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1. Introduction 

In this chapter Artificial Neural Networks are presented and used to solve different 
parameter estimation inverse problems, that is, Gas-liquid Adsorption Mass Transfer, 
Radiative Transfer Problems, and Simultaneous Heat and Mass Transfer. Besides, results 
obtained using hybrid methods are also presented, combining the Artificial Neural Network 
(ANN) method to other inverse problem solutions techniques, such as Simulated Annealing 
(SA) and Levenberg-Marquardt (LM). 
The first problem studied is the radiative transfer phenomenon, modeled with an integro-
differential equation known as Boltzmann equation. This equation describes mathematically 
the interaction of the radiation with the participating medium, i.e., a medium that may 
absorb, scatter and emit radiation. The inverse radiative transfer problem considered the 
simultaneous estimation of the absorption and scattering coefficients of a two-layer 
medium, using measured exit radiation intensities. In this sense, a study is presented 
regarding the estimation of radiative properties using ANN and hybrid methods combining 
ANN and LM. 
Then, the inverse problem of simultaneous heat and mass transfer modeled by Luikov 
equations is studied using a hybrid combination of the ANN, LM and SA. Direct and 
inverse problems are presented, formulated and solved. An ANN was used to generate the 
initial guess for the LM, another ANN to approximate the gradient needed by LM, and 
finally the global minimum was searched using the SA. The experimental data used was 
generated using the solution for the direct problem with the addition of artificial noise. 
The gas-liquid interface adsorption isotherm identification is also investigated using the 
same hybrid approach, that is, the combination of an ANN, LM and SA methods. The 
bubble and foam fractionation columns system works basically through the injection of a 
gas at the base of a column containing the solution. The gas bubbles formed in the 
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distributor rise and along this path adsorb the solute, which is extracted in the foam region, 
formed above the bubble column. The inverse problem approach described allows the 
determination of the adsorption isotherms needed to solve the mathematical and numerical 
models developed.  

2. Formulation of the direct heat and mass transfer problems 

2.1 Radiative transfer 

Consider the problem of radiative transfer in a composite medium with two plane-parallel, 
isotropically scattering, gray layers, with diffusely reflecting boundary surfaces and 
interface, as shown in Fig. 1. The medium is subjected to external irradiation at both sides 
with intensity ( )1f μ  at 0x =  and ( )2f μ  at 1 2x L L= + , where μ  is the cosine of the polar 
angle, and 1L  and 2L  represent the thickness of layers 1 and 2, respectively. 
 

 
Fig. 1. Two-layer semitransparent medium. 

The mathematical formulation of the direct steady-state radiative transfer problem with 
azymuthal symmetry is given by (Özisik, 1973) 
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 ( ) ( ) ( ) ( )
1

2 1 2 1 1 3 2 1
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, 1 , 2 , , 0I L I L I L dμ ρ μ ρ μ μ μ μ′ ′ ′= − + − >∫  (2b) 

 ( ) ( ) ( )
1

2 1 2 2 4 2 1 2
0

, 2 , , 0I L L f I L L dμ μ ρ μ μ μ μ′ ′ ′+ = + + <∫  (2c) 

where ( ),iI x μ   represents the radiation intensity in layer i , with 1 2i or= , iβ , is the total 
extinction coefficient 

 
i ii a skβ σ= +  (3) 

iak  is the absorption coefficient, 
isσ  is the scattering coefficient, and jρ  are the diffuse 

reflectivities, with 1, ,4j = … . 
When the geometry, the radiative properties, and the boundary conditions are known, 
problem (1-2) may be solved yielding the values of the radiation intensities ( )1 ,I x μ , for 

10 x L≤ ≤  and 1 1μ− ≤ ≤ , and ( )2 ,I x μ , for 1 1 2L x L L≤ ≤ +   and 1 1μ− ≤ ≤ . This is the 
direct problem. For the solution of the direct problem we use in the present work a 
combination of Chandrasekhar’s discrete ordinates method (Chandrasekhar, 1960) with the 
finite difference method (Soeiro and Silva Neto, 2006). 

2.2 Drying (simultaneous heat and mass transfer) 

In Fig. 2, adapted from Mwithiga and Olwal, 2005, it is represented the drying experiment 
setup considered in this section. In the approach considered it was introduced the 
possibility of using a scale to weight the samples, and sensors to measure temperature in the 
sample, as well as inside the drying chamber.  
 

 
Fig. 2. Drying experiment setup (Adapted from Mwithiga and Olwal, 2005). 

In accordance to the schematic representation shown in Fig. 3, consider the problem of 
simultaneous heat and mass transfer in a one-dimensional porous media in which heat is 
supplied to the left surface of the porous media, at the same time that dry air flows over the 
right boundary surface. 
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Fig. 3. Drying process schematic representation. 

The mathematical formulation used in this work for the direct heat and mass transfer 
problem considered a constant properties model, and in dimensionless form it is given by 
(Luikov and Mikhailov, 1965; Mikhailov and Özisik, 1994), 

 
( ) 2 2

1 1 2
2 2

,X

X X

θ τ θ θα β
τ

∂ ∂ ∂
= −

∂ ∂ ∂
, 0 1,   0X τ< < >  (4) 
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∂ ∂ ∂
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subject to the following initial conditions, for 0 1X≤ ≤     
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where 

 1  Ko Lu Pnα ε= +  (12) 

  Ko Luβ ε=  (13) 
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 ( )1 1*
m mBi Bi ε Pn Ko Lu⎡ ⎤= − −⎣ ⎦  (14) 

and the dimensionless variables are defined as 
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 m
m

m

h l
Bi
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( )0s

ql
Q

k T T
=

−
, heat flux (24) 

When the geometry, the initial and boundary conditions, and the medium properties are 
known, the system of equations (4-11) can be solved, yielding the temperature and moisture 
distribution in the media. The finite difference method was used to solve the system (4-11). 
Many previous works have studied the drying inverse problem using measurements of 
temperature and moisture-transfer potential at specific locations of the medium. But to 
measure the moisture-transfer potential in a certain position is not an easy task, so in this 
work it is used the average quantity 

 ( ) ( )
0

1
,

x l

x

u t u x t dx
l

=

=

= ∫  (25) 
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or  

 ( )
1

2 2
0

( , )
X

X

X dXθ τ θ τ
=

=

= ∫  (26) 

Therefore, in order to obtain the average moisture measurements, ( )u t , one have just to 
weight the sample at  each time (Lugon and Silva Neto, 2010, Silva Neto et al., 2010).  

