
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322394139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

9

Size-Based Software Cost Modelling
with Artificial Neural Networks

and Genetic Algorithms

Efi Papatheocharous1 and Andreas S. Andreou2
1Department of Computer Science, University of Cyprus

2Department of Electrical Engineering and Information Technology,
Cyprus University of Technology

Cyprus

1. Introduction

Accurate software cost estimation has always been a major concern especially for people
involved in project management, resource control and schedule planning. A high-quality
and reliable development effort estimate could provide more efficient planning and control
over the whole software process and guide a project to success. As literature shows many
researchers proposed a plethora of methods and techniques to model the relationship
between software size and the actual development costs (Jørgensen & Shepperd, 2007).
However, the track record of IT projects shows that often a large number fails. Most IT
experts agree that such failures occur more regularly than they should (Charette, 2005).
According to the 10th edition of the annual CHAOS report from the Standish Group that
studied over 40,000 projects in 10 years, it seems that success rates increased to 34% and
failures declined to 15% of the projects. Even though success rates increased, still, 51% of the
projects overrun time/budget, lack critical features and requirements and/or important
quality requirements are compromised. Furthermore, average software costs are apparently
overrun by 43% (Software Magazine, 2004). One of the main reasons for these figures is
failure to estimate the actual effort required to develop a software project.
A reliable software cost estimation model has always been a major challenge and demand for
project managers at the initiation phase of the project and also an important asset for the whole
process of software development. In addition, there is a large discussion on the discovery of
the relationship between cost drivers and effort, especially of one of the most critical cost
factors, namely software size (Sommerville, 2007). The aforementioned modelling and
estimation problem is further amplified due to the high level of complexity and uniqueness of
each project. Estimating software costs, as well as deciding on assessing the appropriate cost
drivers, remain difficult issues that need to be addressed. Such issues are constantly at the
forefront of the project management’s interests from the initiation of the project until the
system is delivered. Cost estimates, even for well-planned projects, are hard to make and will
probably concern project managers long before the problem is adequately solved.
Over the years software cost estimation has attracted considerable research attention and
many techniques have been developed to effectively predict software costs (Briand &

www.intechopen.com

Artificial Neural Networks - Application

168

Wieczorek, 2002; Moløkken & Jørgensen, 2003; Jørgensen & Shepperd, 2007). The dominant
techniques during the past decades involved Regression since it was applied in well-known
software cost estimation models (such as the COnstructive COst MOdel, COCOMO) to
capture the relationship between cost drivers and effort. During the last years, analogy-
based, expert judgement, decision trees, neural networks, probabilistic and other
approaches arose in software cost estimation studies (Jørgensen & Shepperd, 2007).
Nevertheless, no single solution has yet been proposed to adequately address the problem.
Typically, the amount and complexity of the development effort proportionally drives
software costs. However, as other factors, such as technology, team and manager skills,
software quality, project size, also affect the development process it becomes even more
difficult to assess the actual costs.
A commonly investigated approach is to estimate as accurately as possible some of the
fundamental characteristics related to cost, such as effort, usually measured in person-months,
through past empirical project examples. In addition, it is also preferable to measure a
condensed set of several attributes which can be more informative (descriptive) in regards to
effort and then use them to estimate the actual effort. However, previous research identified
the lack of standard definitions in software terminology and the presence of inconsistencies in
empirical data samples, where it was also concluded that models with too many variables and
parameters are very hard to calibrate (Miyazaki et al., 1994). For this reason, building models
that focus only on a small set of significant attributes is more practical.
Software size is commonly recognised as one of the most important factors affecting the
amount of effort required to complete a project (Fenton & Pfleeger, 1997). Software size in
terms of actual code length is considered a fairly subjective metric as it depends on the
development language and the code generated by tools or re-used in software development.
Also, software size is impractical in providing early effort estimates, that is, at the beginning of
a project, mainly because it is unknown until the project’s source code is actually written.
Therefore, after software specification is finalised, the estimation of software size based on the
outline of the project is a fundamental activity. Also, it is very critical to carry out estimation of
software size after the initial phases of development and the success of the final effort
approximation may probably depend greatly on its value. This chapter looks more closely into
the relations of these two most significant parts of software cost estimation.
More specifically, some researchers have investigated various cost models using size to
estimate effort (e.g., Wittig & Finnie, 1997; Dolado, 2001) whereas others have directed their
efforts towards defining concise methods and measures to estimate software size from the
early project phases (e.g., Park, 2005; Albrecht, 1979). The present work is more relevant to
the former, aspiring to provide size and effort-based estimations and modelling the
relationship between size, as this is expressed in terms of Lines of Code (LOC) or Function
Points (FP), and development effort. The size of the programs under development is
considered known for a collection of past, historical projects and in some cases their
respective effort value is used to train the Artificial Neural Networks (ANN) models
proposed. A set of projects is intentionally left out from the training process and is used to
verify the generalisation of the models. Therefore, the main target of this investigation is to
use the size values of new projects and utilise the robust cost models developed to
approximate their effort value. The proposed models also make use of the effort values for
the projects employed in the training of the models to investigate accuracy performance.
The hypothesis is that once a robust relationship between size and effort is established by
means of a model, then it can be used along with the size estimations to predict effort of new

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

169

projects more accurately. In addition, a Genetic Algorithm (GA) is constructed to calibrate
the model’s architecture.
Thus, in this work we study the potentials of developing a software cost model using
computational intelligence techniques relying only on size and effort data. The core of the
model proposed consists of Artificial Neural Networks (ANN). Our principal investigation
is to determine which size-related metric between LOC and FP is more descriptive of effort
with the aid of ANN. The initial approach builds ANN using size-related input data and the
architecture is empirically defined. The second approach investigates a more complicated
issue, i.e., which combination of size and/or effort related data of historical projects and
which ANN architecture provides better effort approximations for the new projects.
Essentially what is investigated in this approach is the size of a sliding-window used to
extract inputs and the ANN topology. The experiments conducted suggest that quite
promising accuracy results can be obtained and that if we specify the appropriate ANN
architecture for each dataset, even more improved effort approximations may be achieved.
Therefore, in the third approach the sliding-window length and the ANN architecture are
optimised with the use of a Genetic Algorithm (GA). The GA evolves the ANN structure
with the appropriate number and type of size-related inputs (i.e., LOC or FP), as well as the
optimal internal hidden neuron architecture, to predict effort as accurately as possible. The
inputs used to train and test the ANN are in this case: project size measurements (either
Lines of Code (LOC) or Function Points (FP)), and/or the associated effort to predict the
subsequent in series, unknown project effort. In addition, a Regression cost estimation
model is presented as a benchmark to assess the performance of the model materialising
estimations of the dependent variable (effort) using the same aforementioned training and
testing samples, so that the proposed models are compared to a classic method.
The rest of the paper is organised as follows: Section 2 presents a literature overview of
relative research on size-based software cost estimation and especially focuses on machine
learning techniques utilising ANN. Section 3 provides a description of the datasets and
performance metrics used in the experiments following in Section 4. Section 4 includes the
application of an ANN cost estimation model and describes an investigation of further
improvements of the model proposing a hybrid algorithm to evaluate the optimal input
methods and architectures for the datasets. In addition, this section summarises the results
of each respective approach proposed and presents a comparison of the results to a classic
Regression. Section 5, concludes with the overall remarks and findings of this work,
discusses a few limitations and suggests future research steps.

