
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322393982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22

Neural Networks’ Based Inverse Kinematics
Solution for Serial Robot Manipulators Passing

Through Singularities

Ali T. Hasan1, Hayder M.A.A. Al-Assadi2 and Ahmad Azlan Mat Isa2
1Department of Mechanical and Manufacturing Engineering
University Putra Malaysia, 43400UPM,Serdang, Selangor,

2Faculty of Mechanical Engineering, University Technology MARA (UiTM)
40450 Shah Alam,

Malaysia

1. Introduction

Before moving a robot arm, it is of considerable interest to know whether there are any
obstacles present in its path. Computer-based robots are usually served in the joint space,
whereas objects to be manipulated are usually expressed in the Cartesian space because it is
easier to visualize the correct end-effector position in Cartesian coordinates than in joint
coordinates. In order to control the position of the end-effector of the robot, an inverse
kinematics (IK) solution routine should be called upon to make the necessary conversion (Fu
et al., 1987).
Solving the inverse kinematics problem for serial robot manipulators is a difficult task; the
complexity in the solution arises from the nonlinear equations (trigonometric equations)
occurring during transformation between joint and Cartesian spaces. The common approach
for solving the IK problem is to obtain an analytical close-form solution to the inverse
transformation, unfortunately, close-form solution can only be found for robots of simple
kinematics structure. For robots whose kinematics structures are not solvable in close-form;
several numerical techniques have been proposed; however, there still remains several
problems in those techniques such as incorrect initial estimation, convergence to the correct
solution can not be guarantied, multiple solutions may exist and no solution could be found
if the Jacobian matrix was in singular configuration (Kuroe et al., 1994; Bingual et al., 2005).
A velocity singular configuration is a configuration in which a robot manipulator has lost at
least one motion degree of freedom DOF. In such configuration, the inverse Jacobian will
not exist, and the joint velocities of the manipulator will become unacceptably large that
often exceed the physical limits of the joint actuators. Therefore, to analyze the singular
conditions of a manipulator and develop effective algorithm to resolve the inverse
kinematics problem in the singular configurations is of great importance (Hu et al., 2002).
Many research efforts have been devoted towards solving this problem, one of the first
algorithms employed was the Resolved Motion Rate-Control method (Whitney, 1969),
which uses the pseudoinverse of the Jacobian matrix to obtain the joint velocities
corresponding to a given end-effector velocity, an important drawback of this method was

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

460

the singularity problem. To overcome the problem of kinematics singularities, the use of a
damped least squares inverse of the Jacobian matrix has been later proposed in lieu of the
pseudoinverse (Nakamura & Hanafusa, 1986; Wampler, 1986).
Since in the above algorithmic methods the joint angles are obtained by numerical
integration of the joint velocities, these and other related techniques suffer from errors due
to both long-term numerical integration drift and incorrect initial joint angles. To alleviate
the difficulty, algorithms based on the feedback error correction are introduced (Wampler &
Leifer, 1988). However, it is assumed that the exact model of manipulator Jacobian matrix of
the mapping from joint coordinate to Cartesian coordinate is exactly known. It is also not
sure to what extent the uncertainty could be allowed. Therefore, most research on robot
control has assumed that the exact kinematics and Jacobian matrix of the manipulator from
joint space to Cartesian space are known. This assumption leads to several open problems in
the development of robot control laws (Antonelli et al., 2003).
Intelligent control has been introduced as a new direction making control systems able to
attribute more intelligence and high degree of autonomy. Artificial Neural Networks (ANN)
have been widely used for their extreme flexibility due to the learning ability and the
capability of non linear function approximation, a number of realistic control approaches
have been proposed and justified for applications to robotic systems (D'Souza et al.,2001;
Ogawa et al., 2005; Köker, 2005; Hasan et al., 2007; Al-Assadi et al., 2007), this fact leads to
expect ANN to be an excellent tool for solving the IK problem for serial manipulators
overcoming the problems arising.
Studying the IK of a serial manipulator by using ANNs has two problems, one of these is
the selection of the appropriate type of network and the other is the generating of suitable
training data set (Funahashi, 1998;Hasan et al., 2007).
Different methods for gathering training data have been used by many researchers, while
some of them have used the kinematics equations (Karilk & Aydin, 2000; Bingual et al.,
2005), others have used the network inversion method (Kuroe et al., 1994; Köker, 2005),
another have used the cubic trajectory planning (Köker et al., 2004) and others have used a
simulation program for this purpose (Driscoll, 2000). However, there are always kinematics
uncertainties presence in the real world such as ill-defined linkage parameters, links
flexibility and backlashes in gear train.
A learning method of a neural network has been proposed by (Kuroe et al., 1994), such that
the network represents the relations of both the positions and velocities from the Cartesian
coordinate to the joint space coordinate. They’ve driven a learning algorithm for arbitrary
connected recurrent networks by introducing adjoin neural networks for the original neural
networks (Network inversion method). On-line training has been performed for a 2 DOF
robot.
(Graca and Gu, 1993) have developed a Fuzzy Learning Control algorithm. Based on the
robotic differential motion procedure, the Jacobian inverse has treated as a fuzzy matrix and
has learned through the fuzzy regression process. It was significant that the fuzzy learning
control algorithm neither requires an exact kinematics model of a robotic manipulator, nor a
fuzzy inference engine as is typically done in conventional fuzzy control. Despite the fact
that unlike most learning control algorithms, multiple trials are not necessary for the robot
to “learn” the desired trajectory. A major drawback was that it only remembers the most
recent data points introduced, the researchers have recommended neural networks so that it
would remember the trajectories as it traversed them.