2.3 Gas-liquid adsorption 

The mechanism of proteins adsorption at gas-liquid interfaces represented in Fig. 4 has been 
the subject of intensive theoretical and experimental research, because of the potential use of 
bubble and foam fractionation columns as an economically viable means for surface active 
compounds recovery from diluted solutions, (Özturk et al., 1987; Deckwer and Schumpe, 
1993; Graham and Phillips, 1979; Santana and Carbonell, 1993a,b; Santana, 1994; Krishna 
and van Baten, 2003; Haut and Cartage, 2005; Mouza et al., 2005; Lugon, 2005). 
The system works basically through the gas injection at the base of a column containing the 
solution. The gas bubbles formed in the distributor rise and along this path adsorb the 
solute. In the foam region, formed above the bubble column, the extraction of the material of 
interest is made (see Fig. 4). 
The direct problem related to the gas-liquid interface adsorption of bio-molecules in bubble 
columns consists essentially in the calculation of the depletion, that is, the reduction of 
solute concentration with time, when the physico-chemical properties and process 
parameters are known. 
 

 
Fig. 4. Gas-liquid adsorption process in a bubble and foam column. 

The solute depletion is modeled by 

 
6

1

vdC gb
dt Hdg bε

= − Γ
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (27) 
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where bC  is the liquid solute concentration (bulk), bd  is the bubble diameter, H  is the 
bubble column height, gv  is the superficial velocity (gas volumetric flow rate divided by the 
area of the transversal section of the column, A), and Γ  is the surface excess concentration of 
the adsorbed solute. 
The symbol gε  represents the gas volumetric fraction, which can be calculated from the 
dimensionless correlation of Kumar (Özturk et al., 1987),  

 2 30.728 0.485 0.095g U U Uε = − +  (28) 

where  
( )

1
42

l
g

l g

U v
g

ρ
γ ρ ρ

⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦

 (29) 

lρ  is the liquid density, γ  is the surface tension, g  is the gravity acceleration, and gρ  is the 
gas density. 
The quantities Γ  and C  are related through adsorption isotherms such as:  
i. Linear isotherm 

 B KCΓ = +  (30) 
ii. Langmuir isotherm 

 
( )
( )

1
1

1

1

1

K T C

â K T C

⎡ ⎤
Γ = ⎢ ⎥

+⎢ ⎥⎣ ⎦
 (31) 

iii. Two-layer isotherm 

 
( ) ( )

( )
1 1 2

1 2
1 1

( )exp 1

1 exp
t

K T C K T âC

â K C

λ

λ

⎡ ⎤− Γ +⎣ ⎦Γ = Γ + Γ =
⎡ ⎤+ − Γ⎣ ⎦

 (32) 

where 1Γ  and 2Γ  are the excess superficial concentration in the first and second adsorption 
layers respectively (see Fig. 4). 
Considering that the superficial velocity, bubble diameter and column cross section are 
constant along the column, 

 ( ) ( ) ( ) ( ),,

6
l b b s

g

k a d C t C z tz t

z v

⎡ ⎤−∂Γ ⎣ ⎦=
∂

 (33) 

where z  represents the spatial coordinate along the column, sC  is the solute concentration 
next to the bubbles and ( )lk a  is the volumetric mass transfer coefficient. 
There are several correlations available for the determination of ( )lk a  but following the 
recommendation of Deckwer and Schumpe (1993) we have adopted the correlation of 
Öztürk et al. (1987) in the solution of the direct problem: 

 

0,68 0,04
0,5 0,33 0,290,62

g g

lb

v
Sh Sc Bo Ga

gd

ρ

ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (34) 
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where 

 l

i

Sc
D

ν⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, Schmidt number (35) 

 
( ) 2

l b

i

k a d
Sh

D
= , Sherwood number (36) 

 l

i

Bo
D

ν
= , Bond number (37) 

 
3

2
b

l

gd
Ga

ν
= , Galilei Number (38) 

where iD  is the tensoactive diffusion coefficient and lν  is the liquid dynamic viscosity. 
Combining Eqs. (27) and (33) and using an initial condition, such as 0b bC C=  when 0t = , 
and a boundary condition, like 0Γ =  at 0z = , the solute concentration can be calculated as 
a function of time, ( )bC t . Santana and Carbonell (1993a,b) developed an analytical solution 
for the direct problem in the case of a linear adsorption isotherm and the results presented a 
good agreement with experimental data for BSA (Bovine Serum Albumin). 
In order to solve Eq. (27) a second order Runge Kutta method was used, known as the mid 
point method. Given the physico-chemical and process parameters, as well as the boundary 
and initial conditions, the solute concentration can be calculated for any time t  (Lugon et 
al., 2009). 