2. Related work

Several techniques have been investigated for software cost estimation, especially data-
driven artificial intelligence techniques, such as neural networks, evolutionary computing,
regression trees, rule-based induction as they present several advantages over other,
traditional approaches like regression. Most of the relevant studies investigate, among other
issues, the identification and realisation of the most important factors that influence
software costs. This section focuses on related work mainly of size-based, neural network
models proposed for software cost estimation.
To begin with, most size-based models consider either the number of lines written for a
project (called Lines of Code (LOC) or thousands of Lines of Code (KLOC)) used in models
such as the COCOMO (Boehm, 1981; Boehm et al., 1997), or the number of Function Points

www.intechopen.com

Artificial Neural Networks - Application

170

(FP) used in models such as Albrecht’s Function Point Analysis (FPA) (Albrecht & Gaffney,
1983). In size-based software cost estimation models essentially, the size of LOC or FP is
estimated at the early stages of development. The LOC metric has been primarily used in
models such as the COCOMO (Boehm, 1981; Boehm, 1997) and SLIM (Putnam, 1978;
Putnam & Myers, 1992; Putnam & Myers, 2003), models first proposed in the previous
decades. LOC was considered quite popular because it represents a direct measurement of
the length of the software under development. However, the main weakness of the LOC
metric is that it cannot be estimated accurately from the beginning of the development
phases of a project. Therefore, the FP metric was proposed in order to overcome this
limitation (Albrecht, 1979) and estimate software size based on the requirements. FP
basically represent a weighted sum of the following five factors: Input Count, Output
Count, Logic Files Count, Inquiries Count and Interface Files Count. FP’s advantage is that
after requirements specification these factors become known and moreover different
systems can be compared irrespectively of the technologies and languages used in
development. However, there is a lot of discussion regarding the reliability and objectivity
of both size metrics as different tools counting LOC depend on the language and definitions
used and different practitioners counting FP for the same projects produce different results
(Kemerer, 1993).
Many research studies investigate the potential of developing software cost prediction
systems using different approaches, datasets and cost factors. Review articles, like the ones
of Briand & Wieczorek (2002), Jørgensen & Shepperd (2007), include a detailed description
of such studies. In this section we highlight some of the most important relevant studies
dealing with size-based estimations.
Wittig and Finnie (1997) estimated effort using the backpropagation algorithm on ANN for
the Desharnais and ASMA datasets, mainly using system size to determine it’s relationship
with effort. The approach yielded promising prediction results indicating, though, that the
model required a more systematic development approach to establish the topology and
parameter settings so as to obtain better results.
Dolado (2001) searched for the cost estimation equation of the relationship between size and
effort by using Genetic Programming tree structures representing several classical
equations, like the linear, power, quadratic, etc. The approach reached to moderately good
levels of prediction accuracy results by using solely the size attribute and indicated that
further improvements can be achieved.
Mittas et al. (2010) proposed the Demming Regression for modelling the relationship
between software effort and size on the four datasets, Desharnais, COCOMO, Maxwell and
Nasa93 based on the assumption that the observed values of the variables are measurements
which coincide with the actual size values. Under this assumption the proposed technique
estimated the regression coefficients and showed significant improvements in comparison to
the classic Ordinary Least Squares regression.
In summary, the literature thus far, exhibits several research attempts focusing on
measuring effort and size and accepting them as the key variables in cost estimation. Many
studies indicate that ANN models are quite promising estimators or that they perform at
least as well as other approaches. In the rest of this section we investigate such approaches.
Heiat (2002) compared the performance of two cost estimation techniques with respect to the
type of language used for developing a range of projects. The finding of this work was that the
ANN performed equally well with Regression for the sample projects that were implemented
with a third generation programming language (3GL). However, experimenting with a less

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

171

homogeneous set of projects, that is, projects that were implemented with a third generation
programming language (3GL) and others that were implemented with a fourth generation
programming language (4GL), ANN outperformed Regression.
Idri et al. (2002) conducted two experiments using a backpropagation trained Multi-Layer
Perceptron (MLP) ANN architecture on the COCOMO dataset, the outputs of which were
mapped to a fuzzy rule-based system. Results indicated poor accuracy performance, while it
is most likely that the experiments suffered from overfitting as an extreme number of
iterations (300,000) were executed on just a small set of 63 samples.
Idri et al. (2004) investigated the use and interpretation of Radial Basis Function Networks
(RBFN) in software cost estimation by mapping the ANN to a fuzzy rule-based system.
Results on the COCOMO dataset indicated that the accuracy of the ANN depended heavily
on the parameters of the middle layer and more specifically on the number of hidden
neurons and the weight values.
Kumar et al. (2008) used Wavelet Neural Networks (WNN) for software development
estimation and compared their effectiveness with MLP, RBFN, Multiple Linear Regression
(MLR), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Support Vector
Machines (SVM) in terms of the Mean Magnitude of Relative Error (MMRE). WNN seemed to
outperform all other techniques.
Tronto et al. (2008) investigated the application of ANN and stepwise regression for
software effort prediction. The experiments were conducted on the COCOMO dataset
employing categorical variables whose impact was identified based on the work of Angelis
et al. (2001) forming new categorical values. It was observed that there is a strong
relationship between the success of a technique and the size of the learning dataset, the
nature of the function for cost and other dataset characteristics (such as existence of outliers,
collinearity and number of attributes).
Azzeh et al. (2010) investigated the impact of Grey Relational Analysis (GRA) integrated
with Fuzzy set theory in a by-analogy estimation model and also compared it to ANN, CBR
and MLR models using several public datasets, i.e., ISBSG, Desharnais, COCOMO, Albrecht
and Kemerer. The Fuzzy GRA appeared to produce statistically more significant results than
the rest of the models. Moreover, it effectively reduced the uncertainty of attribute
measurement between two software projects and improved the way to handle both
numerical and categorical data in similarity measurements.
Kaur et al. (2010) proved the effectiveness of ANN models for the NASA dataset compared to
the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which are popular legacy
models used in software cost estimation. Backpropagation ANN were used and reported as
the most generalised networks currently in use that present good estimation capabilities.
Summarizing some of the findings of the relevant literature, we conclude that many
researchers recognise the high prediction accuracy of ANN and their effectiveness in
modelling the cost estimation environment. However, a deeper investigation on the
topology and configurations of the ANN model, as well as the appropriate inputs required
in each case, needs to be carried out, so that the complexity of the technique is not increased
proportionally to the number of inputs and the complexity of the sample projects, and still
accuracy is driven to better levels.
Subsequently, in this work we firstly aim to examine the potentials of ANN in software cost
modelling and secondly to investigate the possibility of providing further improvements for
such a model. Our goal is to inspect: (i) whether a suitable ANN model, in terms of input
parameters, may be built; (ii) whether we can achieve sufficient estimates of software

www.intechopen.com

Artificial Neural Networks - Application

172

development effort using only size or function based metrics on different datasets of
empirical cost samples; (iii) whether a hybrid computational model, which consists of a
combination of ANN and GA, may contribute to devising the ideal ANN architecture and
set of inputs that meet some evaluation criteria. Our strategy is to exploit the benefits of
computational intelligence in software cost modelling and provide a near to optimal effort
predictor for impending new projects.

