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1. Introduction

The discrete wavelet transform (DWT) is gaining momentum as a feature extraction and/or
classification tool, because of its ability to localize structures with good resolution in a
computationally effective manner. The result is a unique and discriminatory representation,
where important and interesting structures (edges, details) are quantified efficiently by few
coefficients. These coefficients may be used as features themselves, or features may be
computed from the wavelet domain that describe the anomalies in the data.
As a result of the potential that the DWT possesses for feature extraction and classification
applications, the current work focuses on its utility in a computer-aided diagnosis (CAD)
framework. CAD systems are computer-based methods that offer diagnosis support to
physicians. The images are automatically analyzed and the presence of pathology is identified
using quantitative measures (features) of disease.
With traditional radiology screening techniques, visually analyzing medical images is
labourious, time consuming, expensive (in terms of the radiologist’s time) and each individual
scan is prone to interpretation error (the error rate among radiologists is reported to hover
around 30% Lee (2007)). Additionally, visual analysis of radiographic images is subjective; one
rater may choose a particular lesion as a candidate, while another radiologist may find this
lesion insignificant. Consequently, some lesions are being missed or misinterpreted. To reduce
the error rates, a secondary opinion may be obtained with a CAD system (automatically
reanalyze the images after the physician). Such methods are advantageous not only because
they are cost effective, but also because they are designed to objectively quantify pathology in
a robust, reliable and reproducible manner.
There has been a lot of research in CAD-system design for specific modalities or applications
with excellent results, i.e. see Sato et al. (2006) for CT, or Guliato et al. (2007) for
mammography. Although these techniques may render good results for the particular
modality it was built for, the technique is not transferable and has little-to-no utility in other
CAD problems (cannot be applied to other images or databases). Since CAD systems are being
employed widely, a framework that encompasses a variety of imaging modalities - not just a
single one - would be of value.
To this end, this work concerns the development of a generalized computer-aided diagnosis
system that is based on the DWT. It is considered generalized, since the same framework can
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be applied to different images with no modifications. There are three image databases that
are used to test the generalized CAD system: small bowel, mammogram and retinal images.
Although these images are very different from one another, a common attribute is noticed:
pathology is rough and heterogeneous, and healthy (normal) tissue is uniform. These images
are described in Section 2.
To quantify these differences between textures in normal and abnormal images, a texture
analysis scheme based on human texture perception is proposed. To describe the
elemetary units of texture (which are needed for overall texture perception), important
features such as scale, frequency and orientation are used for texture discrimination. The
DWT is a perfect mechanism to highlight these space-localized features, since it offers
a high resolution, scale-invariant representation of nonstationary phenomena (such as
texture). Multiresolutional analysis, the wavelet transform, DWT with its properties and
implementations are discussed in Section 4.
Although the DWT has many beneficial qualities, the DWT is shift-variant. Therefore, any
texture metrics extracted from the wavelet coefficients will also be shift-variant, reducing the
classification performance of our system. To combat this, a shift-invariant DWT (SIDWT)
is utilized to ensure that only translation invariant features are extracted (see Section 5).
To robustly quantify these texture elements (as described by the wavelet coefficients), a
multiscale texture analysis scheme is employed on the shift-invariant coefficients. At various
levels of decomposition, wavelet-domain graylevel cooccurrence matrices were implemented
in a variety of directions over all subbands to capture the orientation of such texture
elements. Texture features were extracted from each of the wavelet subbands to quantify the
randomness of the coefficients and they are classified using a linear classifier. The multiscale
texture analysis scheme and the classification technique are described in Section 6 and Section
7. Section 8 and Section 9 presents the results of the proposed generalized CAD framework for
all images and the concluding remarks, respectively. This work is a consolidation of several
research efforts Khademi (2006) Khademi & Krishnan (2007) Khademi & Krishnan (2008).

2. Biomedical imagery

Three imaging modalities are utilized to test the classification system: mammography, retinal
and small bowel images. Each one of these image types are used to diagnose diseases from
a specific anatomical region. Although these images are quite different from one another, the
current work develops a generalized framework for CAD that may be applied directly to each
of the images. The only apriori assumption is a very general one: the texture between normal
tissue and pathology is different.
The first modality, mammography, is an imaging technology which acquires an x-ray image
of the breast Ferreira & Borges (2001). They are currently the most effective method for early
detection of breast cancers Cheng et al. (2006) Wei et al. (1995). A challenging problem in
human-based analysis of mammography is the discrimination between malignant and benign
masses. Incorrectly identifying the lesion type results in negative to positive biopsies ratios
as high as 11:1 in some clinics Rangayyan et al. (1997). Normal tissue masks the lesions and
breast parenchyma is much more prominent than the lesion itself Ferreira & Borges (2001).
To test the CAD system with mammography images, a database is used where images contain
either a benign or malignant lesion(s). Examples of benign and malignant masses (along with
the contrast enhanced versionS) are shown in Figure 1. Normal regions are also shown for
comparison.
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(a) Regular

(b) Enhanced

Fig. 1. Mammographic regions (128 × 128). (a)-(c) Normal regions, (d)-(f) circumscribed
benign masses, (g)-(i) spiculated malignant masses. The contrast enhanced versions of these
regions are also included to highlight the textural differences between lesions.
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The benign masses have a rounded appearance with a defined boundary, while the inside
of the mass is relatively uniform and radiolucent. This has also been noted by other others,
see Ferreira & Borges (2001) Rangayyan et al. (1997) Mudigonda et al. (2000). In contrast, the
malignant masses possess ill-defined boundaries, are of higher density (radiopaque) and have
an overall nonuniform appearance in comparison to the benign lesions. Furthermore, spicules
from malignant masses cause disturbances in the homogeneity of tissues in the surrounding
breast parenchyma Rangayyan (2005). Since benign and malignant masses carry different
textural qualities, these textural differences will be exploited in the CAD system.
The second type of images are known as small bowel images. They are acquired by Given
Imaging Ltd.’s capsule endoscopy known as the PillCamTM SB video capsule. The PillCamTM

is a tiny capsule (10mm × 27mm Kim et al. (2005)), which is ingested from the mouth. As
natural peristalsis moves the capsule through the gastrointestinal tract it captures video and
wirelessly transmits it to a data recorder the patient is wearing around his or her waist Given
Imaging Ltd. (2006a). This video provides visualization of the 21 foot long small bowel, which
was originally seen as a “black box” to doctors Given Imaging Ltd. (2006b).
Video is recorded for approximately eight hours and then the capsule is excreted naturally

Fig. 2. Small bowel images captured by the PillCamTM SB, which exhibit textural
characteristics. (a) Healthy small bowel, (b) normal neocecal valve, (c) normal colonic
mucosa, (d) normal small bowel, (e) normal jejunum, (f) small bowel polyp, (g) small bowel
lymphoma, (h) GIST tumor, (i) polypoid mass, (j) small bowel polyp.

with a bowel movement Given Imaging Ltd. (2006a). Clinical results for the PillCamTM show
that it is a superior diagnostic method for diseases of the small intestine Given Imaging Ltd.
(2006c). The downfall of this technology comes from the large amount of data which is
collected while the PillCamTM - the doctor has to watch and diagnose eight hours of footage!
This is quite a labourious task, which could cause the physicians to miss important clues due
to fatigue, boredom or due to the repetitive nature of the task. To combat missed pathologies,
the proposed CAD system could be used to double check the image data.
To test out the generalized CAD system, a small bowel image database is utilized that contains
both normal (healthy regions) and several abnormal images. As shown Figure 2(a)-(e), the
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normal small bowel images contain smooth, homogeneous texture elements with very little
disruption in uniformity except for folds and crevices.
Many types of pathologies are found in the small bowel image database ("abnormal" image
class), such as “Abnormal”: polyp, Kaposi’s sarcoma, carcinoma, etc. These diseases may
occur in various sizes, shapes, orientations and locations within the gastrointestinal tract.
Abnormalities have some common textural characteristics: the diseased region contains
many different textured areas simultaneously and these diseased areas are composed of
heterogeneous texture components. This may be seen in Figure 2(f)-(j).
The data for each patient is a series of 2D colour images. As the current chapter is focused
on grayscale processing, the colour images are converted to grayscale first. Additionally, each
image has been lossy JPEG compressed, so feature extraction is completed in the compressed
domain. Feature extraction in the compressed domain has become an important topic recently
Chiu et al. (2004) Xiong & Huang (2002) Chang (1995) Armstrong & Jiang (2001) Voulgaris &
Jiang (2001), since the prevalence of images stored in lossy formats far supersedes the number
of images stored in their raw format.
The last set of images are known as retinal images. Ophthalmologists use digital fundus
cameras to acquire and collect retinal images of the human eye Sinthanayothin et al. (2003),
which includes the optic nerve, fovea, surrounding vessels and the retinal layer Goldbaum
(2002). Although screening with retinal imaging reduces the risk of serious eye impairment
(i.e. blindness caused by diabetic retinopathy by 50% Sinthanayothin et al. (2003)), it also
creates a large number of images which the doctors need to interpret Brandon & Hoover
(2003). This is expensive, time consuming and may be prone to human error. The current
automated system can be used to help the doctors with this diagnostic task by offering a
secondary opinion of the images.
The current database contains several normal (healthy) retinal images as well as several
images that contain a variety of pathologies. Examples of normal and abnormal retinal images
are shown in Figure 3. Healthy eyes are easily characterized by their overall homogeneous
appearance, as easily seen in Figure 3(a)-(c).
Eyes which contain disease do not possess uniform texture qualities. Three cases of abnormal