3. Formulation of inverse heat and mass transfer problems 

The inverse problem is implicitly formulated as a finite dimensional optimization problem 
(Silva Neto and Soeiro, 2003; Silva Neto and Moura Neto, 2005; Silva Neto and Becceneri, 
2009), where one seeks to minimize the cost functional of squared residues between the 
calculated and experimental values for the observable variable, 

 ( ) ( ) ( ) ( ) ( )
T T

calc meas calc measS = − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦P V P V P W V P V P F F  (39a) 

where measV  is the vector of measurements, calcV  is the vector of calculated values, P  is the 
vector of unknowns, W  is the diagonal matrix whose elements are the inverse of the 
measurement variances, and the vector of residues F  is given by 

 ( ) ( )calc meas= −F V P V P  (39b) 

The inverse problem solution is the vector *P  which minimizes the norm given by Eq. (39a), 
that is 

 *( ) min ( )S S=
P

P P  (40) 

Depending on the direct problem considered, as described in sections 2.1 - 2.3, different 
measurements are to be taken, that is: 
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a. Radiative problem 

We are interested in obtaining estimates for the vector of unknowns P , given by: 
1sσ , 

1ak , 

2sσ  and 
2ak . Measured data were used on the emerging radiation intensity acquired at  the 

boundary surfaces 0x =  and 1 2x L L= + , and the interface 1x L= , iY , with  1,2, ,i N= … , 
being N  the total number of experimental data. 
b. Drying problem 

Using temperature measurements, T , taken by sensors located inside the medium, and the 
average of the moisture-transfer potential, u , during the experiment, we try to estimate the 
vector of unknowns P , for which a combination of variables was used: Lu  (Luikov 
number), δ  (thermogradient coefficient), r c  (relation between latent heat of evaporation 
and specific heat of the medium), h k  (relation between heat transfer coefficient and 
thermal conductivity), and m mh k  (relation between mass transfer coefficient and mass 
conductivity). 
c. Gas-liquid adsorption problem 

Different vectors of unknowns P  are possibly considered, which are associated with 
different adsorption isotherms: (i) K  and B  (Linear isotherm); (ii) 1( )K T  and â  (Langmuir 
isotherm); (iii) 1( )K T , 2( )K T , λ  and â  (two-layers isotherm). Here the BSA (Bovine Serum 
Albumin) adsorption phenomenon was modeled using a two-layer isotherm. 

4. Solution of the inverse problems with Artificial Neural Networks, simulated 
annealing and hybrid methods 

Instead of going directly to the description of the inverse problem solution methods, we 
opted for presenting first the approach considered in the analysis of the sensitivity of the 
observable variables with respect to the unknown parameters to be determined with the 
inverse problem solution.  

4.1 Design of experiments  

The sensitivity analysis plays a major role in several aspects related to the formulation and 
solution of an inverse problem (Dowding et al., 1999; Beck, 1988). Such analysis may be 
performed with the study of the sensitivity coefficients. Here we use the modified, or scaled, 
sensitivity coefficients 

 ( )
( )

, 1,2,...,
jP V t j p

j

V t
Y P j N

P

∂
= =

∂
 (41) 

where V  is the observable state variable (which can be measured), jP  is a particular 
unknown of the problem, and pN  is the total number of unknowns considered. 
As a general guideline, the sensitivity of the state variable to the parameter we want to 
determine must be high enough to allow an estimate within reasonable confidence bounds. 
Moreover, when two or more parameters are simultaneously estimated, their effects on the 
state variable must be independent (uncorrelated). Therefore, when represented graphically, 
the sensitivity coefficients should not have the same shape. If they do it means that two or 
more different parameters affect the observable variable in the same way, being difficult to 
distinguish their influences separately, which yields to poor estimations. 
Another important tool used in the design of experiments is the study of the matrix 
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1 1 2 2 1

1 2 2 2 2

1 2

...

...

... ... ... ...

...

NP

NP

m m N mP

P V P V P V

P V P V P V

P V P V P V

Y Y Y

Y Y Y

Y Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y  (42) 

where iV  is a particular measurement of the observable variable, i.e. radiation intensity, 
concentration, temperature or moisture potential, and m  is the total number of measurements. 
Maximizing the determinant of the matrix TY Y  results in higher sensitivity and 
uncorrelation (Beck, 1988). 

4.2 Artificial Neural Network (ANN) 

The multi-layer perceptron (MLP) is a collection of connected processing elements called 
nodes or neurons, arranged in layers (Haykin, 1999). Signals pass into the input layer nodes, 
progress forward through the network hidden layers and finally emerge from the output 
layer (see Fig. 5). Each node i is connected to each node j in its preceding layer through a 
connection of weight, ijw , and similarly to nodes in the following layer. 
In order to solve the inverse problem we use here a multi-layer perceptron (MLP) neural 
network (Soeiro et al., 2004). In Fig. 5 is given a representation of the MLP with the input 
and output layers, and one hidden layer for the solution of the inverse problem of 
determining the vector of unknowns P . By providing measV  at the input layer we expect 
that the ANN will provide at the output layer an estimate for P . 
Each neuron j , with 1,2, , Hj N= … , in the hidden layer performs a linear combination of 
the input values provided at the input layer 

 (1) (1) (1) (1)
0 0

1 1
, 1,2, ,

N N

j i i Hji j ji j
i i

p w x w w Y w j N
= =

= + = + =∑ ∑ …  (43) 

where (1) , 1,2,..., , 1,2,...,Hjiw j N i N= =  are the weights of the connections between the 
nodes of the input layer and the neurons of the hidden layer, N  is the number of nodes in 
the input layer, and HN  is the number of neurons in the hidden layer. 
The weighted sum jp  given by Eq. (43) is viewed as an excitation to neuron j  of the hidden 
layer, which provides in response 

 ( ) , 1,2,...,j j Hq f p j N= =  (44) 

where ( ).f  is an activation function. Various choices for the function ( ).f  are possible 
(Haykin, 1999). 
Each neuron k , 1,2,..., unk N=  of the output layer performs a linear combination of the 
response jq , 1,2,..., Hj N= , of the neurons of the hidden layer 