3. Datasets and performance metrics

A variety of historical software cost data samples coming from different datasets that are
popular in software cost estimation empirical research were employed to provide a strong
comparative basis with the results reported in other relevant studies. Also, the performance
metrics used to assess the ANN’s precision accuracy are described in this section.

3.1 Datasets description

The following datasets were selected to demonstrate and test the approach describing
historical project data: COCOMO`81 (COC`81), Kemerer`87 (KEM`87), a combination of
COCOMO`81 and Kemerer`87 (COKEM`87), Albrecht and Gaffney`83 (ALGAF`83) and
finally Desharnais`89 (DESH`89).
The COC`81 (Boehm, 1981) dataset contains information about 63 software projects from
different applications. Each project is described by the following 17 cost attributes:
reliability, database size, complexity, required reusability, documentation, execution time
constraint, main storage constraint, platform volatility, analyst capability, programmer
capability, applications experience, platform experience, language & tool experience,
personnel continuity, use of software tools, multi-site development and required schedule.
Also, for the projects LOC is measured.
The second dataset, named KEM`87 (Kemerer, 1987) contains 15 software project records
gathered by a single organisation in the USA, which constitute business applications written
mainly in COBOL. The attributes of the dataset are: actual project’s effort measured in man-
months, duration, KLOC, unadjusted and adjusted FP’s count. In addition, a combination of
the two previous datasets was created, namely COKEM`87, to allow us to experiment with a
larger but rather heterogeneous dataset.
The third dataset ALGAF`83 (Albrecht & Gaffney, 1983) contains information about 24
projects developed by the IBM DP service organisation. The datasets’ characteristics
correspond to the actual project effort, the KLOC, the number of inputs, the number of
outputs, the number of master files, the number of inquiries and the FP’s count.
The fourth dataset, DESH`89 (Desharnais, 1989), includes observations for more than 80
systems developed by a Canadian software development house at the end of 1980. The basic
characteristics of the dataset account for the following: project name, development effort
measured in hours, team’s experience, project manager’s experience, number of transactions
processed, number of entities, unadjusted and adjusted FP, development environment and
year of completion.
A major assumption of our work is that the measurements of some attributes provided for
the projects in these datasets which are also used in our experiments, like for example the
effort and the size-related factors of Lines of Code (LOC) and Function Points (FP), coincide
with the actual values of developing the corresponding programs. However, since some of
these software project metrics are conceptually subjective and lack standard definitions,

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

173

they depend on the person counting and the tools used to perform measurements, and thus,
this high degree of subjectivity clearly makes the measurement of the software attributes
and validation of the prediction systems for the attributes and effort problematic.

3.2 Performance metrics

The performance of the models was evaluated using a combination of common error

metrics, namely the Mean Relative Error (MRE), the Correlation Coefficient (CC) and the

Normalized Root Mean Squared Error (NRMSE), together with the Prediction at Level (pred(l))

and a devised Sign prediction (Sign) metric. These error metrics were employed to validate

the model’s forecasting ability by considering the difference between the actual and the

predicted cost samples and their ascendant or descendant progression in relation to the

actual values.

The MRE, given in equation (1), shows the prediction error focusing on the sample being

predicted. ()actx i is the actual effort and ()predx i the predicted effort of the thi project.

1

() ()1
()

()

n
act pred

i act

x i x i
MRE n

n x i=

−
= ∑ (1)

The CC between the actual and predicted series, described by equation (2), measures the

ability of the predicted samples to follow the upwards or downwards of the original series

as it evolves in the sample prediction sequence. An absolute CC value equal or near 1 is

interpreted as a perfect follow up of the original series by the forecasted one. A negative CC

sign indicates that the forecasting series follows the same direction of the original series but

with negative mirroring, that is, with a rotation about the time-axis.

()()

() ()

, ,

1

2 2
, ,

1 1

() ()

()

() ()

n

act n pred nact pred
i

n n

act n pred nact pred
i i

x i x x i x

CC n

x i x x i x

=

= =

⎡ ⎤− −⎣ ⎦
=

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∑

∑ ∑
 (2)

The NRMSE assesses the quality of predictions and is calculated using the Root Mean Squared
Error (RMSE) as follows:

2

1

1
() () ()

n

pred act
i

RMSE n x i x i
n =

⎡ ⎤= −⎣ ⎦∑ (3)

2

1

() ()
()

1
()

n

nact
i

RMSE n RMSE n
NRMSE n

x i x
n

σΔ

=

= =

⎡ ⎤−⎣ ⎦∑

 (4)

If NRMSE=0 then predictions are perfect; if NRMSE=1 the prediction is no better than taking

predx equal to the mean value of n samples.

The Prediction Level (Pred(l)) defined in equation (5) specifies how many data predictions k
out of n (total number of data points predicted) performed well, i.e., below a predefined

www.intechopen.com

Artificial Neural Networks - Application

174

level specified by the RE metric (see equation (6)) is lower than level l. In the experiments
the parameter l was set equal to 0.25.

 Pr ()
k

ed l
n

= (5)

() ()
()

()

act pred

act

x i x i
RE n

x i

−
= (6)

The Sign Predictor (Sign(p)) metric assesses if there is a positive or a negative transition of the

actual and predicted effort trace in the projects used only during the evaluation of the

models with the sliding-window technique on unknown test data. With this measure we are

not interested in the exact values, but only if the tendency of the next value to the previous

is similar. This is expressed in equations (7) and (8).

1()

n

i
i

z

Sign p
n

==
∑

 (7)

11

1 (() * ()) 0

0 .

pred pred act act
t t tt

i

if x x x x
where z

otherwise
++⎧ − − >

= ⎨
⎩

 (8)

4. Experimental approach

As we have already mentioned, the software cost estimation literature has shown many

research attempts focusing on predictions of Artificial Neural Network (ANN) models,

which are treated as promising estimators with equal or better performance compared to

other popular approaches, like by-analogy or regression-based estimation. Their input

variables usually involve numerous internal and external project attributes, typically

concerning the actual product under development, the people undertaking the development

tasks and the process followed.

In our approach size-based data of various size definitions is used, which have been

gathered from industrial projects, either representing software actual lines of code or

functionality delivered. We investigate cost estimators in the form of ANN models, that aim

to learn and generalise the knowledge embedded in past project samples, so as to estimate

the associated development effort as accurately as possible. Consequently, our focus is

twofold: Firstly, we will study performance, stability and calibration issues of the proposed

models and secondly, identify any present correlations of development effort and size-based

attributes.

In this section we provide the detailed experimental process and the results yielded by the

models developed: (i) An ANN approach with random holdout samples for validation, (ii)

An ANN approach, with varying input method (a random timestamp was given to the data

samples which were inputted using a sliding-window technique); (iii) A Hybrid model,

coupling ANN with a GA to reach to a near to optimal input method and internal

architecture; (iv) A classic Regression model.

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

175

4.1 An ANN investigating size-effort relation

The following section presents the ANN model proposed to investigate the relationship
between software size (expressed in LOC or FP) and effort, by conducting a series of
experiments. We are concerned with inspecting the predictive ability of the ANN with respect
to the attribute counting the size of the software developed for each project in each dataset.