retinal images are shown in Figure 3(d)-(f). Diabetic retinopathy, which is characterized by
exudates or lesions (random whitish/yellow patches locations Wang et al. (2000)) are shown
in Figure 3(a).
Another clinical sign of diabetic retinopathy are microaneurysms and haemorrhages and
macular degeneration, which can cause blindness if it goes untreated. Macular degeneration
may be characterized by drusens, which appear as yellowish, cloudy blobs, which exhibit
no specific size or shape Brandon & Hoover (2003). This is shown in Figure 3(e). These
pathologies disrupt the homogeneity of normal tissues. Other diseases include central retinal
vein and/or artery occlusion shown in Figure 3(f) (an oriented texture pattern which radiates
from the optic nerve).

2.1 Texture for pathology discrimination

As shown in the previous subsection, pathological regions in the images have a heterogeneous
appearance and normal regions are uniform. Moreover, texture elements occur at a variety of
orientations, scales and locations. Thus the CAD system must be robust to all these variances,
but still remain modality- or database-independent (i.e. not tuned specifically for a modality).
Computing devices are becoming an integral part of our daily lives and in many times, these
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Fig. 3. Retinal images which exhibit textural characteristics. (a)-(c) Normal, homogeneous
retinal images, (d) background diabetic retinopathy (dense, homogeneous yellow clusters),
(e) macular degeneration (large, radiolucent drusens with heterogeneous texture properties),
(f) central retinal vein occlusion (oriented, radiating texture).

algorithms are designed to mimic human behaviour. In fact, this is the major motivation of
many CAD systems; to understand and analyze medical image content in the same fashion
as humans do. Since texture has been shown to be an important feature for discrimination in
medical images, understanding how humans perceive texture provides important clues into
how a computer vision system should be designed to discriminate pathology.
As shown, these images possess textural characteristics that differentiate between
pathological and healthy (normal) tissues. A common denominator is that the pathological
(cancerous) lesions seem to have heterogeneous, oriented texture characteristics, while the
normal images are relatively homogeneous. These differences are easily spotted by the human
observer and thus we want our system to also differentiate between these two texture types
(homogeneity and heterogeneity) for classification purposes.
To build a system that understands textural properties that is in line with human texture
perception, a human texture analysis model must first be examined. When a surface is viewed,
the human visual system can discriminate between textured regions quite easily. To describe
how the human visual system can differentiate between textures, Julesz defined textons,
which are elementary units of texture Julesz (1981). Textured regions can be decomposed
using these textons, which include elongated blobs, lines, terminators and more. It was found
that the frequency content, scale, orientation and periodicity of these textons can provide
important clues on how humans differentiate between two or more textured areas Julesz
(1981). Therefore, to create a system which mimics human understanding of texture for
pathology discrimination, it is necessary that the analysis system can detect the properties of
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the fundamental units of texture (texture markers). In accordance to Julesz’s model, textural
events will be detected based on their scale, frequency and orientation.

3. Feature invariance

To describe the textural characteristics of medical images, a feature extraction scheme will
be used. The extracted features are fed into a classifier, which arrives at a decision related
to the diagnosis of the patient. Let X ⊂ Rn represent the signal space which contains all
biomedical images with the dimensions of n = N × N. Since the images X can be expected
to have a very high dimensionality, using all these samples to arrive at a classification result
would be prohibitive Coifman & Saito (1995). Furthermore, the original image space X is
also redundant, which means that all the image samples are not necessary for classification.
Therefore, to gain a more useful representation, a feature extraction operator f may map the
subspace X into a feature space F

f : X → F , (1)

where F ⊂ Rk, k ≤ n and a particular sample in the feature space may be written as a feature
vector: F = {F1, F2, F2, · · · , Fk}. If k < n, the feature space mapping would also result in a
dimensionality reduction.
Although it is important to choose features which provide the maximum discrimination
between textures, it is also important that these features are robust. A feature is robust if
it provides consistent results across the entire application domain Umbaugh et al. (1997). To
ensure robustness, the numerical descriptors should be rotation, scale and translation (RST)
invariant. In other words, if the image is rotated, scaled or translated, the extracted features
should be insensitive to these changes, or it should be a rotated, scaled or translated version
of the original features, but not modified Mallat (1998). This would be useful for classifying
unknown image samples since these test images will not have structures that have the same
orientation and size as the images in the training set Leung & Peterson (1992). By ensuring
invariant features, it is possible to account for the natural variations and structures within the
retinal, mammographic and small bowel images.
As will be shown in the next section, such features are extracted from the wavelet domain. If a
feature is extracted from a transform domain, it is also important to investigate the invariance
properties of the transform since any invariance in this domain also translates to an invariance
in the features. For instance, the 1-D Fourier spectrum is a well-known translation-invariant
transform since any translation in the time domain representation of the signal, does not
change the magnitude spectrum in the Fourier domain

f (t− τo)⇔F(ω) · e−jωτo , (2)

for all real values of τo. Similarly, scaling in time results in a easily definable reaction in the
frequency domain

f (αt) ⇔
1

|α|
· F

(

ω

α

)

, (3)

where α is an integer value.
Although the types of feature extraction algorithms that will be used have not yet been
discussed, prior to designing any feature extractor, it is important to understand the necessity
of robust features. The following sections will detail the analysis tool used to localize the
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texture events, as well as the feature extraction framework that is used to extract robust
features (in the RST-invariant sense).

4. Multiresolutional analysis

All signals and images may be categorized into one of two categories: 1) deterministic
or 2) non-deterministic (random). Deterministic signals allow for advanced prediction of
signal quantities, since the signal may be described by a mathematical function. In contrast,
instantaneous values of non-deterministic signals are unpredictable due to their random
nature and must be represented using a probabilistic model Ross (2003). This stochastic model
describes the inherent behaviour of the signal or image in question.
Random signals (both 1D and 2D) may be further classified into two groups: 1) stationary
or 2) nonstationary. A stationary signal (1D) is a signal which has a constant probability
distribution for all time instants. As a consequence, first order statistics such as the mean and
second order statistics such as variance must also remain constant. In contrast, a nonstationary
signal has a time-varying probability distribution which causes quantities computed from the
probability density function (PDF) to also be time-varying. For instance, the mean, variance
and autocorrelation function of a nonstationary signal would change with time. Since the
Fourier transform of the autocorrelation function is equal to the power spectral density (PSD)
of a signal (which is related to the spectral content), the PSD of a nonstationary signal is also
time-varying. Consequently, a nonstationary signal has time-varying spectral content.
The medical images (as with most natural images) are nonstationary since they have
spatially-varying frequency components. Texture is comprised of a variety of frequency
content (and may be found in any location in the image), and therefore texture is also a type of
nonstationary phenomena. Since textured regions provide important clues that discriminate
between pathologies and/or healthy tissue, nonstationary analysis would add extra utility in
the sense that it would quantify or localize these textural elements. As discussed, the theory
of human texture perception is defined in terms of several features for texture discrimination:
the scale, frequency, orientation of textons. Therefore, analyzing the scale, frequency and
orientation properties of textural elements by nonstationary image analysis is in accordance
to the human texture perception model.
The type of nonstationary image analysis tool that will be utilized is part of the
multiresolutional analysis family, and is known as the Discrete Wavelet Transform (DWT).
As will be discussed, wavelet transforms are optimal for texture localization since the wavelet
basis have excellent joint space-frequency resolution Mallat (1998).
The section will begin by presenting the signal decomposition theory needed to understand
the fundamentals of the DWT. Following the introduction, the wavelet transform (with
descriptions of the wavelet and scaling basis functions) are given, with emphasis given to
signal space definitions. The DWT is then defined using the filter-bank method which was
implemented by the lifting-approach for the 5/3 Le Gull wavelet.