 (2) (2)
0

1
, 1,2,...,

HN

k j unkj k
j

s w q w k N
=

= + =∑  (45) 

where (2)
kjw , 1,2,..., uk N= , 1,2,..., Hj N= , are the weights of the connections between the 

neurons of the hidden layer and the neurons of the output layer, and unN  is the number of 
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neurons in the output layer, which coincides with the number of unknowns of the inverse 
problem.. 
The weighted sum ks  given by Eq. (45) is viewed as an excitation to neuron k  of the output 
layer, which provides in response 

 ( )k kt g s= ,        1,2,..., unk N=  (46) 

where ( ).g  is an activation function. Various choices for the function ( ).g  are possible 
(Haykin, 1999). 
Combining Eqs. (43-46) we get 

 (2) (1) (1) (2)
0 0

1 1

HN N

k iji jkj k
j i

t g w f w Y w w
= =

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑            1,2,..., unk N=  (47) 

Considering available the experimental data , 1,2,...,iY i N= , we observe in Eq. (47) that kt , 
1,2,..., unk N= , are estimates for the unknowns kZ , 1,2,..., unk N= , obtained by the ANN. 

But before we can use Eq. (47) we must determine the weight parameters (1)w  and (2)w . 
 

 
Fig. 5. Multi-layer perceptron network with one hidden layer for the inverse radiative 
transfer problem. 

The determination of the weights (1)w  and (2)w  is accomplished by presenting a set of 
patterns (known input exactP  and outputs exactV ) and calculating the weights that provides 
the best match between the calculated values t  and the target values exactP . The patterns 
used in this supervised training stage of the ANN were generated by calculating the values 

exactV  from known sets exactP  with the discrete ordinates and finite difference solution 
(Soeiro and Silva Neto, 2006; Silva Neto and Becceneri, 2009). 
For the determination of (1)w  and (2)w  we used the back propagation algorithm. We start 
with an initial guess for the weights, (1)nw , (2)nw , with 0n = , and the set of inputs V  is 
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passed forward through the network yielding trial outputs 0n=t  which are compared with 
the desired outputs exactP  leading to the errors, 

 
n
kexactk

n
k tPe −= ,  unNk ,...,2,1=  (48) 

The weights are then adjusted using the information provided by the output error (Haykin, 
1999) 

 (2) 1 (2) (2)(2)n n n n
jkj kj kw w qη δ+ = +  (49a) 

 (1) 1 (1) (1)(1)n n n
iji ji jw w Yη δ+ = +  (49b) 

where 

 ( )(2)n n n
k kk e g sδ ′=  (50a) 

 ( )(1) (2) (2)

1

uN
n n nn

jj k kj
k

f p wδ δ
=

′= ∑  (50b) 

( )1η  and ( )2η  are the learning rates, which can assume different values for the weights 
between input-hidden layers (1) and hidden-output layers (2). 
The forward and backward sweeps procedure is continued until a convergence criterion 
related to errors  ke , 1,2,..., unk N= , is satisfied. 
The presentation of a full set of patterns is denominated epoch. After one epoch is 
completed the set of patterns is presented again, in a different (random) order. After a 
number of epochs, once the comparison error is reduced to an acceptable level over the 
whole training set, the training phase ends and the ANN is established. 

4.3 Simulated Annealing method (SA) 

Based on statistical mechanics reasoning, applied to a solidification problem, Metropolis et 
al. (1953) introduced a simple algorithm that can be used to accomplish an efficient 
simulation of a system of atoms in equilibrium at a given temperature. In each step of the 
algorithm a small random displacement of an atom is performed and the variation of the 
energy ΔE is calculated. If ΔE<0 the displacement is accepted, and the configuration with the 
displaced atom is used as the starting point for the next step. In the case of ΔE>0, the new 
configuration can be accepted according to Boltzmann probability, 

 ( ) ( )exp / BP E E k TΔ = −Δ  (51) 

A uniformly distributed random number p in the interval [0,1] is calculated and compared 
with P(ΔE). Metropolis criterion establishes that the new configuration is accepted if 
p<P(ΔE), otherwise it is rejected and the previous configuration is used again as a starting 
point. 
Using the objective function ( )S P , given by Eq. (39a), in place of energy and defining 
configurations by a set of variables { } , 1,2,...,i pP i N= where Np represents the number of 
unknowns we want to estimate, the Metropolis procedure generates a collection of 
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configurations of a given optimization problem at some temperature T (Kirkpatric et al., 
1983). This temperature is simply a control parameter. The simulated annealing process 
consists of first “melting” the system being optimized at a high “temperature”, then 
lowering the “temperature” until the system “freezes” and no further change occurs. 
The main control parameters of the algorithm implemented (“cooling procedure”) are the 
initial “temperature”, 0T , the cooling rate, tr , number of steps performed through all 
elements of vector P , sN , number of times the procedure is repeated before the 
“temperature” is reduced, tN , and the number of points of minimum (one for each 
temperature) that are compared and used as stopping criterion if they all agree within a 
tolerance ε , Nε . 

4.4 Levenberg-Marquardt method (LM) 

The Levenberg-Marquardt is a deterministic local optimizer method based on the gradient 
(Marquardt, 1963). In order to minimize the functional ( )S P  we first write 

 ( ) 0 0T TdS d

d d
= = → =F F J F

P P
 (52) 

where J  is the Jacobian matrix, with the elements  ps p sJ V P= ∂ ∂   being  1,  2,  ...,  p M= , 
and 1,  2,  ...,  ps N= , where M  is the total number of measurements and pN  is the number 
of unknowns. It is observed that the elements of the Jacobian matrix are related to the scaled 
sensitivity coefficients presented before. 
Using a Taylor’s expansion and keeping only the terms up to the first order, 

 ( ) ( )+ Δ ≅ + ΔF P P F P J P  (53) 

Introducing the above expansion in Eq. (52) results 

 ( )T TΔ = −J J P J F P  (54) 

In the Levenberg-Marquardt method a damping factor nγ  is added to the diagonal of 
matrix TJ J   in order to help to achieve convergence. 
Equation (54) is written in a more convenient form to be used in the iterative procedure, 