4.1.1 Model description

ANN are non-linear, model-free and alternative to traditional statistical methods able to
solve complex pattern recognition problems. ANN consist of basic computational elements
called neurons organised in groups that form layers. They may be also viewed as directed
graphs, composed of nodes and connections, also called weights or synapses, which connect
the neurons (Haykin, 1999). Certain types of neurons organised in multiple layers form the
Multi-Layer Perceptron (MLP) (McCulloch & Pitts, 1943) which is one of the most popular
types of ANN. A simple MLP ANN is shown in Figure 1.
The number of neurons in the input (first) layer is equal to the number of attributes used as

independent variables. The last layer is the network output which corresponds to the

independent variable (in our case software effort). Each subsequent layer uses the weights

coming from the previous layers and adjusts them so that the accuracy error between the

actual and predicted values for the dependent variable is diminished. Each neuron uses the

respective input vectors, the weights and a momentum coefficient to calculate its output.

Fig. 1. A feed-forward Multi-Layer Perceptron Neural Network

Equation (9) specifies how the outcome of the first hidden node in the first layer 1
1x is

estimated.

www.intechopen.com

Artificial Neural Networks - Application

176

1 1 1

1 11
1

n

i i
i

f x wx θ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ (9)

The networks employed in the present work are single hidden layer networks and MLP

networks, which use one hidden layer partitioned into three parallel sub-layers activated by

a different function, e.g., the hyperbolic tangent, the Gaussian and the Gaussian complement

specified in equations (10), (11) and (12) respectively.

 1() (1 exp()) * (1 exp())f y by by −= − − + − (10)

 ()2() expf y x= − (11)

 ()2() 1 expf y x= − − (12)

The error backpropagation algorithm is one of the most widely used algorithms for training

the network and requires data samples in the form of input-output patterns. The

backpropagation learning algorithm is used to calculate derivatives of performance of the

mean square error with respect to the weight and bias variables. In order to learn efficiently

the data fed, the network calculates an error, which is the difference between the desired

and the actual response. The error is propagated to the network in a backward manner, so

that for each neuron the weights are adjusted to minimise this error iteratively.

Moreover, for the backpropagation algorithm the dataset is randomly divided into three

subsets: the training set, the validation set and the testing set. The training set is utilised during

the learning process, the validation set is used to ensure that no overfitting occurs in the final

result of the learning process and that the network will be able to generalise the knowledge

gained. The testing set is an independent subset of the dataset, i.e., does not participate during

the learning process and measures how well the network performs with unknown data.

4.1.2 Results

During our experiments we employed a simple, single hidden layer architecture for estimating

development effort using LOC or FP from each dataset as input. In case a dataset included

both size metrics we developed one ANN model for each metric in order to compare

performance results. The number of nodes in the hidden layer was empirically defined for

each dataset case due to the simplicity of the models under investigation. For the input layer

netsum function was used, for the hidden layer the tansig function and finally, for the output

layer the purelin function was used. The models were developed in Matlab R2010b.

Each ANN was trained in a supervised manner, using the backpropagation algorithm and a

random selection of 60% of the total projects comprised the training data samples. Also, 20%

of the original data samples were used for validation during the training of the ANN and

the rest 20% were the holdout samples that were later used for testing the generalisation

ability of the best trained model, i.e., the ANN that yielded the lowest MRE figure. We

randomly initialised the weights and momentum coefficients and re-trained the network 20

times with the backpropagation algorithm. Finally, we utilised the best ANN to proceed to

the testing phase.

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

177

TRAINING PHASE TESTING PHASE
DATASET INPUT

TOPO-
LOGY MRE CC NRMSE Pred(.25) MRE CC NRMSE Pred(.25)

COC`81 LOC 1-4-1 0.888 0.998 0.063 0.333 1.629 0.597 2.890 0.154

KEM`87 FP 1-3-1 0.204 0.966 0.248 0.625 0.282 0.943 0.614 0.333

KEM`87 LOC 1-3-1 0.258 0.861 0.476 0.750 0.257 0.792 0.527 0.333

COKEM`87 LOC 1-2-1 1.335 0.892 0.446 0.132 1.542 0.599 0.971 0.188

ALGAF`83 FP 1-2-1 0.304 0.978 0.213 0.545 0.324 0.987 0.149 0.600

ALGAF`83 LOC 1-4-1 0.301 0.991 0.130 0.364 0.469 0.985 0.691 0.200

DESH`89 FP 1-3-1 0.487 0.697 0.715 0.474 0.348 0.712 0.696 0.400

Table 1. Experimental Results obtained with the ANN-model.

Table 1 summarises the best results obtained with the specific ANN architectures and the
various datasets. The first column refers to the dataset used, the second to the type of size
metric that was used in the input layer (LOC or FP), the third refers to the ANN topology
and the rest of the columns refer to the error metrics during the training and testing phase.
As expected, the degree of accuracy across the datasets varies because accurate and
optimum models cannot be developed for every case. However, in some cases the overall
performance of the approach is a promising indication that ANN models can reach to quite
accurate effort approximations. The datasets whose effort is better approximated is KEM`87,
followed by ALGAF`83 using FP as input and then followed by DESH`89. The results of the
training phase indicate that the ANN models were able to learn well the training data from
all the datasets except COKEM`87, which comprises a concatenation of two different
datasets. Therefore, this effect may be attributed to the less homogeneous form of the
aforementioned dataset which was merged from two other datasets. The results of the
testing phase are also quite successful for KEM`87, ALGAF`83 and DESH`89 datasets but
less accurate for the COC`81 and COKEM`87 cases. These figures of effort approximations
were considerably easy to achieve, experimenting with only a few internal hidden neurons,
i.e., starting from 2 to 5, because we were using one single size attribute as input.
Moreover, for datasets describing both size attributes LOC and FP, i.e., KEM`87 and
ALGAF`83, we observe that the ANN models using FP are more accurate in terms of
correlation (CC) in the first case, and more accurate in prediction level (MRE) in the second
case, during the testing phase. This indicates that the proposed model can achieve better
approximations using the FP size metric instead of LOC, even though it is worth noting that
more thorough investigation needs to be performed with different ANN architectures and
coupling LOC and/or FP with effort spent on past projects aiming at improving prediction
performance.

4.2 An ANN coupling size-effort

The following section presents an ANN model which investigates the relationship between
software size (expressed in LOC or FP) and effort, by conducting a series of experiments
coupling size and effort data. We are concerned with inspecting the predictive ability of the
ANN according to the architecture utilised and the input method (volume and order of the
data fed to the model) per dataset.

4.2.1 Model description

The core architecture of a size-effort coupling ANN was a feedforward MLP (as previously
described in Figure 1) connecting each input neuron with hidden layers consisting of

www.intechopen.com

Artificial Neural Networks - Application

178

parallel slabs activated by different functions. Empirical variations of this architecture were
employed regarding the number of inputs and neurons in the internal hidden layers,
whereas the difference between the actual and the predicted effort was again manifested at
the output layer (forecasting deviation). Again, the ANN were trained in a supervised
manner, using the backpropagation algorithm and 70% of the training data samples. Also,
20% of the original data samples were used for validation of the training of the ANN and
finally, 10% holdout samples were used for testing the model.