4.1 Signal decomposition techniques

Signal decomposition techniques can be used to transform the images into a representation
that highlights features of interest. As such decomposition techniques are used to define the
wavelet transform and its variants, some brief background is given here.
A decomposition technique linearly expands a signal or image using a set of mathematical
functions. For a 1D signal, using a set of real-valued expansion coefficients ak, and a series
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of 1-D mathematical functions ψk(t) known as an expansion set (ψk(t) = ψ(t − k) for all
integer values of k), a signal f (t) may be expressed as a weighted linear combination of these
functions

f (t) = ∑
k

ak · ψk(t), k ∈ Z. (4)

If the members of the expansion set ψk(t) are orthogonal to one another:

�ψk(t), ψl(t)� = 0, k �= l, (5)

then it is possible to find the expansion coefficients ak

ak = � f (t), ψk(t)�, (6)

where the inner product �·� of two signals x(t) and y(t) is defined by

�x(t), y(t)� =
∫
t
x∗(t) · y(t)dt. (7)

The definition of an expansion set depends on various properties. For instance, if there is
a signal f (t) which belongs to a subspace S ( f (t) ∈ S), then ψk(t) will only be called an
expansion set for S if f (t) can be expressed with linear combinations of ψk(t). The expansion
set forms a basis if the representation it provides is unique Burrus et al. (1998). Similarly, a basis
set may be defined first and then the space S spans all functions f (t) which can be expressed
by f (t) = ∑k ak · ψk(t).
For images, the basis functions may be dependant on both the horizontal and vertical spatial
variables (x, y). This leads to 2D basis functions ψm,n(x, y), where ψm,n(x, y) = ψ(x− n, y−
m), for all (m, n) ∈ Z. Therefore, a 2D function (image) f (x, y), that belongs to the space of the
basis functions, may be rewritten as a linear expansion

f (x, y) = ∑
m

∑
n
am,n · ψm,n(x, y), (8)

where am,n are the 2-D expansion coefficients found by

am,n = �ψm,n(x, y), f (x, y)�. (9)

Using decomposition techniques, a new representation is generated. In feature extraction
problems, we want this representation (i.e. coefficients ak or an,m) to highlight the features we
are interested in. This requires us to choose basis functions that are tuned to the properties of
our image (i.e. nonstationary structures). While choosing which basis set to use, one of the
main considerations is the functions’ space-frequency resolution.
Consider the basis function ψk(t) which has an energy distribution that is concentrated near
the time instant k and is spread out over the interval ∆t Mallat (1998). This basis function ψk(t)
can identify time-localized features (at k) with a resolution of 1

∆t . Similarly, in the frequency
domain, the Fourier representation Ψξ (ω) is concentrated in energy near the frequency ξ

and spread over the interval of ∆ω, which captures frequency-localized features (at ξ) with a
resolution of 1

∆ω .
Ideally, basis functions with infinitely small time and frequency would provide the best
representation since time-frequency structures would be represented with infinite resolution.
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However, this is not possible, because there is a direct trade off between time and
frequency resolution of basis functions as governed by the Heisenburg uncertainty principal
Burrus et al. (1998) Mallat (1998). The Heisenburg uncertainty principal states that resolution
of the time-frequency functions are lower bounded by

∆ω · ∆t ≥ 1/2. (10)

Therefore, to capture nonstationary events with good space-frequency localization, we need
basis functions that aim to operate near the theoretical lower bound. Many basis functions
offer solutions, but are not optimal for all applications. For example, the Short-Time Fourier
Transform (STFT) bases are not optimal because (1) they offer a fixed resolution for the
entire decomposition process (thus missing features that are comprised with different scales
and frequencies), (2) do not offer an easy method to access and manage the coefficients
and (3) creates a drastic increase in memory consumption and computational resources.
The following section will describe how the wavelet transform poses solutions to all these
problems.

4.2 Wavelet transforms

The wavelet transform offers solutions to all the problems associated with other basis
functions (such as the STFT) Mallat (1989) Wang & Karayiannis (1998) Vetterli & Herley
(1992) Mallat (1998). It offers a multiresolutional representation (decomposes the image using
various scale-frequency resolutions), which is achieved by dyadically changing the size of the
window. Space-frequency events are localized with good results since the changing window
function is tuned to events which have high frequency components in a small analysis
window (scale) or low frequency events with a large scale Burrus et al. (1998). Therefore,
texture events could be efficiently represented using a set of multiresolutional basis functions.
Additionally, the discrete wavelet transform utilizes critical subsampling along rows and
columns and uses these subsampled subbands as the input to the next decomposition level.
For a 2-D image, this reduces the number of input samples by a factor of four for each level of
decomposition. This representation may be stored back on to the original image for minimum
memory usage and it also permits for an organized, computationally efficient manner to
access these subbands and extract meaningful features.
The wavelet transform utilizes both wavelet basis ψj,k(t) and scaling basis φk(t) functions.
The wavelet functions are used to localize the high frequency content, whereas the scaling
function examines the low frequencies. The scale of the analysis window changes with each
decomposition level, thus achieving a multiresolutional representation. Starting with the
initial scale j = 0, the wavelet transform of any function f (t) which belongs to L2(R) is found
by

f (t) =
k=∞

∑
k=−∞

c(k) · φk(t) +
j=∞

∑
j=0

k=∞

∑
k=−∞

d(j, k) · ψj,k(t), (11)

where c(k) are the scaling or averaging coefficients (low frequency material) defined by

c(k) = c0(k) = � f (t), φk(t)� =
∫

f (t)φk(t) dt, (12)
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and dj(k) are the detail wavelet coefficients (high frequency content) defined by

dj(k) = d(j, k) = � f (t), ψj,k(t)� =
∫

f (t)ψj,k(t) dt. (13)

In order to achieve a wavelet transform, the functions ψj,k(t) and φk(t) have to meet specific
criteria. These criteria, the properties of the scaling/wavelet functions and the corresponding
signal spaces are described next.

4.2.1 Scaling function subspaces

Consider a set of basis functions {φk(t)} which may be created by translating the prototype
scaling function φ(t) Burrus et al. (1998)

φk(t) = φ(t− k), k ∈ Z, (14)

where φk(t) spans the space Vo

Vo = Spank{φk(t)}. (15)

If a set of basis functions span a signal space Vo, then any function f (t) which also belongs to
that space can be completely represented using those basis functions as in: f (t) = ∑k ak · φk(t)
(for any f (t) ∈ Vo).
For added flexibility, the time and frequency resolution of these scaling functions may be
adjusted by including an additional scale parameter j in the characteristic basis function
expression

φj,k(t) = 2j/2 · φ(2jt− k), j, k ∈ Z, (16)

where the scalar multiple 2j/2 is included to ensure orthonormality Mallat (1989). Therefore,
an entire series of basis functions can be created by simply dilating (changing the j value) or
translating (changing the k value) the prototype scaling function φ(t). These basis functions
span the subspace Vj

Vj = Spank{φk(2jt)},

= Spank{φj,k(t)}, (17)

and any signal f (t) can be expressed using this expansion set, as long as it is also a set of Vj

f (t) = ∑
k

ak · φ(2jt− k), f (t) ∈ Vj. (18)

The introduction of a scale parameter changes the time duration of the scaling functions.
This allows different resolutions to isolate different anomalies in the signals or images. For
instance, if j > 0, φj,k(t) is narrower and would provide a good representation of finer
detail. For j < 0, the basis functions φj,k(t) are wider and would be ideal to represent coarse
information Burrus et al. (1998).

4.2.2 Wavelet basis functions

Although the scaling functions give way to a multiresolution representation, it is also
necessary to investigate the spaces which span the differences of the spaces spanned by the
scaling functions. These regions correspond to the high frequency details of the data.
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......

Fig. 4. Nested wavelet and scaling signal spaces.