 ( ) ( ) ( )n n T n n n T nγ⎡ ⎤Δ = − +⎣ ⎦P J J I J F P  (55) 

where I  is the identity matrix and n  is the iteration index. 
The iterative procedure starts with an estimate for the unknown parameters, 0P , being new 
estimates obtained with 1n n n+ = + ΔP P P , while the corrections nΔP  are calculated with Eq. 
(55). Actually in most cases the vector nPΔ  is obtained directly from the solution of the 
linear system of equations (54). This iterative procedure is continued until a convergence 
criterion such as 

 ,       1,  2,  ,  n n
k k pP P n NεΔ < = A  (56) 

is satisfied, where ε  is a small number, e.g. 10-5. 
The elements of the Jacobian matrix, as well as the right side term of Eq. (54), are calculated 
at each iteration, using the solution of the direct problem with the estimates for the 
unknowns obtained in the previous iteration. 
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In order to calculate the gradient, a central difference approximation was used (Lugon Jr. 
and Silva Neto, 2010; Silva Neto et al., 2010) 

 
( ) ( )

2

V P P V P PV

P P

+ Δ − − Δ∂
=

∂ ×Δ
 (57) 

In the beginning of the process, an ANN trained to solve the direct problem was used to 
approximate ( )V P P+ Δ  and ( )V P P− Δ . This faster scheme proved to be accurate enough 
to begin the process. Afterwards, the direct problem solution itself was used in Eq. (57) and 
although being slower, it offers better results at the final stages of the LM method. 

4.5 Hybrid combination of ANN, LM and SA optimizers 

Due to the complexity of the design space, if convergence is achieved with a gradient based 
method it may in fact lead to a local minimum. Therefore, global optimization methods are 
required in order to reach better approximations for the global minimum. The main 
disadvantage of these methods is that the number of function evaluations is high, becoming 
sometimes prohibitive from the computational point of view (Soeiro et al., 2004). 
In this chapter different combinations of methods are used for the solution of inverse heat 
and mass transfer problems, involving in all cases Artificial Neural Networks: 
a. when solving  radiative inverse problems, it was used a combination of the ANN and 

LM; 
b. when solving adsorption and drying inverse problems, it was used a combination of 

ANN, LM and SA. 
Therefore, in all cases studied ANN was used after the training stage in order to quickly 
provide an inverse problem solution. This solution was used as an initial guess for the LM. 
In order to improve the solution, we have also studied the combination of ANN, LM and SA 
methods. After using LM, reaching within a few iterations a point of minimum, we run the 
SA. If the same solution is reached, it is likely that a global minimum was reached, and the 
iterative procedure is interrupted. If a different solution is obtained it means that the 
previous one was a local minimum, otherwise we could run again the LM and SA until the 
global minimum is reached. 

5. Test case results 

As real data for the three problems considered were not available we simulated the 
experimental data using 

 p p pmeas calc
V V r σ= +  , 1,2,..., pp N=  (58) 

where pr  is a random number in the range 1,1−⎡ ⎤⎣ ⎦  and σ  simulates the standard deviation 
of the measurements error. 

5.1 Radiative transfer problem 

In Table 1 we present the results obtained with the LM method starting with the initial 
guess: 

1
0.10sσ = 1cm− , 

1
0.8ak =  1cm− , 

2
0.10sσ = 1cm−  and 

2
0.8ak = 1cm−  for the particular 

case with the exact values for the unknowns 
1

0.45sσ = 1cm− , 
1

0.05ak = 1cm− , 

2
0.45sσ = 1cm−  and 05.0

2
=ak  1cm−  (maximum noise in the experimental data = 8%,  
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i.e. σ = 0.002 in Eq. (58). Note that LM does not converge with such initial guesses for the 
unknown parameters. 
For the test case presented it is also considered 1 2 2L L cm= = , 1 0.1ρ = , 2 3 0ρ ρ= = , 

4 0.9ρ = , 1 1.0f =  and 2 0f = , which represents a difficult test case. 
 

Iteration 
1sσ ( 1cm− ) 

1ak ( 1cm− ) 
2sσ ( 1cm− ) 

2ak ( 1cm− ) Obj. Func. 
[Eq.(39a)] 

0 0.10 0.8 0.10 0.8 7.439 
5 0.52 0.049 2.1E09 0.01 6.86E-01 

10 0.45 0.05 5.5E07 3.7E07 1.216 

Table 1. Estimates obtained with LM (10 iterations). Noisy data (8%) 

In Table 2 are shown the results for the same test case using ANNs, and in Tables 3 and 4 are 
presented the results obtained when the ANN is used to generate the initial guess for the 
LM method. Here we used noisy data (maximum 8%), i.e., σ = 0.002 in Eq. (58). The 
experimental data used for the solution of the inverse problem consisted of a set of 40 
radiation intensities measured at different polar angles, 20 intensities measured by external 
detectors and 20 intensities measured by internal detectors located at the interface between 
the two-layers, i.e. 1x L= . Therefore, there are N = 40 entries in the input layer of the ANN. 
For the hidden layer we considered NH = N = 40. We used 500 patterns (NP) and a 
decreasing number of epochs (NE) in order to save computational time. 
In this work the Neural Network Toolbox of the software MATLAB (Mathworks, Inc.) was 
used with the following neuron model in the backpropagation network: 40 elements in the 
input vector, log-sigmoid (logsig) transfer (activation) function between the input layer and 
the hidden layer (with 40 elements) and a linear transfer function (purelin) in the output 
layer (with 4 elements in the output vector). 
 