4.2.2 Results

The empirically conducted experiments investigated mainly the appropriate number and
type of inputs and internal neurons forming the layers of the ANN. Here, a more complex
ANN architecture was used with three different hidden slabs in the internal layers. In
addition, in these experiments several ANN parameters were kept constant as some
preliminary experiments conducted initially showed that varying the type of the activation
function in each layer had no effect on the forecasting quality. More specifically, we
employed the following functions: for the input layer the linear function [-1, 1], for each
respective hidden layer the Gaussian, the tanh, and the Gaussian complement and finally, for
the output the logistic function.
In addition, for each experiment performed, a sliding-window technique was applied on the
randomly generated subsets of training to extract the input vector and feed it to the ANN.
Therefore, the selected projects were manifested to the ANN with specific order, so that they
would couple size and effort information of past projects developed. Practically, this is
expressed in Table 2, covering the following Input Methods (IM) of a varying length (or size
i) sliding-window, with i=1,…,5:

• IM1-IM2: Using the Lines of Code or the Function Points of the ith projects we estimate
the effort of the ith projects;

• IM3-IM4: Using Lines of Code or Function Points with effort of the ith project we
estimate the effort required for the next project (i+1)th in the series sequence;

• IM5-IM6: Using Lines of Code or Function Points of the ith and (i+1)th projects and effort
of the ith project we estimate the effort required for the (i+1)th project.

In each input method the number of past samples included in the sliding-window, that is,

the size i of the window, is specified from 1 to 5 (i index). These combinations enabled us to

draw conclusions regarding the dependent variable (effort) for each coupling of input cost

drivers and identify its ability to approximate the effort value.

INPUT METHOD SOFTWARE METRICS* Output*

IM1 LOC(ti) EFF(ti)

IM2 FP(ti) EFF(ti)

IM3 LOC(ti), EFF(ti) EFF(ti+1)

IM4 FP(ti), EFF(ti) EFF(ti+1)

IM5 LOC(ti), LOC(ti+1), EFF(ti) EFF(ti+1)

IM6 FP(ti), FP(ti+1), EFF(ti) EFF(ti+1)

Table 2. Sliding-window technique to determine the ANN input method (*where i=1,...,5)..

The best results obtained with the ANN model and the various datasets are summarised in
Table 3. The first column refers to the dataset used, the second to the input method with which

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

179

the i data are fed to the model, the third refers to the ANN topology and the rest of the
columns refer to the error metrics during the training and testing phase. The last two columns
indicate the number of predicted projects that have the same sign tendency, in the sequence of
the effort samples and the total percentage of the successful tendencies during testing.
The figures in Table 3 show that an ANN model deploying a mixture of architectures and
input methods yields various accuracy levels. More specifically, the DESH`89 dataset
achieves high prediction accuracy, with lowest MRE equal to 0.05 and CC equal to 1.0. The
KEM`87 dataset also performs adequately well with relatively low error figures. The worst
prediction performance is obtained with ALGAF`83 and COKEM`87 datasets. These failures
may be attributed to the extremely small number of projects involved in the prediction in
the first case, and to the use of a heterogeneous dataset in the latter case. Finally, in
comparison with the simple ANN models developed previously, the overall prediction
accuracy yielded is higher for COC`81, KEM`87 and COKEM`87 datasets, but considerably
lower for ALGAF`83 and DESH`89 datasets.

TRAINING PHASE TESTING PHASE
DATASET INPUT TOPOLOGY

MRE CC NRMSE MRE CC NRMSE

Sign
(p)

Sign
(p) %

COC`81 IM5 3-15-15-15-1 0.929 0.709 0.716 0.551 0.407 0.952 5/10 50

COC`81 IM1 2-9-9-9-1 0.871 0.696 0.718 0.525 0.447 0.963 7/12 58.33

KEM`87 IM1 1-15-15-15-1 0.494 0.759 0.774 0.256 0.878 0.830 2/3 66.67

KEM`87 IM5 5-20-20-20-1 0.759 0.939 0.384 0.232 0.988 0.503 2/2 100

COKEM`87 IM3 8-20-20-20-1 5.038 0.626 0.781 0.951 0.432 0.948 3/8 37.50

COKEM`87 IM3 4-3-3-3-1 5.052 0.610 0.796 0.768 0.257 1.177 4/8 50

ALGAF`83 IM6 5-3-3-3-1 0.371 0.873 0.527 1.142 0.817 0.649 3/4 75

ALGAF`83 IM2 2-20-20-20-1 0.335 0.975 0.231 1.640 0.936 0.415 2/4 50

DESH`89 IM4 4-9-9-9-1 0.298 0.935 0.355 0.481 0.970 0.247 17/20 85

DESH`89 IM4 6-9-9-9-1 0.031 0.999 0.042 0.051 1.000 0.032 20/20 100

Table 3. Experimental Results obtained with the ANN-model coupling size-effort metrics.

In addition, as the results listed suggest, the COC`81, KEM`87 and DESH`89 datasets
achieve adequately fit predictions and thus for some cases, the method is able to
approximate the actual development cost. Another observation is that the majority of the
best yielded results employ a large number of internal neurons. Therefore, further
investigation is needed with respect to different ANN topologies and Input Methods (IM)
for the various datasets. To this end, we resorted to using a hybrid scheme, combining ANN
with GA, the latter attempting to evolve and reach to the near to optimal network topology
and input schema that yields accurate predictions and will have a reasonably small size (i.e.,
number of neurons) so that the computational cost will not radically increase.

4.3 A hybrid ANN & GA

The rationale behind this attempt was that the performance of ANN obtained thus far
highly depended on the size, structure and connectivity of the network and results may be
further improved if the right ANN configuration parameters are found. Therefore, we
applied a GA to investigate whether we can find the ideal network settings by means of a
cycle of generations including candidate solutions that are pruned by the criterion ‘survival
of the fittest’, meaning the best performing ANN in terms of effort prediction accuracy.

www.intechopen.com

Artificial Neural Networks - Application

180

4.3.1 Model description

The following steps were employed for the Genetic Algorithm implementation:

1. The initial population of individuals was created randomly containing an encoding of
the necessary pieces of information, that is, the number of internal hidden neurons and
the Input-Method (IM).

2. From each individual of the generation we extracted the information regarding the
network architecture and the structure of the input vector. Then the corresponding
network was initialised, trained for a number of epochs and finally, simulated. From
the simulation results obtained, all individuals were evaluated and the network state
and performance results were stored.

3. Once all individuals of the respective generation have been trained and tested on
generalisation, the generation was evaluated as a whole.

4. The top 5% of best individuals were forwarded to the next generation (elitism) and the
rest individuals missing to complete the next generation were obtained through
reproduction steps applying the selection, crossover and mutation operators. The
offsprings produced through these steps replaced their parents in the original
population.

5. Steps (2), (3) and (4) were repeated until finally, a predefined number of generations
have been reached.

More specifically, the first task for implementing the hybrid model was to determine a type
of encoding so as to express the potential solutions. The encoding used was a binary string
representing the ANN structure, the internal hidden neurons and the varying input’s
coupling of effort and size attributes. The inputs were inserted into the ANN models created
within the hybrid algorithm following the Input Methods (IM) specified earlier. The number
of neurons used in the hidden slabs was restricted not to exceed 20 neurons to avoid
building ANN models that would lead to overfitting. The space of all feasible solutions (i.e.,
the set of solutions among which the desired solution resides) was called the search space.
Each point in the search space represents one possible solution. Each possible solution was
"marked" by its fitness value, which in our case was expressed by equation (13), minimizing
the MRE and the overall size of the network, i.e., the total number of internal neurons, to
avoid creating overly large and complex networks.