The types of basis functions that can localize the details are known as wavelets ψ(t) and their
corresponding signal spaces are denoted as W . Similar to scaling functions, a series of wavelet
basis functions can be generated by dilating and translating the mother wavelet ψ(t)

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z. (19)

To find the mother wavelet ψ(t), it is necessary to find the relationship between the mother
wavelet ψ(t) and the generating scaling function φ(t).
Starting with an initial resolution of j = 0, the nested subspaces may be written as

Vo ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2. (20)

The corresponding spaces spanned by the wavelet basis functions are shown in Figure 4,
which illustrates how each W subspace spans the difference of two subspaces. As shown in
Figure 4, the signal spaces V1 and V2 may be expressed as

V1 = Vo ⊕Wo, (21)

and
V2 = Vo ⊕ Wo ⊕ W1, (22)

where ⊕ is a direct sum. If Vj is the space spanned by the scaling functions φj,k(t) and
Vj+1 is the space spanned by the functions φj+1,k(t), then Wj is the disjoint difference or the
orthogonal compliments of Vj and Vj+1 spanned by the wavelet basis functions ψj,k(t). This
may be shown by

Vj+1 = Vj ⊕Wj, ∀j ∈ Z. (23)

Using Equation 21, Equation 22 and Figure 4, a general expression for the L2 subspace may be
developed:

L2 = Vo ⊕ Wo ⊕ W1 ⊕ W2 ⊕ · · · , (24)

and since these subspaces are orthogonal to one another

Vo ⊥Wo ⊥W1 ⊥W2 ⊥W3 · · · , (25)
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the corresponding basis functions which span these spaces are also orthogonal

�φj,k(t), ψj,k(t)� =
∫

φj,k(t) · ψj,k(t)dt = 0. (26)

Furthermore, wavelet spaces at a scale j are a subset of the scale spaces at the next scale j + 1

Wj ⊂ Vj+1. (27)

Consequently, wavelets reside in the space spanned by the next narrower scaling function and
can be expressed as a weighted sum of shifted scaling functions, φ(2t)

ψ(t) = ∑
n
h1(n) ·

√
2 · φ(2t− n), n ∈ Z, (28)

where h1(n) are the wavelets’ coefficients. Equation 28 shows that the generating wavelet
ψ(t) can be produced from the prototype scaling function φ(t) by choosing the appropriate
h1(n). In order to ensure orthogonality, the scaling and wavelet coefficients must be related
by Burrus et al. (1998)

h1(n) = (−1)nho(1 − n). (29)

Therefore, for analysis with orthogonal wavelets, the highpass filter h1(n), which is half-band,
is calculated as the quadrature mirror filter of the lowpass ho(n). These filters may be
used to efficiently implement the wavelet transform for discrete signals (the Discrete Wavelet
Transform) and is discussed next.

4.3 Discrete wavelet transform

In order to perform the wavelet transform for discrete images, implementation of the DWT
using filterbanks is popular choice since the complexities of the wavelet transform are
explained in terms of filtering operations (which is intuitive). The material is first presented
for one dimensional signals and then is expanded to 2D for images.
After performing a series of simplifications and change of variables Burrus et al. (1998) Mallat
(1998) Vetterli & Herley (1992), Equation 28 may be rewritten as

cj(k) = ∑
m

ho(m− 2k)cj+1(m), (30)

and
dj(k) = ∑

m
h1(m− 2k)cj+1(m). (31)

This illustrates that cj(k) and dj(k) can be found by filtering cj+1(k) with ho and h1,
respectively, followed by a decimation by a factor of 2. The two filters, ho(n) and h1(n)
are half-band lowpass and highpass filters, respectively. Consequently, the lowpass filter
ho(n) produces lowpassed or averaged coefficients cj(k) and the highpass filter h1(n) creates
highpassed or detail coefficients dj(k).
To compute the DWT coefficients for two levels, examine the two stage analysis filterbank in
Figure 5(a) alongside the signal spaces in Figure 5(b). Note that the initial scale here is j + 1,
and therefore cj+1 would represent the original input signal. After one level of decomposition,
the lowpass coefficients cj and the highpass details dj are produced. For a multiresolutional
representation, cj are further decomposed with ho and h1, to produce the coefficients cj−1(k)
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and dj−1(k) (they describe the next scale of low and high frequency structures). The 2D
extension for images is detailed next.

Fig. 5. (a) Computing the 1-D wavelet and scaling coefficients using filtering and decimation
with a 2-stage analysis filterbank, (b) corresponding decomposition tree showing the division
of signal spaces.

4.3.1 2-D extension for images

Instead of having a wavelet or filter which is a function of the two spatial dimensions of an
image, the filter can be separable, which allows a particular 1D filter to be applied to the rows
and columns of an image separately to gain the desired overall 2D response Lawson & Zhu
(2004). A separable filter for two dimensions may be denoted by:

H(z1, z2) = H(z1) · H(z2), (32)

where z1 and z2 relate to the spatial dimensions of an image. Therefore, the filters defined
for the 1D DWT may be applied separably to gain a 2D DWT representation for images. The
2-D DWT filterbank scheme for an N × N image x(m, n) is shown in Figure 6. Initially, the
filters Ho(z) and H1(z) are applied to the rows of image x(m, n), creating two images which
respectively contain the low and high frequency content of the image in question. After this,
both frequency bands are subsampled by a factor of 2, and are sent to the next set of filters for
filtering along the columns. After these bands have been filtered, decimation by a factor of 2
is again performed, but this time along columns. At the output of one level of decomposition,
as shown in Figure 6, there are four subband images of size N

2 × N
2 labeled LL, LH, HL and

HH. Using the separability concept, at scale j, these subbands may be computed by

LLj(x, y) = ∑
m

∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m, n), (33)

HLj(x, y) = ∑
m

∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n), (34)

LH j(x, y) = ∑
m

∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m, n), (35)

HH j(x, y) = ∑
m

∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m, n). (36)
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The first letter of the subimages indicates the operation that was performed on the columns
(i.e. L is for lowpass filtering with Ho(z) and H is for highpass filtering with H1(z))
whereas the last letter indicates which operation was performed on the rows. If more levels

Fig. 6. Filterbank implementation of 2-D discrete wavelet transform (DWT).

of decomposition are required, the LL band may be recursively reapplied to the analysis
filterbank of Figure 6. For two levels of decomposition, the placement of the coefficients back
onto the image is shown in Figure 7.

To examine the localization properties of the 2D DWT, consider Figure 8. The edges and

Fig. 7. Graphical depiction of wavelet coefficient placement for two levels of decomposition.

corners of the square (the original image) are composed of localized high frequency content,
which is captured in the high frequency subbands in the wavelet domain, regardless of the
orientation (horizontal, diagonal, vertical). As texture is comprised of such localized high
frequency events, utilization of such a transform will be able to describe the textural events
as required. The diffusion of textural features or events will occur across subbands, which
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allows features to be captured not only within subbands, but also across subbands.
For an example of the localization properties of wavelets in a medical image, as well as
the textural differences between normal and abnormal medical images, see Figure 9. The
normal image’s decomposition exhibits an overly homogeneous appearance of the wavelet
coefficients in the HH, HL and LH bands (which reflects the uniform nature of the original
image). The decomposition of the retinal image with diabetic retinopathy shows that each
of the higher frequency subbands localizes the retinopathy, which appears as heterogeneous
textured blobs (high-valued wavelet coefficients) in the center of the subband. This illustrates
how the DWT can localize the textural differences in medical images also how multiscale
texture may be used to discriminate between pathological cases . Similar results are obtained
with the small bowel and mammographic lesions, however, are not shown here due to space
constraints.

Another benefit of wavelet analysis is that the basis functions are scale-invariant.

Fig. 8. Left: original image. Right: one level of DWT of left image.

Scale-invariant basis functions will give rise to a localized description of the texture elements,
regardless of their size or scale, i.e. coarse texture can be made up of large textons, while fine
texture is comprised of smaller elementary units. Therefore, the DWT can handle both of these
scenarios.
Although the filterbank method is efficient, it requires a lot of filtering operations which is

computationally expensive. For more efficient implementations of the filterbank-based DWT,
the lifting-based approach is one such approach that is employed in the current framework
and detailed next.