Estimates (ANN) 

NE CPU time(min) 1sσ  

( 1cm− ) 

1ak  

( 1cm− ) 

2sσ  

( 1cm− ) 

2ak  

( 1cm− ) 

500 120 0.40 0.01 0.43 0.01 
200 48 0.34 0.01 0.33 0.01 
100 22 0.35 0.09 0.32 0.09 
30 7,5 0.50 0.10 0.60 0.05 

Exact values: 
1

45.0
21

−== cmss σσ , 
1

05.0
21

−== cmkk aa  

Table 2. Neural Network solutions for the inverse problem and CPU time considering 
different number of epochs (NH = 40, NP = 500) and noisy data (8%) 

It can be observed from Table 2 that the ANN did not provide good estimates for the 
unknowns. An improvement can be obtained, but at the expense of a higher CPU time 
requirement. A different strategy is then adopted with a hybridization ANN-LM. In Table 3 
are presented the results obtained with such hybridization in which the former method 
provides an initial guess for the latter. The solution of the ANN was obtained considering 
100 epochs in the training stage of the ANN. An improvement in the results of the inverse 
problem is then observed. 
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Noise ANN estimates Results (LM) 

 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
8% 0.35 0.09 0.32 0.09 0.447 0.050 0.455 0.050 
4% 0.40 0.03 0.45 0.04 0.450 0.050 0.445 0.049 
2% 0.39 0.04 0.42 0.05 0.450 0.049 0.449 0.050 
0% 0.37 0.04 0.40 0.05 0.45 0.05 0.45 0.05 

Table 3. Combined method results with ANN to obtain estimates for the LM, with noisy 
data and number of epochs NE = 100. Exact values 

1
0.450sσ = , 

1
0.05ak = , 

2
0.450sσ =  and 

2
0.050ak =  

In Table 4 are shown the results obtained using also the hybridization ANN-LM, but now 
with only 30 epochs in the training stage of the ANN. It can also be observed that very good 
results are obtained for the inverse problem. 
 

Noise ANN estimates Results (ANN-LM) 

 1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
1sσ  

( 1cm− ) 
1ak  

( 1cm− ) 
2sσ  

( 1cm− ) 
2ak  

( 1cm− ) 
8% 0.50 0.10 0.60 0.05 0.447 0.050 0.455 0.050 
4% 0.49 0.01 0.47 0.01 0.450 0.050 0.445 0.049 
2% 0.54 0.03 0.53 0.04 0.449 0.050 0.449 0.050 
0% 0.51 0.02 0.49 0.04 0.45 0.05 0.450 0.050 

Table 4. Combined method results with ANN providing estimates for the LM, with noisy 
data and number of number of epochs NE = 100. Exact values 

1
0.450sσ = , 

1
0.05ak = , 

2
0.450sσ =  and 

2
0.050ak =  

It must be stressed that the solution of the inverse problem with either the LM or ANN 
methods using only external detectors led to non-unique solutions of the inverse radiative 
transfer problem. That is the reason why internal detectors located at the interface of the two 
layers were also considered for the solution of the inverse problem. 

5.2 Drying (simultaneous heat and mass transfer) 

Much research effort has already been made in order to estimate the Possnov, Kossovitch, 
heat Biot and mass Biot numbers (Dantas et al., 2003; Huang and Yeh, 2002; Lugon Jr. and 
Silva Neto, 2004), but it was considered the possibility of optimizing the number and 
location of temperature sensors, experiment duration, etc. In this work instead, δ , r c , h k  
and m mh k  are estimated using an “optimum” experiment (Dowding et al., 1999 and Beck, 
1988) for wood drying, and doing so, it was also considered the following process control 
parameters: heat flux, Q , the medium width, l , the difference between the medium and the 
air temperatures, 0sdT T T= − , and the difference between the medium and the air moisture 
potential, *

0
= −du u u .  

There is no difference between the sensitivity coefficients for the two sets of variables, that 
is, the scaled sensitivity coefficients are exactly the same for both vectors 

{ }, , , , ,
T

q mLu Pn Ko Bi Bi ε and { }, , , , ,
T

m m
Lu r c h k h kδ ε , 
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 ( ) ( ) ( ) ( ), ,
, ,

V X V X
SC X Pn SC XPnPn

τ τ
τ δ τδ δ

∂ ∂
= = =

∂ ∂
 (59a) 

 ( ) ( ) ( ) ( ), ,
, ,

V X V X
SC X r c Ko SC Xr c Kor c Ko

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59b) 

 ( ) ( ) ( ) ( ), ,
, ,q

qq

V X V X
SC X h k Bi SC Xh k Bih k Bi

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59c) 

 ( ) ( ) ( ) ( ), ,
, ,m mm

m mm m mm

V X V X
SC X h k Bi SC Xh k Bih k Bi

τ τ
τ τ

∂ ∂
= = =

∂ ∂
 (59d) 

The reasons for changing the estimated variables are the use of the design of experiment tools 
and interpretation. Consider the heat and mass Biot numbers for example. If one changes the 
media width, l , both heat and mass Biot numbers change. The mathematical problem would 
be different, even though the material is still the same, because one is estimating two different 
heat and mass Biot numbers. In order to solve this problem, it was decided to estimate the 
relation between heat transfer coefficient and thermal conductivity, h k , and the relation 
between mass transfer coefficient and mass conductivity, m mh k , so that we could change the 
media width and continue with the same value for both variables to be estimated. 
The same idea was used, choosing to estimate the thermogradient coefficient (δ ) and the 
relation between latent heat of evaporation and specific heat of the medium ( r c ), instead of 
the Possnov ( Pn ) and Kossovitch ( Ko ) numbers. Doing so, one is able to optimize the 
experiment considering the difference between the medium and the air temperatures, 

0sdT T T= − , and the difference between the moisture-transfer potential between the 
medium and the air, *

0du u u= − , without affecting the estimated parameters values. 
In Fig. 7 is represented the variation of the value of the matrix TY Y  determinant as a 
function of the temperature differences and moisture potential differences between the 
medium and the air flowing over it. It is not difficult to understand that one could not build 
such a graph using a vector of unknown parameters containing Possnov ( Pn ) and 
Kossovitch ( Ko ) numbers. In order to achieve greater sensitivities, while the temperature 
difference has to be the lowest, the moisture potential difference has to be the highest 
possible.  The solid square represents the chosen designed experiment, considering the 
existence of practical difficulties that may limit our freedom of choice. 
 