1

1
fitness

MRE size
=

+ +
 (13)

The GA searches the problem space to locate the best solution among a number of possible
solutions. Searching for a solution is then equal to looking for some extreme value
(minimum or maximum) in the search space.
The GA developed included three types of operators: selection (roulette wheel), crossover

(with crossover rate=0.25) and mutation (with mutation rate=0.01). Selection chooses

members from the population of chromosomes proportionally to their fitness and elitism

was used to ensure that the best members of each population are always selected for the

new population. Crossover adapts the genotype of two parents by exchanging parts of them

and creating a new chromosome with a modified genotype. Crossover was performed by

selecting a random gene along the length of the chromosomes and swapping all the genes

after that point. Finally, the mutation operator simply changes a specific gene of a selected

individual in order to create a new chromosome with a different genotype.

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

181

4.3.2 Results

In this section we present and discuss the results obtained using the Hybrid model on the
various available datasets. The best ANN architectures yielded are listed in the third column
of Table 4 with the various error figures obtained both during the training and the testing
phase.
The performance of the different ANN architectures constructed with the aid of the GA
shows high learning ability. The main observation is that for all of the datasets the hybrid
model was able to optimise prediction accuracy. This is remarkably consistent through both
the training and the testing error figures reported by the best solutions summarised in Table
4. In fact, for all the datasets investigated, the hybrid model performs adequately well in
terms of generalisation ability and prediction accuracy. During training and testing the MRE
is significantly lowered compared to the results of the experiments conducted with the
simple ANN (Table 1) and the empirical coupling ANN (Table 3), the CC improves in all
cases, whereas the NRMSE is also highly improved.
Moreover, it is observed that there is a strong relationship between the success of a
particular model and the type of attributes used as inputs. In all datasets, IM1 utilising in
each case LOC or FP as inputs, yields the best prediction results compared to IM2 and IM3.
Accuracy is usually diminished when adding the effort values in IM2 and in all other cases,
except in the dataset DESH`89 case, where IM3 accuracy is considerably improved. This
shows that the size metric for all datasets improves effort approximations and that LOC or
FP are noticeably highly descriptive factors of effort. We would expect that adding the effort
values in the inputs of the ANN models would have improved estimates, but this is not the
case due to the existence of some projects outliers in respect to their effort values.
Moreover, it seems that the experiments using KEM`87 showed similar MRE and CC error
figures and an improved NRMSE in favor of FP instead of LOC, both during training and
testing. The ALGAF`83 dataset showed similar NRMSE and CC error figures, whereas an
improved MRE was observed using LOC. Overall, the experiments conducted using one of
these two size measures for predicting effort (i.e., in IM1 and IM2) produce superior results
consistently throughout all the datasets indicating that both LOC and FP are very good
descriptors of effort. Of course this is something that on one hand agrees with what is

TRAINING PHASE TESTING PHASE
DATASET INPUT TOPOLOGY

MRE CC NRMSE MRE CC NRMSE

COC`81 IM1 1-9-17-10-1 0.004 1.000 0.014 0.003 1.000 0.014

COC`81 IM3 2-20-18-3-1 0.092 0.963 0.270 0.075 0.961 0.278

COC`81 IM5 3-19-20-4-1 0.043 0.990 0.149 0.044 0.981 0.199

KEM`87 IM1 1-17-13-16-1 0.008 1.000 0.015 0.009 1.000 0.019

KEM`87 IM3 2-18-14-18-1 0.246 0.825 0.539 0.211 0.822 0.550

KEM`87 IM5 3-19-15-20-1 0.004 1.000 0.006 0.028 0.997 0.081

ALGAF`83 IM2 1-17-20-11-1 0.006 1.000 0.005 0.009 1.000 0.006

ALGAF`83 IM4 2-19-1520-1 0.041 0.998 0.074 0.062 0.993 0.122

ALGAF`83 IM6 3-19-9-16-1 0.029 0.999 0.045 0.031 0.999 0.051

DESH`89 IM2 1-13-20-6-1 0.002 1.000 0.008 0.005 1.000 0.024

DESH`89 IM4 2-19-20-8-1 0.087 0.990 0.136 0.163 0.977 0.210

DESH`89 IM6 3-19-11-10-1 0.089 0.990 0.139 0.173 0.975 0.218

Table 4. Hybrid model (coupling ANN and GA) results.

www.intechopen.com

Artificial Neural Networks - Application

182

already pointed out by numerous studies in literature and on the other suggests that our

model behaves as it should. Also, another observation is that the best accuracy is

significantly lowered (error rates are higher) when the effort is given as an additional input

to the ANN (in the IM3 or IM4 cases), meaning that the model’s ability to capture the

correlation between size and effort is decreased. This shows that outlying values for the

effort of these projects exist and indicates that some sort of filtering could improve the

results. Another observation is that ANN could be therefore used in the case of software cost

estimation as a filtering process to eliminate outlying project values. We additionally

observe that prediction accuracy is significantly and consistently improved when the LOC

or FP of the project whose effort is being predicted, is given to the model (in the IM5 or IM6

cases). Heuristically, this is a logical conclusion as the model in the latter case is fed with

information regarding the project’s LOC or FP and therefore, the prediction accuracy is

enhanced by this additional information. Overall, the proposed model seems to work under

these assumptions consistently well.

4.4 Regression investigating size-effort relation

In this section we present the results obtained from a simple Regression so as to provide

some comparative assessment of the models proposed thus far. Regression assesses how

well the regression line approximates the real effort and it is built using the same samples

used in the ANN training and testing phase.

Regression analysis is used to capture and explain the relationship between the size and

effort of projects in the form of an exponential function which can be represented by a

polynomial transformed to linear using the natural logarithm.

4.4.1 Model description

We denote Y as the dependent variable of the total cost for developing software projects

(usually expressed as the effort spent) and X the independent variables representing the size

of projects (usually in LOC or FP). Each vector {(x1,y1), …, (xl,yl)} represents a sample of

projects, where xi ∈ ℜn and yi ∈ ℜ for each project i and are used in the regression model

defined in (14). We assume that the errors εi are independent and have a zero mean. The goal

is to find the polynomial coefficients β0 and β1 representing the constant and the slope of the

regression linear function ()if x respectively, the latter being defined in (15).

 ()i i iy f x ε= + (14)

 0 1()i if x xβ β= + (15)

In case the relationship between the dependent and independent variables is not linear we

assume that a simple transformation such as the logarithmic can be used to estimate a model

of the form (16).

 0 1i i iy xβ β ε= + + (16)

The error function the approach is trying to minimise is based on the least-squares form.

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

183

4.4.2 Results

Regression is built under the assumption that the dependent variable (effort) is linearly

related with the independent variable(s) (size and/or next effort values). The model

produces the slope of a line that best fits the data of the training set and then, during the

testing phase, we estimate the value of the dependent variable. We utilise the yielded

regression coefficients from the training phase to estimate the values of effort for the testing

samples. Finally, we compare the estimated effort values to the actual effort using the

performance metrics mentioned above.

The Regression approach is tested on all the datasets as they were originally separated into

the training and testing subsets and were used by the ANN in the previous experiments.

Thus, a comparison with the initial ANN models built is feasible. The results of Regression

indicate average performance for all datasets with accuracy staying lower compared to that

of the approaches previously proposed in this work (simple and hybrid ANN). This

indicates that the form of the problem is considered quite complex and cannot be easily

addressed by a simple form of Regression. However, although the ANN approach

demonstrated some significant advantages in terms of prediction performance in the

experiments of this work, it doesn’t mean that it can replace Regression but should be

regarded as a promising approach for these certain circumstances.