4.4 Lifting-based DWT

To compute the DWT in an efficient manner, the lifting based approach is used Fernández
et al. (1996) Sweldens (1995) Sweldens (1996). To increase computation speed, lifting based
approaches make optimal use of similarities which exist between the lowpass (H1(z)) and
highpass (Ho(z)) filters. All 1D implementations will be later extended to 2D implementations
by ’lifting’ both the columns and the rows separately.
The lifting based DWT is an efficient scheme since it aims to implement complicated functions
with simple and invertible stages Zhang & Zeytinoglu (1999). Compared to the filterbank
method, the lifting based DWT method offers a less computationally expensive solution to
compute the DWT Zhang & Zeytinoglu (1999) Sweldens (1996).
The lifting based scheme relies on three operations to achieve the discrete wavelet transform:
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Fig. 9. One level of DWT decomposition of retinal images. Left: normal image
decomposition. Right: decomposition of retinal image with diabetic retinopathy. Contrast
enhancement was performed in the higher frequency bands (HH, LH, HL) for visualization
purposes.

1) split, 2) predict and 3) update. These three operations which comprise the 1-D lifting
scheme, are shown in Figure 10, where S is the splitting function, P is the predictor function
and U is the update operation. As shown by Figure 10, the scaling and wavelet coefficients
(cj(n) and dj(n)) are still from the previous level’s coefficients, cj+1(n). Lifting may be also
applied separably to the rows and columns of an image to arrive at a 2D DWT.

Fig. 10. Generalized 1-D lifting based implementation of the DWT.

4.4.1 Splitting

The splitting operation divides the 1-D input string into even and odd samples, as denoted
by cj+1(2n) and cj+1(2n + 1), respectively. Using digital signal processing, the even samples
may be obtained by decimating the original signal by a factor of 2, and the odd samples may
be obtained by subsampling a time shifted (single unit of time) version of the original signal
by 2. This is often referred to as the Lazy Wavelet Transform Fernández et al. (1996).
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4.4.2 Prediction

In order to compute the wavelet coefficients dj(n), a lifting scheme uses a predictor to
interpolate the odd-indexed coefficients from the previous scale (cj+1(2n+ 1)). The prediction
is subtracted from the original odd-indexed signal to produce the wavelet coefficients dj(n).
This may expressed as

dj(n) = cj+1(2n + 1) −P(cj+1(2n + 1)), (37)

where P(·) is the predictor function. As stated earlier, the wavelet coefficients correspond to
the high frequency components which makes this operation equivalent to highpass filtering.
A good predictor function would produce small valued wavelet coefficients (ideally zero),
since the predicted version of the signal would be identical to the original. However, for
nonstationary signals (such as biomedical images) that have properties which change over
time, it is not possible to exactly predict the signal Zhang & Zeytinoglu (1999) and non-zero
wavelet coefficients can be expected. There are many different predictor functions which may
be used Maragos et al. (1984) Haijiang et al. (2004) Denecker et al. (1997), however, in order
to implement the forward wavelet transform, the interpolation function is chosen such that it
relates to the wavelet ψ(t) Zhang & Zeytinoglu (1999).

4.4.3 Updating

In a lifting based DWT implementation, the scaling coefficients cj(n) are computed as the sum
of the even-indexed samples (cj+1(2n)) and an updated version of the wavelet coefficients
dj(n) as shown below:

cj(n) = cj+1(2n) + U (dj(n)), (38)

where U (·) is the update function. This operation isolates the low frequency components
within the original signal. For images, lifting based DWT must be extended to two
dimensions. As shown earlier in the 2D DWT filterbank approach, 1D wavelet transforms
were applied separably to the images in order to gain a 2D DWT representation. This also
applies to lifting based schemes as well. By sequentially applying the lifting operation first to
the rows and then to the columns of an image, the forward transformation is achieved. The
forward operation is depicted in Figure 11.

Fig. 11. Lifting-based implementation of the DWT for two dimensional signals.
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4.5 5/3 Wavelet

The integer wavelet which will be used is part of the Odd-Length Analysis/Synthesis
Filter (OLASF) family, where the number of filter taps in the FIR filter (for the filterbank
implementation) are odd Adams & Ward (2003). Additionally, biomedical images are high
resolution images, which results in large image sizes. Consequently, for these large-sized
images, a wavelet with fewer taps is desired so that the overall computational load may be
reduced. The 5/3 Le Gull wavelet will be used since the filter lengths are small (5 and 3
taps for the analysis low and highpass filters) and can warrant an efficient implementation
Marcellin et al. (2000) Zhang & Fritts (2004) . The 5/3 filter coefficients are listed in Table ??.

Analysis Coefficients Synthesis Coefficients

i ho(i) h1(i) ho(i) h1(i)

0 + 6
8 +1 +1 + 6

8

±1 + 2
8 − 1

2 − 1
2 + 2

8

±2 − 1
8 + 1

8

Table 1. Analysis and synthesis filter coefficients for the 5/3 wavelet.

Using the 5/3 integer wavelet, the highpass details dj(n) can be computed using a lifting
based approach:

dj(n) = cj+1(2n + 1) −

⌊

cj+1(2n) + cj+1(2n + 2)

2

⌋

, (39)

where �X� is the greatest integer less than or equal to X. The low frequency, average
coefficients cj(n) may be found using an update function

cj(n) = cj+1(2n) +

⌊

dj(n) + dj(n− 1) + 2

4

⌋

. (40)

For reconstruction, the reverse DWT can be found by reversing the arithmetic operations of
the forward transform. This is shown below:

cj+1(2n) = cj(n) +

⌊

dj(n) + dj(n− 1) + 2

4

⌋

, (41)

cj+1(2n + 1) = dj(n)−

⌊

cj+1(2n) + cj+1(2n + 2)

2

⌋

. (42)

These equations may be applied separably to the images in order to gain a 2-D DWT
representation.

5. Shift-invariant discrete wavelet transform

Although the DWT is scale-invariant, it is well known that the DWT is shift-variant Mallat
(1998), i.e. the coefficients of a circularly shifted image are not translated versions of the
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original image’s coefficients. For instance, the DWT of an input biomedical image f (x, y)
can be shown as:

f (x, y) −→ DWT −→ F̂(k1, k2, j)

where F̂(k1, k2, j) are the 2-D DWT coefficients at scale j. A shift of the image will result in a
different set of coefficients

f (x + ∆x, y+ ∆y) −→ DWT −→ F̂(k
�

1, k
�

2, j)

where k
�

1 �= k1 + a1 · ∆x and k
�

2 �= k2 + a2 · ∆y for (a1, a2), (∆x, ∆y) ∈ Z, indicating that the two
sets of coefficients are not translated versions of one another.

Shift-variance causes significant challenges in a feature extraction problem. For example,

Fig. 12. Image (simulated benign lesion).

consider the image of Figure 12 (the center circle can be considered as a circumscribed benign
lesion, or something to that effect). If this circle is translated by a small amount (which is
equivalent to the lesion being located in different regions of an image), the extracted features
would be different. To illustrate this, the image in Figure 12 is translated by shifts of (∆x, ∆y)
= {(0,0), (0,1), (1,0), (1,1)} and for each translation, the DWT is performed. Then, the mean
and variance of the wavelet coefficients are extracted from the LH band (moments are RST
invariant, so any invariance would be a consequence of the transform). The extracted features
are shown in Table 2. As shown by these results, images with pathology (texture) located
in different regions of the images would result in different feature sets, thus leading to high
misclassification results.