 

Fig. 7. Determinant of matrix TY Y  as a function of temperature ( dT ) and moisture 
potential ( du ) differences. 
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In Fig. 8 are represented the values of the determinant of matrix TY Y  for different values of 
the heat flux Q  and media thickness l . It is also easy to understand that one could not build 
such a graph using a vector of unknown parameters containing heat and mass Biot 
numbers. For practical reasons it was chosen to limit the sample temperature to 130° C. In 
Fig. 8 the same curve has a continuous-line part and a dashed-line one, when the sample 
temperature exceeds the limit of 130° C. The solid square shows the chosen designed 
experiment. 
 

 

Fig. 8. Determinant of TY Y  matrix for different values of the heat flux Q and medium 

thickness l . 

Considering the previous analysis of the sensitivity graphs and matrix the YY
T  

determinant, it was designed the experiment whose geometric and process parameters are 
shown in Table 5. Since the average moisture potential, u , is more difficult to measure than 
the temperature, 1θ , the measurement interval for the average moisture potential, uτΔ , was 
considered larger than the interval for the temperature 

1θτΔ .  
 

Geometric or process parameter Values Geometric or process parameter Values 

0sdT T T= −  12 oC Q  6.0 

0T  24 oC l  0.03 m 

sT  36 oC 0τ  0 
*

0du u u= −  78 oM fτ  20 

0u  86 oM 1θτΔ  0.2 
*u  8 oM uτΔ  1 
ε  0.2 - - 

0τ  and fτ  represent the initial and sampling times, respectively. 

Table 5. Reference values for the designed experiment. 

An experiment was designed to perform the simultaneous estimation of Lu , δ , r c , h k  
and m mh k . In order to study the proposed method, since real experiment data were not 
available, we generated synthetic data using 

 
11 1 ( )

i imeas calc exact iP rθθ θ σ= +
f

, 
1

1,  2,  ...,  i Mθ=  (60a) 
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 ( )
i imeas calc exact u iu u P rσ= +

f
, 1,  2,  ...,  ui M=  (60b) 

where ir  are random numbers in the range [-1,1], 
1

Mθ  and uM  represent the total number 
of temperature and moisture-transfer potential experimental data, and 

1θσ  and uσ  
emulates the standard deviation of measurement errors. It was established a standard 
deviation of 

1
0.03θσ =  considering 100 temperature measurements ( 0.2τΔ = ), resulting in a 

maximum error of 2%, and 0.001uσ =  considering 20 moisture measurements ( 1.0τΔ = ), 
resulting in a maximum error of 4%.  
In Fig. 9 the temperature ( 1θ ) and moisture potential ( 2θ ) measurements are presented. The 
continuous line represents the direct problem solution and the squares represent noisy data. 
In order to show a better representation, only 20 temperature ( 1θ ) measurements were 
represented. 
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Fig. 9. Temperature ( 1θ ) and moisture potential ( 2θ ) artificially simulated data. 

The results obtained using the methods LM 1 (gradient approximated by FDM - Finite 
Difference method), LM 2 (gradient approximated by Artificial Neural Networks), ANN, SA 
and hybrid combinations, for different levels of noise represented by different values of the 
standard deviation of measurements errors in temperature and average moisture potential, 

Tσ  and uσ , respectively in Eqs. (60a,b) are  shown in Table 6.  
One observes that when there is no noise, that is, the standard deviation of measurements 
errors are zero, the LM method was able to estimate all variables very quickly (see test cases 
1 and 2). When noise is introduced, the LM is retained by local minima (test cases 3 and 4); 
the ANN did not reach a good solution, but quickly got close to it (test case 5). The ANN 
solution was then used as a first guess for the LM method with good performance in test 
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cases 6 and 7. The SA reached a good solution but required the largest CPU time, and finally 
the combination of all methods was able to reach a good solution, without being retained by 
local minima, and also without taking too much time, i.e. one sixth of the SA time. The time 
shown in the eleventh column of Table 6 corresponds to the CPU time on a Pentium IV 2.8 
GHz processor (Lugon Jr., 2005; Silva Neto et al., 2010). 
 

 
Table 6. Results obtained using LM 1 (partial derivatives obtained with finite differences), 
LM 2 (partial derivatives obtained with Artificial Neural Network), ANN, and, and hybrid 
combinations. 

5.3 Gas-liquid adsorption 

Recently, the inverse problem of interface adsorption has attracted the attention of an 
increasing number of researchers (Lugon Jr., 2005; Forssén et al., 2006; Garnier et al., 2007; 
Voelkel and Strzemiecka, 2007; Ahmad and Guiochon, 2007). 
Based on sensitivity analysis we concluded that in order to solve the inverse problem of gas-
liquid adsorption, considering the two-layer isotherm given by Eq. (32), it was necessary to 
design two different experiments. One to estimate 2( )K T  and â , called experiment 1, and 
another one to estimate λ , called experiment 2. In all cases studied the sensitivity to 1( )K T  
is low and therefore this parameter was not estimated with the inverse problem solution. 
In Fig. 10 are shown the sensitivity coefficients related to the parameters 1( )K T , 2( )K T , λ  
and â  in  experiment 1. It is observed that the sensitivity to 2( )K T  and â  for BSA (Bovine 
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Serum Albumin) are higher than the sensitivity to the other parameters and their shapes are 
different, indicating that these variable are uncorrelated. 
 

 
Fig. 10. Scaled sensitivity coefficients for BSA – Experiment 1. 