TRAINING PHASE TESTING PHASE
DATASET INPUT

MRE CC NRMSE Pred(.25) MRE CC NRMSE Pred(.25)

COC`81 LOC 0.608 0.834 0.579 0.233 1.022 0.639 1.045 0.154

KEM`87 FP 0.424 0.764 0.663 0.500 0.196 0.974 0.289 0.667

KEM`87 LOC 0.330 0.776 0.627 0.500 0.234 0.825 0.566 0.667

COKEM`87 LOC 1.082 0.893 0.591 0.053 0.999 0.607 0.791 0.188

ALGAF`83 FP 0.354 0.930 0.472 0.364 0.248 0.969 0.453 0.600

ALGAF`83 LOC 0.408 0.837 0.530 0.364 0.397 0.970 0.556 0.200

DESH`89 FP 0.514 0.543 0.848 0.395 0.311 0.708 0.819 0.467

Table 5. Regression Results.

The main problem of the Regression method yielding mediocre results may be attributed

mainly to the method’s dependence on the distribution and normality of the data points

used and its inability to approximate unknown functions, as opposed to the ability

demonstrated by the simple ANN model as well as the hybrid approach with the GA.

However, we recognise that in order to comparatively assess the results of a range of models

statistical tests, like Wilcoxon’s, or t-tests need to be performed to investigate the statistical

difference between the errors yielded by the comparative models.

5. Conclusions

In this chapter, we considered the problem of reliable and accurate software cost estimations

through computational intelligence techniques. Effective modelling of the relationship

between software effort and size has always been a challenge, especially for people involved

www.intechopen.com

Artificial Neural Networks - Application

184

in project resource management, due to the high level of complexity and uniqueness of the

software projects developed. The majority of existing estimation models and methods fail to

reproduce this relationship so as to yield successful development effort approximations, or

have difficulties even to converge to suggesting an explicit, measurable and concise set of

factors affecting productivity. Nevertheless, there is a large discussion on the relationship of

cost factors and effort and since this relationship is the core of any cost model, it is essential

to describe it accurately.

Many studies in the software cost estimation literature encourage the use of Artificial

Neural Networks (ANN) as cost predictors showing that they may perform better or at least

as well as other approaches. Adopting this position, this chapter involved the investigation

of building the relationship of size and effort using ANN. Software size obtained from past

historical project data has been proposed as one of the most important attributes affecting

effort and has been extensively used to build a variety of cost models.

Essentially, this chapter proposed a modelling approach utilising ANN and the most

common size-related factors found in benchmark datasets. These factors refer to software

Lines of Code (LOC) and Function Points (FP). The basic assumption of this work was that

error-free size measurements are available for a number of software projects obtained from

a set of past historical project data which are used as inputs for the ANN cost models

created. In addition, a sliding-window of variable length was used to extract size-related

sample data from the datasets (i.e., LOC or FP counts) targeting at coupling them with effort

subsets from previously completed projects. This coupling was realised in the form of

training patterns fed to ANN so as to investigate if a modelling relationship between size

and effort may be established. Moreover, a Genetic Algorithm (GA) was implemented to

undertake the optimisation of the ANN architecture of the core model to reduce the Mean

Relative Error (MRE). The near-to-optimal ANN topologies and type of inputs selected for

each dataset were discussed and compared to Regression models built across the same

training and testing data samples.

The results obtained with the ANN models indicated that the performance of such a model

mainly depends on its architecture and parameter settings, and relying on empirical rules to

determine these settings is not the optimal approach. The problem was thus reduced to

finding the ideal ANN architecture to formulate a reliable prediction model for software

cost estimation. The first experimental results indicated mediocre prediction success,

comparable to the simple Regression, except in a few dataset cases. Also, as the

combinations of inputs used in the ANN models increased, we observed that designing an

appropriate internal ANN architecture to deal with the complexity in each case (i.e., type of

attributes and dataset) was a quite difficult task. Common methods, such as empirical or

trial-and-error, often run the risk of overlooking more promising architectures and also, as a

result, it was considered particularly hard to further optimise the results yielded by the

ANN models. In addition, it became evident that there was need for more extensive

exploration of solutions in the search space of various topologies and input methods as the

results obtained by the investigated ANN models did not converge to a general solution.

Therefore, this chapter introduced a hybrid model consisting of ANN and Genetic
Algorithms (GA). The latter evolved a population of networks to select the optimal
architecture and inputs that provided the most accurate software cost predictions. The
results of this work showed that the ANN approach combined with a GA yields better

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

185

estimates than the empirically created ANN and Regression models, something that
suggests that the technique is very promising.
The main limitation of this method, as well as any other size-based approach, is that

especially LOC size estimates must be known in advance to provide accurate enough effort

estimations, which is never the case. Also, there is always the risk that if the same project

was counted twice would not give exactly the same size (LOC or FP) or effort

measurements, and this basic limitation is usually recognised between practitioners. In

addition, these errors in measurements of size and effort should be taken into consideration

in any approach used for cost estimation and especially if a large discrepancy between the

actual and estimated size is occurring in estimations made in the early project phases.

Another limitation is the lack of a satisfactory volume of homogeneous data, as well as of a
clear definition and measurement rules for size units, such as LOC and FP, which result in
uncertainty to the estimation process. The software size is also affected by other factors that
are not investigated by the models of this chapter, such as the programming language and
platform used during development. This means that we have consciously focused only on
coding effort, irrespective of the type of software and development method in this work,
which accounts for only a percentage of the total effort in software development. Another
important limitation related with the technologies used is that the ANNs are considered
“black boxes” and so the GA requires an extensive search of the solution space, something
which is considered very time-consuming.
In future research steps we will emphasise on other aspects affecting the prediction
performance of ANN, i.e., optimising other ANN parameters of different types of ANN,
such as activation functions and learning techniques. Also, evolutionary processes on
genetic search could help to automate and improve, if not optimise, ANN design required to
represent complex behaviours. An evolutionary algorithm thus could be coupled with ANN
in other ways, such as: (i) Employing fixed network structures with connection weights
under evolutionary control, which includes both supervised learning applications and
reinforced learning applications, (ii) Designing the ordering and organisation of the nodes
from the input to the output layer of the network, including arrangement of
interconnections, (iii) Pre-processing the input types of the training data, which can be also
used to reduce the input set by discarding less informative, or descriptive cost drivers for
approximating development effort.
Future research steps may also concentrate on ways to improve the performance of the
proposed approach, examples of which may be: (i) Study of more factors affecting
development effort and their interdependencies, (ii) Further adjustment of the ANN and GA
parameter settings, such as modification of the fitness function, (iii) Improvement of the
efficiency of the algorithms by testing more homogeneous or clustered data and, (iv)
Improvement of the quality of the data to achieve better convergence. Consequently, more
experiments and more thorough investigation of the capabilities of the proposed approaches
needs to be conducted but there is also the necessity for the consideration of a larger range
of cost drivers.

6. References

Albrecht, A. J. (1979). Measuring Application Development Productivity, Proceedings of the

Joint SHARE, GUIDE, and IBM Application Developments Symposium, pp. 83-92,

Monterey CA, October 1979.

www.intechopen.com

Artificial Neural Networks - Application

186

Albrecht, A. J., & Gaffney, J. R. (1983). Software Function Source Lines of Code, and

Development Effort Prediction: A Software Science Validation, IEEE Transactions on

Software Engineering, Vol. 9, No. 6, (November 1983), pp. 639-648, ISSN: 0098-5589.