For shift-invariant features, it is necessary to utilize a shift-invariant discrete wavelet

Input shift (∆x, ∆y) Mean µ Variance σ2

(0,0) -0.050537 97.017
(0,1) -0.051025 100.42

(1,0) 0.057861 96.82
(1,1) 0.058350 98.383

Table 2. Mean µ and variance σ2 of the DWT coefficients of the LH band for circular
translates (∆x, ∆y) of Figure 12.

transform (SIDWT) on the input image f (x, y)

f (x, y) −→ SIDWT −→ F̃(k1, k2, j)
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to compute the wavelet coefficients F̃(k1, k2, j). The representation achieved by such a
transform would be considered shift-invariant if a shift of the input image (∆x, ∆y) ∈ Z results
in output coefficients which are exactly the same as F̃(k1, k2, j), or a spatially shifted version
of it. This may be shown by

f (x + ∆x, y + ∆y) −→ SIDWT −→ F̃(k
�

1, k
�

2, j)

where k
�

1 = k1 + b1 ·∆x and k
�

2 = k2 + b2 · ∆y for some (b1, b2) ∈ Z. If the coefficients are exactly
the same: b1 = b2 = 0.
The shift-variant property of the DWT is widely known and several solutions have been
proposed. Mallat et. al use an overcomplete, redundant dictionary, which corresponds to
filtering without decimation Mallat (1998) Bradley (2003). From the filtered and fully sampled
version of the image, local extrema are used for translation invariance since a shift in the input
image results in a corresponding shift of the extrema Mallat (1998) Liang & Parks (1994).
Since there is no decimation, each level of decomposition contains as many samples as the
input image, thus making the algorithm computationally complex. It also requires significant
memory bandwidth.
Simoncelli et. al propose an approximate shift-invariant DWT algorithm by relaxing the
critical sampling requirements of the DWT Simoncelli et al. (1992). This algorithm is known as
the power-shiftable DWT since the power in each subband remains constant. As explained in
Bradley (2003), the shift-variant property is also related to aliasing caused by the DWT filters.
The power shiftable transform tries to remedy this problem by reducing the aliasing of the
mother wavelet in the frequency domain. The modifications to the mother wavelet result in a
loss of orthogonality Liang & Parks (1998).
The Matching Pursuit (MP) algorithm can also achieve a shift-invariant representation,
when the decomposition dictionary contains a large amount of redundant wavelet basis
functions Mallat & Zhang (1993). However, the MP algorithm is extremely computationally
complex and arriving at a transformed representation causes significant delays Cohen et al.
(1997). Bradley combines features of the DWT pyramidal decomposition with the à trous
algorithm Mallat (1998), which provides a trade off between sparsity of the representation and
time-invariance Bradley (2003). Critical sampling is only carried out for a certain number of
subbands and the rest are all fully sampled. This representation only achieves an approximate
shift-invariant DWT Bradley (2003).
The algorithms discussed either try to minimize the aliasing error by relaxing critical
subsampling and/or add redundancy into the wavelet basis set. However, these algorithms
either suffer from lack of orthogonality (which is not always an issue for feature extraction),
achieve an approximate shift-invariant representation, are computationally complex or
require significant memory resources. To combat these downfalls, the SIDWT algorithm
proposed by Beylkin, which computes the DWT for all circular shifts in a computationally
efficient manner Beylkin (1992) is utilized. The proposed SIDWT utilizes orthogonal wavelets,
thereby resulting in less redundancy in the representation Liang & Parks (1994), and a more
efficient implementation. Belkyn’s work has also been extended to 2-D signals by Liang et.
al Liang & Parks (1994) Liang & Parks (1998) Liang & Parks (1996) and its performance in a
biomedical image feature extraction application will be investigated.
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5.1 2D SIDWT algorithm

For different shifts of the input image, it was shown that the DWT can produce one of four
possible representations after one level of decomposition. These four DWT coefficient sets
(cosets) are not translated versions of one another and each coset may be generated as the
DWT response to one of four shifts of the input: (0, 0), (0, 1), (1, 0), (1, 1), where the first
index corresponds to the row shift and the second index is the column shift. All other shifts
of the input (at this decomposition level) will result in coefficients which are shifted versions
of one of these four cosets. Therefore, to account for all possible representations, these four
cosets may be computed for each level of decomposition. This requires the LL band from each
level to be shifted by the four translates {(0, 0), (0, 1), (1, 0), (1, 1)} and each of these new
images to be separately decomposed to account for all representations.
To compute the coefficients at the jth decomposition level, for the input shift of (0, 0), the
subbands LLj, LH j, HLj, HH j may be found by filtering the previous levels coefficients LLj+1,
as shown below:

LL
j
(0,0)

(x, y) = ∑
m

∑
n

ho(m− 2x)ho(n− 2y) · LLj+1(m, n), (43)

LH
j

(0,0)
(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m, n), (44)

HL
j
(0,0)

(x, y) = ∑
m

∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n), (45)

HH
j

(0,0)
(x, y) = ∑

m
∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m, n). (46)

The subband expressions listed in Equation 43 through to Equations 46 contain the coefficients
which would appear the same if LLj+1 is circularly shifted by {0, 2, 4, 6, · · · , s} rows and
{0, 2, 4, 6, · · · , s} columns, where s is the number of row and column coefficients in each of
the subbands for the level j + 1.
The subband coefficients which are the response to a shift of (0,1) in the previous level’s
coefficients may be computed by

LL
j
(0,1)

(x, y) = ∑
m

∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m, n− 1), (47)

LH
j
(0,1)

(x, y) = ∑
m

∑
n

h1(m− 2x)ho(n− 2y) · LLj+1(m, n− 1), (48)

HL
j

(0,1)
(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n− 1), (49)

HH
j
(0,1)

(x, y) = ∑
m

∑
n

h1(m− 2x)h1(n− 2y) · LLj+1(m, n− 1), (50)

which contain all the coefficients for {0, 2, 4, 6, · · · , s} row shifts and {1, 3, 5, 7, · · · , s − 1}
column shifts of LLj+1. Similarly, for a shift of (1,0) in the input, the DWT coefficients may be
found by

LL
j
(1,0)

(x, y) = ∑
m

∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (51)

LH
j
(1,0)

(x, y) = ∑
m

∑
n

h1(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (52)
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HL
j

(1,0)
(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m− 1, n), (53)

HH
j
(1,0)

(x, y) = ∑
m

∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m− 1, n), (54)

which contain all the coefficients if the previous levels’ coefficients LLj+1 are shifted by
{1, 3, 5, 7, · · · , s − 1} rows and {0, 2, 4, 6, · · · , s} columns. For an input shift of (1,1), the
subbands may be computed by

LL
j
(1,1)

(x, y) = ∑
m

∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m− 1, n− 1), (55)

LH
j

(1,1)
(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m− 1, n− 1), (56)

HL
j
(1,1)

(x, y) = ∑
m

∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m− 1, n− 1), (57)

HH
j
(1,1)

(x, y) = ∑
m

∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m− 1, n− 1). (58)

Similarly, these subband coefficients account for all DWT representations, which correspond
to {1, 3, 5, 7, · · · , s− 1} row shifts and {1, 3, 5, 7, · · · , s− 1} column shifts of the input subband
LLj+1.
Performing a full decomposition will result in a tree which contains the DWT coefficients for
all N2 circular translates of an N × N image. At each level of decomposition, the LL band is
shifted four times, and for each shift (0, 0), (0, 1), (1, 0), (1, 1), four new sets of subbands are
generated. The decomposition tree is shown in Figure 13 and each circular node corresponds
to only three subband images: HH, LH and HL, since at each level the LL band is shifted
and then further decomposed. The number of coefficients in each node (per decomposition
level) remains constant at 3N2, and a complete decomposition tree will have N2(3log2N + 1)
elements Liang & Parks (1994). To compute the DWT for all N2 translates of the image costs
O(N2log2N), due to the periodicity of the rate change operators Liang & Parks (1998).
To achieve shift-invariance, a subset of the wavelet coeffieints in the Tree of Figur e13 must be

chose in a consistent manner. To do this, metrics can be computed from the tree. This requires
an organized way to address each of the coefficients. A proper addressing scheme will help
to find the wavelet transform for a particular translate (m, n), where m is the row shift and n
is the column translate of the input image.
For a path in the tree, which originates from the root, terminates at a leaf node and corresponds
to the translate (m, n), an expression may be developed which considers all row shifts and all
column shifts as binary vectors, where each vector entry can be either 0 or 1. Therefore, the
binary expansions may be rewritten as

m =
log2N

∑
i=1

ai2
i−1, (59)

n =
log2N

∑
i=1

bi2
i−1, (60)
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Fig. 13. Shift-invariant DWT decomposition tree for three decomposition levels.

where ai and bi correspond to the binary symbol which represents the row and column shift
at decomposition level i, respectively. In order to find the three subimages (HL, HH and
LH) which correspond to the translate (m, n) in the Kth decomposition level in the tree, it is
necessary to find the Sth node which corresponds to this shift, as shown below

S = 2 ·
K

∑
i=1

ai4
K−i +

K

∑
i=1

bi4
K−i. (61)

After the three subimages are located within the tree, to ensure that they correspond to
the translate of the input by (m, n), these three images (HH, LH, HL) must be shifted by
(xShift, yShift)

xShift =
log2N

∑
i=K+1

ai2
i−K−1, (62)

yShift =
log2N

∑
i=K+1

bi2
i−K−1. (63)

