

by biotechnology. To date, glyphosat-tolerant cultivars have had the greatest commercial 

success. Further researches are made with the aim to discover genetic resistance to other 

active ingredients in herbicides. The main goal of these soybean cultivars is reducing the use 

of pesticides and decreasing the number of applications, which would result in decreasing 

of production costs and increasing profit. Unlike  the  first generation  GT soybean  which 

 was  developed with  gene  gun technology, second generation (RReady2Yield™) was 

developed with more efficient and precise Agrobacterium insertion technology. Genetic 

mapping of soybean  allowed  yield enhancing regions of soybean  DNA to be identified 

and in conjunction with advanced insertion and selection  technology allowed  the 

RReady2Yield™ gene (MON 89788) to be precisely inserted in one of the high yielding 

zones (http://www.monsanto.com/pdf/features/mon89788.pdf). The second  generation 

RReady2Yield™, as a result of the linkage established between yield and glyphosate 

tolerance, offered significant increases  in yield of 7 to 11% over the first generation. In 2009, 

RReady2Yield™ varieties of selected  maturity classes, represented  the first commercially 

approved product  from a new wave of a whole new class of second  generation biotech 

 crop products were commercialized for the first time in a controlled launch  in the USA and 

Canada  on approximately 0.5 million hectares (James, 2009). 
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The second generation fears put into soybean via biotechnology is increased oleic acid 
content (Kinney, 1996), increased lysine content (Falco et al., 1995) and achieved resistance 
to pests from Lepidoptera sp. by Bt (Bacillus thurigiensis) technology (Walker et al., 2002). 
The greatest commercial success in this generation was made by cultivars with high oleic 
acid content (HO cultivars). The first HO soybean lines (G94-1, G94-19, G168) were 
commercialized in 1998. The reasons behind their development are following. It is well 
known that soybean is the biggest resource of vegetable oil in the USA, and primary 
resource for production of biofuels. Average oil content in soybean seed is around 18%, and 
usual oil composition is: palmitic acid (11%), stearic acid (4%), oleic acid (22%), linoleic acid 
(53%) and linolenic acid (8%). Oils with high content of mono-unsaturated fatty acids (such 
as oleic acid) are especially important for processing industry, because they have bigger 
oxidative stability. This is why the researches were directed towards increasing oleic acid 
content in soybean oil. Mutagenesis increased oleic acid content to 30-65% (Takagi & 
Rahman, 1996), while genetic engineering increased it to more than 80% (Buhr et al., 2002). 
Third generation of transgenic soybean lines is being created in laboratories and for now 
they still haven’t been commercialized. Properties included in the researches are: enzymes 
(especially oxalate oxidase for the resistance to the disease Sclerotinia sclerotiorum), long-
chain fatty acids, vitamins, pharmaceutical ingredients, bioplastics, increased yield, drought 
and cold tolerance and many other benefits. Furthermore, genetic engineering was 
successfully used to eliminate allergenic proteins from soybean seed. Transgenic soybean 
lines with inactivated genes for main allergenic proteins are already being tested, and if they 
pass the tests we can expect their soon commercialization. 
Although on global level there are still controversies concerning transgenic plants, and 
researches demand large financial investments, further researches and technological 
development are continuous. Advance in functional genomics enables the discovery of 
increasing number of genes available for transformation, and with perfecting the methods of 
genetic engineering; new transgenic soybean cultivars with specific traits are being created. 

4. Conclusion 

Biotechnology can be defined broadly as a set of tools that allows scientists to genetically 
characterize or improve living organisms. Several emerging technologies, such as molecular 
characterization and genetic transformation, are already being used extensively for the 
purpose of plant improvement. Tools provided by biotechnology will not replace classical 
breeding methods, but rather will help provide new discoveries and contribute to improved 
nutritional value and yield enhancement through greater resistance to disease, herbicides 
and abiotic factors. Plant biotechnology depends upon a number of laboratory procedures 
that have been developed recently to manipulate DNA and provide new genes of interest to 
the plant breeder. These procedures have resulted in crop plants that have great commercial 
value, and many companies are marketing genetically engineered crop varieties. In 
addition, biotechnology has allowed scientists, as never before, to expand their visions of 
designing new crop plants to serve humankind. In order to continue the development of 
gene technology in agriculture, the risks must be carefully analyzed and the plants 
monitored to detect possible problems. Glycine max (L.) Merr has the genetic diversity for 
differentiation, produces a balanced combination of protein, fat and carbohydrate to serve as 
a valuable food, feed, and bio-feedstock, inhabits cropping systems as a valuable contributor 
of nitrogen, and possesses other agronomical complementary traits. Given the coming 
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advancements in biotechnology, the future of soybean will require the sound use of genetic 
resource within Glycine, adequate funding for research and development, and a clear vision 
of the opportunities that lie ahead. Scientific discoveries in the area of structural and 
functional plant genomics would lead to production of new soybean varieties with 
advanced nutritive and agronomic properties, created by combining conventional breeding 
methods and biotechnology tools. Based on the availability and combination of conventional 
and molecular technologies, a substantial increase in the rate of genetic gain for 
economically important soybean traits can be predicted in the next decade. 
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