In Fig. 11 are shown the sensitivity coefficients related to the parameters 1( )K T , 2( )K T , λ  
and â  for BSA in experiment 2. It is observed that the sensitivity to λ  is higher than the 
sensitivity to the other parameters.  
Another important tool used in the design of experiments is the study of the matrix TY Y , 
that is, maximizing the determinant of the matrix TY Y  results in higher sensitivity and 
uncorrelation (Dowding et al., 1999). 
 

 
Fig. 11. Scaled sensitivity coefficients for BSA – Experiment 2. 

The difference between the two experiments is related to the BSA concentration, being 
larger in the first experiment (see Table 7). 
In Fig. 12 are shown the values of the determinant of the matrix TY Y  for BSA in experiment 
1. The designed experiment is marked with a full square. Its choice is justified by the small 
gain in sensitivity considering the operational difficulties in using a longer column or a 
higher superficial velocity. 
Considering the analysis of the sensitivity graphs and the determinant of the matrix TY Y , 
two experiments were designed, one to estimate 2( )K T  and â , and another to estimate λ , 
as shown in Table 7. 

-

3.0E+02

-

2.5E+02

-

2.0E+02

-

1.5E+02

-

1.0E+02

-

5.0E+01

0.0E+0

0

5.0E+0

1

1.0E+0

2

1.5E+0

2

2.0E+0

2

0 21

0

42

0

63

0

84

0

105

0

126

0

147

0

168

0

189

0

210

0

t (s)

S
e

n
s

it
iv

it
y

 C
o

e
ff

ic
ie

n
t 

[m
g

/l
] 

Y K1

Y K2

Y

Y  â

λ

-6.0E-01

-4.0E-01

-2.0E-01

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

0 120 240 360 480 600 720 840 960 1080 1200

t (s)

S
e
n

s
it

iv
it

y
 C

o
e
ff

ic
ie

n
t 

[m
g

/l
] 

Y k1

Y k2

Y

Y â

λ

www.intechopen.com



Artificial Neural Networks - Application 

 

562 

 

Fig. 12. Matrix TY Y  determinant for BSA – Experiment 1. 

 
Table 7. Reference values for the designed experiment (Lugon, 2005, Lugon et al., 2009). 

The results achieved using the ANN, LM 1 (gradient approximated by FDM), LM 2 
(gradient approximated by ANN), SA and hybrid combinations, for different standard 
deviations for the measurements errors,σ , are  shown in Tables 8 and 9.  
In Table 8 are presented the results obtained for the estimation of 2( )K T  and â , using the 
designed experiment number 1. Test cases 3-9 used simulated artificial data generated with  
 

 

The exact values used are: 2

2 0.0104 / ( %)k mg m wt=  and 2
0.322 /â m mg= . 

Table 8. Results obtained using ANN, LM 1, LM 2, SA and hybrid combinations for 
experiment 1. 
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the direct problem solution corrupted with white gaussian noise with standard deviation 
10 /mg lσ = , which corresponds to measurement errors of the order of 4%. While in test 

cases  1, 2, 3, 4 and 8 the initial guesses are 2
2 0.0080 /( %)K mg m wt=  and 20.100 /â m mg= ,in 

test cases 6, 7 and 9 the initial guesses are the estimates obtained with the ANN. 
In Table 9 are presented the results obtained for the estimation of λ , using the designed 
experiment number 2. Test cases 3-9  used simulated artificial data generated with the direct 
problem solution corrupted with white gaussian noise with standard deviation 

0.10 /mg lσ = , which corresponds to measurement errors of the order of 3%. While in test 
cases numbers 1, 2, 3, 4 and 8 the initial guess is 20.700 /m mgλ = , in test cases 6, 7 and 9 the 
initial guesses are the estimates obtained with the ANN. 
 

 

The exact value used is: 2
1.117 /m mgλ = . 

Table 9. Results obtained using ANN, LM 1, LM 2, SA and hybrid combinations for 
experiment 2. 

6. Conclusions 

6.1 Radiative transfer 
In this case, Artificial Neural Networks (ANN), Levenberg-Marquardt (LM) and hybrid 
combinations of methods were used to solve the inverse radiative transfer problem. The 
solution with ANN and LM methods using only external detectors led to non-unique 
solutions of the inverse radiative transfer problem. It was demonstrated that the hybid 
combination of ANN-LM obtained better results than using either methods alone.   

6.2 Drying (simultaneous heat and mass transfer) 
The direct problem of simultaneous heat and mass transfer in porous media modeled with 
Luikov equations can be solved using the finite difference method, yielding the temperature 
and moisture distribution in the media, when the geometry, the initial and boundary 
conditions, and the medium properties are known. 
Inverse problem techniques can be useful to estimate the medium properties when they are 
not known. After the use of an experiment design technique, the hybrid combination ANN-
LM-SA resulted in good estimates for the drying inverse problem using artificially 
generated data. 
The design of experiments technique is of great importance for the success of the estimation 
efforts, while previous works studied the estimation of Lu , Pn , Ko , qBi  and mBi ,  here is 
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considered Lu , δ , r c , h k  and m mh k . The main advantage of such approach is to be able 
to design an “optimum” experiment using different medium width, l , porous medium and 
air temperature difference, 0sT T− , and porous medium and air moisture potential 
difference, *

0u u− . 
The combination of deterministic (LM) and stochastic (ANN and SA) methods achieved 
good results, reducing the time needed and not being retained by local minima. The use of 
ANN to obtain the derivatives in the first steps of the LM method reduced the time required 
for the solution of the inverse problem. 

6.3 Gas-liquid adsorption 

After the use of an experiment design technique, the hybrid combination ANN-LM-SA 
resulted in good solutions for the gas-liquid adsorption isotherm inverse problem. 
The use of the ANN to obtain the derivatives in the first step of the LM method reduced the 
time necessary to solve the inverse problem.  
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