This scheme allows us to address the wavelet coefficients that correspond to a particular shift
of the input. The following section, which focuses on Coifmen and Wickenhauser’s best
basis selection technique Coifman & Wickerhauser (1992), is focused on a method to select
a consistent set of wavelet coefficients which are independent of the input translation. Since
the same coefficients are selected every time the algorithm is run, regardless of any initial
offset, shift-invariance is achieved.
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5.2 Best basis paradigm

Coifmen and Wickerhauser defined a method to choose a set of basis functions, based on
the minimization of a cost function J Coifman & Wickerhauser (1992). The cost function J
is often called an “information cost” and it evaluates and compares the efficiency of many
basis sets Coifman & Saito (1995). Although there are many choices for cost functions, an
additive information cost is preferred so that a fast-divide and conquer tree search algorithm
may be used to find the best set of wavelet coefficients Liang & Parks (1994). A cost function
J is additive if it maps a sequence {xi} to R while ensuring that the following properties are
always true:

J (0) = 0, (64)

J ({xi}) = ∑
i

J (xi). (65)

To choose a consistent set of wavelet coefficients, an entropy cost function J is used for
best basis determination. Entropy gives insight about the uniformity of the coefficients’
representation (maximum energy compaction), which may be used for texture analysis.
Furthermore, entropy is beneficial since it can achieve additivity Coifman & Saito (1995).
Shown below is the expression of entropy which is minimized:

hr(x) = ∑
i

|xi|
r log|xi|

r, (66)

where r is usually set to 1 or 2.
To choose the best basis representation, we begin at the bottom of the decomposition tree (see

Fig. 14. Best basis selection corresponding to the minimum cost path.

Figures 13 and 14) and work upwards. For each parent node, there are four child nodes, each
containing the high frequency subbands of a particular translate. The cost A of a particular
translate (p, q) ∈ {(0, 0), (0, 1), (1, 0)(1, 1)} at some node is computed by summing the cost of
the individual high frequency subbands for that shift:

A(p,q) = J (LH(p,q)) + J (HL(p,q)) + J (HH(p,q)). (67)
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To minimize entropy, the node with the minimum cost for each parent would be selected at
every decomposition level. The path which is connected from the root of the tree all the way
down to the leaves, is selected as the the minimum cost path, as shown in Figure 14. This path
corresponds to the DWT of a particular translate and is chosen as the consistent set of basis
functions in order to achieve shift-invariance.

6. Multiscale texture analysis

Now that a transformation has been employed which can robustly localize the scale-frequency
properties of the textured elements in the medical images, it is important to design an analysis
scheme which can quantify such textured events. To do this, this work proposes the use of a
multiscale texture analysis scheme. Extracting features from the wavelet domain will result in
a localized texture description, since the DWT has excellent space-localization properties.
To extract texture-based features, normalized graylevel cooccurrence matrices (GCMs) are
employed in the wavelet domain. GCMs count the the number of two-pixel combinations and
are typically normalized so that the matrix may be treated as a probability density function
(PDF). In the wavelet domain, each entry of the normalized GCM is represented as

p (l1, l2, d, θ) =
P(l1, l2)

∑
L−1
l1=0 ∑

L−1
l2=0 P(l1, l2)

, (68)

where P(l1, l2) is the number of occurrences of wavelet coefficients l1 and l2 at a distance d
and angle θ. Additionally, ∑l1 ∑l2 P(l1, l2) is the normalizing factor and L is the maximum
number of graylevels in the image. Note that these matrices are symmetric: p (l1, l2, d, θ) =
p (l2, l1, d, θ).
In the wavelet domain, GCMs are computed for adjacent wavelet coefficients. Such a second
order PDF examines the correlation or relationship of wavelet coefficients to one another.
Since texture is captured by the multiresolutional analysis scheme (large valued coefficients
for edgy regions in a variety of scales), wavelet-based GCMs describe the statistical nature
of the texture in our image. As texture is localized in a variety of directions, the GCMs are
computed for each scale j at several angles θ. They are computed at multiple angles and
scales since orientation and scale is play an important role in texture discrimination.
In the wavelet domain, each subband isolates different frequency components - the HL band
isolates horizontal edge components, the LH subband isolates horizontal edges, the HH band
captures the diagonal high frequency components and LL band contains the lowpass filtered
version of the original. Consequently, to capture these oriented texture components, the GCM
is computed at 0◦ in the HL band, 90◦ in the LH subband, 45◦ and 135◦ in the HH band and
0◦ , 45◦ , 90◦ and 135◦ in the LL band to account for any directional elements which may still
may be present in the low frequency subband. Moreover, d = 1 for fine texture analysis.
From these GCMs, homogeneity h and entropy e are computed for each decomposition level
using Equation 69 and 70. Homogeneity (h) describes how uniform the texture is and entropy
(e) is a measure of nonuniformity or the complexity of the texture.

h(θ) =
L−1

∑
l1=0

L−1

∑
l2=0

p2 (l1, l2, d, θ) (69)
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e(θ) = −
L−1

∑
l1=0

L−1

∑
l2=0

p (l1, l2, d, θ) log2(p (l1, l2, d, θ)) (70)

These features describe the relative uniformity of textured elements in the wavelet domain
(which are localized with good results due to the space-frequency resolution of the bases).
Recall that abnormal and normal cases were shown to have significant differences in terms
of their texture uniformity (normal images contained smooth texture while abnormal images
were heterogeneous). Therefore, such a scheme, which captures textural differences between
images, should be able to arrive at high classification results for CAD (i.e. the classification of
normal and abnormal retinal and small bowel images, and differentiation between malignant
and benign lesions in the mammogram images).
For each decomposition level j, more than one directional feature is generated for the HH
and LL subbands. The features in these subbands are averaged so that: features are not
biased to a particular orientation of texture and the representation will offer some rotational
invariance. The features generated in these subbands (HH and LL) are shown below (note
that the quantity in parenthesis is the angle at which the GCM was computed):

h̃
j
HH =

1

2

(
h

j
HH(45◦) + h

j
HH(135◦)

)
,

ẽ
j
HH =

1

2

(
e

j
HH(45◦) + e

j
HH(135◦)

)
,

h̃
j
LL =

1

4

(
h

j
LL(0◦) + h

j
LL(45◦) + h

j
LL(90◦) + h

j
LL(135◦)

)
,

ẽ
j
LL =

1

4

(
e

j
LL(0◦) + e

j
LL(45◦) + e

j
LL(90◦) + e

j
LL(135◦)

)
.

As a result, for each decomposition level j, two feature sets are generated:

F
j
h =

[
h

j
HL(0◦), h

j
LH(90◦), h̃

j
HH , h̃

j
LL

]
, (71)

F
j
e =

[
e

j
HL(0◦), e

j
LH(90◦), ẽ

j
HH, ẽ

j
LL

]
, (72)

where h̃
j
HH, h̃

j
LL, ẽ

j
HH and ẽ

j
LL are the averaged texture descriptions from the HH and LL

band previously described and h
j
HL(0◦), e

j
HL(0◦), h

j
LH(90◦) and e

j
LH(90◦) are homogeneity and

entropy texture measures extracted from the HL and LH bands. Since directional GCMs are
used to compute the features in each subband, the final feature representation is not biased for
a particular orientation of texture and may provide a semi-rotational invariant representation.

7. Classification

After the multiscale texture features have been extracted, a pattern recognition technique
is needed classify the features. A large number of test samples are required to evaluate
a classifier with low error (misclassification) rates since a small database will cause the
parameters of the classifiers to be estimated with low accuracy. This requires the biomedical
image database to be large, which may not always be the case since acquiring the images
for specific diseases can take years. If the extracted features are strong (i.e. the features
are mapped into nonoverlapping clusters in the feature space) the use of a simple (linear)
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classification scheme will be sufficient in discriminating between classes. The desire is to test
the robustness of the found feature set to the variations found in image databases. This can be
easily determined by a linear classifier.
To satisfy the above criteria, linear discriminant analysis (LDA) will be the classification
scheme used in conjunction with the Leave One Out Method (LOOM). In LOOM, one sample is
removed from the whole set and the discriminant functions are derived from the remaining
N− 1 data samples and the left out sample is classified. This procedure is completed for all N
samples. LOOM will allow the classifier parameters to be estimated with least bias Fukunaga
& Hayes (1989).