Angelis, L., Stamelos, I., & Morisio, M. (2001). Building A Software Cost Estimation Model

Based On Categorical Data, Proceedings of the 7th International Symposium on Software

Metrics, IEEE Computer Society, ISBN: 0-7695-1043-4, pp. 4-15, London, 4-6 April

2001.

Azzeh, M., Neagu, D., & Cowling, P. I. (2010). Fuzzy Grey Relational Analysis for Software

Effort Estimation. Empirical Software Engineering, Vol. 15, No. 1, (February 2010), pp.

60-90, ISSN:1382-3256.

Boehm, B. W. (1981). Software Engineering Economics, Englewood Cliffs N. J., Prentice-Hall

Inc., ISBN: 0130266922. New Jersey.

Boehm, B. W., Abts, C., Clark, B., & Devnani-Chulani, S. (1997). COCOMO II Model Definition

Manual, Computer Science Department, The University of Southern California, Los

Angeles, CA.

Briand, L. C., & Wieczorek, I. (2002). Resource Modeling in Software Engineering, In:

Encyclopedia of Software Engineering (2nd edition), Editor: J. Marciniak.

Charette, R. N. (2005). Why software fails. Spectrum IEEE, Vol. 42, No. 9, September 2005,

pp. 42-49, ISSN: 0018-9235.

Desharnais, J. M. (1988). Analyse Statistique de la Productivite des Projects de Development en

Informatique a Partir de la Technique de Points de Fonction. MSc. Thesis, Montréal

(Université du Québec).

Dolado, J. J. (2001). On the Problem of the Software Cost Function, Information and Software

Technology, Vol. 43, No. 1, January 2001, pp. 61-72.

Fenton, N. E., & Pfleeger, S. L. (1997). Software Metrics: A Rigorous and Practical Approach,

International Thomson Computer Press.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd edition), Prentice-Hall,

ISBN: 0132-73350-1, New Jersey.

Heiat, A. (2002). Comparison of Artificial Neural Networks and Regression models for

Estimating Software Development Effort, Information and Software Technology,

Vol. 44, No. 15, December 2002, pp. 911-922.

Idri, A., Khoshgoftaar, T. M., & Abran, A.(2002). Can Neural Networks be Easily Interpreted

in Software Cost Estimation? Proceedings of the 2002 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2002), ISBN: 0-7803-7280-8, Honolulu,

HI, USA, 12-17 May 2002, pp. 1162-1167.

Idri, A, Mbarki, S., & Abran, A. (2004). Validating and Understanding Software

Cost Estimation Models based on Neural Networks, Proceedings of the

2004 International Conference on Information and Communication Technologies:

From Theory to Applications, ISBN: 0-7803-8482-2, Damascus Syria, 19-23

April 2004, pp. 433-434.

Jørgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development

Cost Estimation Studies. Software Engineering, IEEE Transactions on Software

Engineering, Vol. 33, No. 1, January 2007, pp. 33-53, ISSN: 0098-5589.

www.intechopen.com

Size-Based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms

187

Kaur, J., Singh, S., Kahlon, K. S., & Bassi, P. (2010). Neural Network – A Novel Technique for

Software Effort Estimation. International Journal of Computer Theory and Engineering,

Vol. 2, No. 1, February 2010, pp. 17-19.

Kemerer, C. F. (1987). An Empirical Validation of Software Cost Estimation Models,

Communications of the ACM, Vol. 30, No. 5, May 1987, pp. 416-429, ISSN:0001-0782.

Kemerer, C. F. (1993). Reliability of function points measurement: a field experiment.

Communications of the ACM, Vol. 36, No. 2, February 1993, pp. 85-97,

ISSN:0001-0782.

Kumar, K. V., Ravi, V., Carr, M., & Kiran, N. R. (2008). Software Development Cost

Estimation using Wavelet Neural Networks. Journal of Systems and Software, Vol. 81,

No. 11, November 2008, pp. 1853-1867, ISSN: 0164-1212.

McCulloch, W.S., & Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in Nervous

Activity. Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133.

Mittas, N., Kosti, M. V., Argyropoulou, V., & Angelis, L. (2010). Modeling the Relationship

between Software Effort and Size Using Deming Regression, Proceedings of the 6th

International Conference on Predictive Models in Software Engineering (PROMISE 2010),

ISBN: 978-1-4503-0404-7, Timisoara Romania, 12-13 September 2010.

Miyazaki, Y. Terakado, Ozaki, K., & Nozaki, H. (1994). Robust Regression for

Developing Software Estimation Models. Journal of Systems and Software, Vol. 27,

No. 1, October 1994, pp. 3-16, ISSN: 0164-1212.

Moløkken, K., & Jørgensen, M. (2003). A Review of Software Surveys on Software Effort

Estimation, Proceedings of International Symposium on Empirical Software Engineering,

ISBN: 0-7695-2002-2, Rome Italy, 30 September – 1 October 2003, pp. 223–230.

Park, R. E. (1996). Software size measurement: a framework for counting source statements,

CMU/SEI-TR-020. Software Engineering Institute Carnegie Mellon University.

Available from:

 http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr20.92.pdf, Accessed

Nov, 2007.

Putnam, L. H. (1978). A General Empirical Solution to the Macro Software Sizing and

Estimating Problem. IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July

1978, pp. 345-361, ISSN: 0098-5589.

Putnam, L. H., & Myers, W. (1992). Measures for Excellence, Reliable Software on Time, Within

Budget, Yourdon Press Computing Series, New Jersey.

Putnam, L. H., & Myers, W. (2003). Five core metrics: the intelligence behind successful software

management, Dorset House Publishing, ISBN 0-932633-55-2.

Software Magazine (2004) Standish: Project success rates improved over 10 years. Available

from:

 http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish,

Accessed in: November 2007.

Sommerville, I. (2007). Software Engineering, Addison-Wesley.

Tronto, I. F. D. B., Silva, J. D. S. D., & Sant'Anna, N. (2008). An Investigation of Artificial

Neural Networks based Prediction Systems in Software Project Management,

Journal of Systems and Software, Vol. 81, No. 3, March 2008, pp. 356-367, ISSN: 0164-

1212.

www.intechopen.com

Artificial Neural Networks - Application

188

Wittig, G., & Finnie, G. (1997). Estimating software development effort with connectionist

models. Journal of Information and Software Technology, Vol. 39, No. 7, pp. 469-476.

www.intechopen.com

Artificial Neural Networks - Application

Edited by Dr. Chi Leung Patrick Hui

ISBN 978-953-307-188-6

Hard cover, 586 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which

includes business, chemical technology, computing, engineering, environmental science, science and

nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is

very useful model and the ANN could be applied in problem solving and machine learning. This book is

suitable for all professionals and scientists in understanding how ANN is applied in various areas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Efi Papatheocharous and Andreas S. Andreou (2011). Size-Based Software Cost Modelling with Artificial

Neural Networks and Genetic Algorithms, Artificial Neural Networks - Application, Dr. Chi Leung Patrick Hui

(Ed.), ISBN: 978-953-307-188-6, InTech, Available from: http://www.intechopen.com/books/artificial-neural-

networks-application/size-based-software-cost-modelling-with-artificial-neural-networks-and-genetic-algorithms

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