8. Results

The objective of the proposed system is to automatically classify pathologies based on their
textural characteristics. Such a system examines texture in accordance to the human texture
perception model and is shown in Figure 15.

Fig. 15. System block diagram for the classification of medical images.

The classification performance of the proposed system is evaluated for three types of imagery:

1. Small Bowel Images: 41 normal and 34 abnormal (submucosal masses, lymphomas,
jejunal carcinomas, multifocal carcinomas, polypoid masses, Kaposi’s sarcomas, etc.),

2. Retinal Images: 38 normal, 48 abnormal (exudates, large drusens, fine drusens, choroidal
neovascularization, central vein and artery occlusion, arteriosclerotic retinopathy,
histoplasmosis, hemi-central retinal vein occlusion and more),

3. Mammograms: 35 benign and 19 malignant lesions.

The image specifications are shown in Table 3 and example images were shown earlier in
Section 2. Only the luminance plane was utilized for the colour images (retinal and small
bowel), in order to examine the performance of grayscale-based features. Furthermore, in
the mammogram images, only a 128 × 128 region of interest is analyzed which contains the
candidate lesion (to strictly analyze the textural properties of the lesions). Features were

Small Bowel Retinal Mammogram

Colour (24 bpp) Colour (24 bpp) Grayscale (8 bpp)

Lossy (.jpeg) Lossy (.jpeg) Raw (.pgm)
256 × 256 700 × 605 1024 × 1024

Table 3. Medical image specifications

extracted from the higher levels of decomposition (the last three levels were not included
as further decomposition levels contain subbands of 8×8 or smaller, resulting in skewed

probability distribution (GCM) estimates). Therefore, the extracted features are F
j
e and F

j
h for

j = {1, 2, · · · , J}, where J is the number of decomposition levels minus three.
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In order to find the optimal sub-feature set, an exhaustive search was performed (i.e. all
possible feature combinations were tested using the proposed classification scheme). For
the small bowel images, the optimal classification performance was achieved by combining
homogeneity features from the first and third decomposition levels with entropy from the first
decomposition level (see Khademi & Krishnan (2006) for more details):

F1
h =

[
h1

HL(0◦), h1
LH(90◦), h̃1

HH, h̃1
LL

]
, (73)

F3
h =

[
h3

HL(0◦), h3
LH(90◦), h̃3

HH, h̃3
LL

]
, (74)

F1
e =

[
e1

HL(0◦), e1
LH(90◦), ẽ1

HH, ẽ1
LL,

]
. (75)

The optimal feature set for the retinal images were found to be homogeneity features from
the fourth decomposition level with entropy from the first, second and fourth decomposition
levels (see Khademi & Krishnan (2007) for more details):

F4
h =

[
h4

HL(0◦), h4
LH(90◦), h̃4

HH, h̃4
LL

]
, (76)

F1
e =

[
e1

HL(0◦), e1
LH(90◦), ẽ1

HH, ẽ1
LL

]
, (77)

F2
e =

[
e2

HL(0◦), e2
LH(90◦), ẽ2

HH, ẽ2
LL

]
, (78)

F4
e =

[
e4

HL(0◦), e4
LH(90◦), ẽ4

HH, ẽ4
LL,

]
. (79)

Lastly, the optimal feature set for the mammographic lesions were found by combining
homogeneity features from the second decomposition level with entropy from the fourth
decomposition level:

F2
h =

[
h2

HL(0◦), h2
LH(90◦), h̃2

HH, h̃2
LL

]
, (80)

F4
e =

[
e4

HL(0◦), e4
LH(90◦), ẽ4

HH, ẽ4
LL.

]
. (81)

Using the above features in conjunction with LOOM and LDA, the classification results for
the small bowel, retinal and mammogram images are shown as a confusion matrix in Table 4,
Table 5 and Table 6, respectively.

Normal Abnormal

Normal 35 (85%) 6 (15%)

Abnormal 5 (15%) 29 (85%)

Table 4. Results for small bowel image classification.

Normal Abnormal

Normal 30 (79%) 8 (21%)

Abnormal 7 (14.6%) 41 (85.4%)

Table 5. Results for retinal image classification.
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Benign Malignant

Benign 28 (80%) 7 (20%)

Malignant 8 (42%) 11 (58%)

Table 6. Results for mammogram ROI classification.

9. Conclusions

A total of 75 abnormal and normal bowel images were correctly classified at an average rate of
85%, 86 retinal images had an average classification accuracy of 82.2% and the mammogram
lesions (54) were classified correctly 69% on average. The classification results are quite high,
considering that the system wasn’t tuned for a specific modality. The system performed well,
even though: (1) pathologies came in various orientations, (2) pathologies arose in a variety
of locations in the image, (3) the masses and lesions were of various sizes and shapes and
(4) there was no restriction on the type of pathology for the retinal and small bowel images.
Accounting for all these scenarios in one algorithm was a major challenge while designing
such a unified framework for computer-aided diagnosis.
Although the classification results are high, any misclassification can be accounted to cases
where there is a lack of statistical differentiation between the texture uniformity of the
pathologies. Additionally, normal tissue can sometimes assume the properties of abnormal
regions; for example, consider a normal small bowel image which has more than the average
amount of folds. This may be characterized as non-uniform texture and consequently would
be misclassified. In a normal retinal image, if the patient has more than the average number
of vessels in their eye, this may be detected as oriented or heterogeneous texture and could
be misclassified. Moreover, when considering the mammogram lesions, the normal breast
parenchyma is overlapping with the lesions and also assumes some textural properties itself.
In order to improve the performance of the mammogram lesions, a segmentation step could
be applied prior to feature extraction.
Another important consideration arises from the database sizes. As was stated in Section 7, the
number of images used for classification can determine the accuracy of the estimated classifier
parameters. Since only a modest number of images were used, misclassification could result
due to the lack of proper estimation of the classifiers parameters (although the scheme tried
to combat this with LOOM). This could be the case for the mammogram lesions especially,
since the number of benign lesions outnumbered the malignant lesions by almost double -
this could have caused difficulties in classification parameter accuracy. Additionally, finding
the right trade off between number of features and database size is an ongoing research topic
and has yet to be perfectly defined Fukunaga & Hayes (1989).
The overall success of the system is a result of the design of the algorithm, which aimed
to account for all the pathological scenarios previously described. Firstly, the utilization of
the DWT was important to gain a space-localized representation of the images’ elementary
texture units (textons), which is in accordance to human texture perception. Secondly,
the choice of wavelet-based statistical texture measures (entropy and homogeneity) was
critical in quantifying the localized texture properties of the images (which provided
discrimination between normal and other pathological cases). Utilization of the SIDWT
allowed for the extraction of consistent (i.e. shift-invariant) features. Furthermore, due to
the scale-invariant basis functions of the DWT, pathologies of varying sizes were captured
within one transformation (i.e. the features were scale-invariant).
By design, the system is relatively robust to pathologies which occurred in various
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orientations. Features were collected at various angles (0◦, 45◦ , 90◦ , 135◦) in the respective
subbands in order to describe the texture elements, regardless of their orientation. The feature
set thus offered a semi-rotational invariant representation which could account for oriented
textural properties (of pathology).
A last point for discussion is the fact that features were successfully extracted from the
compressed domain in the retinal and small bowel images. Since many forms of multi-media
are being stored in lossy formats, it is important that classification systems may also be
successful when utilized in the compressed domain.
A generalized framework for computer-aided diagnosis was designed in accordance to the
human texture perception model. The unified feature extraction and classification scheme
utilized the DWT and textural features were extracted from the wavelet domain for a localized
description of the relative homogeneity of the images. To ensure the DWT representation was
suitable for the consistent extraction of features, a shift-invariant discrete wavelet transform
(SIDWT) was computed. To combat the small database size, a small number of features
and LDA classification were used in conjunction with the LOOM to gain a more accurate
approximation of the classifier’s parameters.
A total of 75 abnormal and normal bowel images were correctly classified at an average rate of
85%, 86 retinal images had an average classification accuracy of 82.2% and the mammogram
lesions (54) were classified correctly 69% on average. The success of the system can be
accounted to the semi-rotational invariant, scale-invariant and shift-invariant features, which
permitted the extraction of discriminating features regardless of the location, shape, size or
orientation of the pathologies.
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