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

461

The solution of the Inverse kinematics, which is mainly solved in this chapter, involves the
development of two network’s configurations to examine the effect of the Jacobian Matrix in
the solution.
Although this is very difficult in practice (Hornik, 1991), training data were recorded
experimentally from sensors fixed on each joint (as was recommended by (Karilk and
Aydin, 2000). Finally the obtained results were verified experimentally.

2. Kinematics of serial robots

For serial robot manipulators, the vector of Cartesian space coordinates x is related to the
joint coordinates q by:

 ()x f q= (1)

Where ()f ⋅ is a non-linear differential function.
If the Cartesian coordinates x were given, joint coordinates q can be obtained as:

 1()q f x−= (2)

Using ANN to solve relation (2), for getting joint position q, mapping from the joint space to
the Cartesian space is uniquely decided when the end effector’s position is calculated using
direct kinematics (Köker et al., 2004; Ogawa et al., 2005; Hasan et al., 2006), as shown in
Figure 1(a). However, the transformation from the Cartesian to the joint space is not
uniquely decided in the inverse kinematics as shown in Figure 1(b).

Fig. 1. Three DOF robot arm.
a) Joint angles and end-effector’s coordinates (forward kinematics).
b) Combination of all possible joint angles (Inverse Kinematics).

Model-based methods for solving the IK problem are inadequate if the structure of the robot
is complex, therefore; techniques mainly based on inversion of the mapping established
between the joint space and the task space of the manipulator’s Jacobian matrix have been
proposed for those structures that cannot be solved in closed form.

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

462

If a Cartesian linear velocity is denoted by V , the joint velocity vector q
•

 has the following
relation:

 V J q
•

= (3)

Where J is the Jacobian matrix.
If V , is a desired Cartesian velocity vector which represents the linear velocity of the
desired trajectory to be followed. Then, the joint velocity vector q

•
 can be resolved by:

 1q J V
•

−= (4)

At certain manipulator configurations, the Jacobian matrix may lose its full rank. Hence as
the manipulator approaches these configurations (singular configurations), the Jacobian
matrix becomes ill conditioned and may not be invertible. Under such a condition,
numerical solution for equation (4) results in infinite joint rates.
In differential motion control, the desired trajectory is subdivided into sampling points
separated by a time interval tΔ between two terminal points of the path. Assuming that at
time it the joint positions take on the value ()iq t , the required q at time ()it t+ Δ is
conventionally updated by using:

 () ()i iq t t q t q t
•

+ Δ = + Δ (5)

Substituting Eqns. (2) and (4) into (5) yields:

 1 1() ()()i iq t t f x t J V t− −+ Δ = + Δ (6)

Equation (6) is a kinematics control law used to update the joint position q and is evaluated
on each sampling interval. The resulting ()iq t t+ Δ is then sent to the individual joint motor
servo-controllers, each of which will independently drive the motor so that the manipulator
can be maneuvered to follow the desired trajectory (Graca & Gu, 1993).

3. Data collection procedure

Trajectory planning was performed to generate the angular position and velocity for each
joint, and then these generated data were fed to the robot’s controller to generate the
corresponding Cartesian position and linear velocity of the end-effector, which were
recorded experimentally from sensors fixed on the robot joints.
In details, trajectory planning was performed using cubic trajectory planning method .In
trajectory planning of a manipulator, it is interested in getting the robot from an initial
position to a target position with free of obstacles path. Cubic trajectory planning method
has been used in order to find a function for each joint between the initial position, 0θ , and
final position, fθ of each joint.
It is necessary to have at least four-limit value on the ()tθ function that belongs to each
joint, where ()tθ denotes the angular position at time t .
Two limit values of the function are the initial and final position of the joint, where:

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

463

 0(0)θ θ= (7)

 ()f ftθ θ= (8)

Additional two limit values, the angular velocity will be zero at the beginning and the target
position of the joint, where:

 (0) 0θ
•

= (9)

 () 0ftθ
•

= (10)

Based on the constrains of typical joint trajectory listed above, a third order polynomial
function can be used to satisfy these four conditions; since a cubic polynomial has four
coefficients.
These conditions can determine the cubic path, where a cubic trajectory equation can be
written as:

 2 3
0 1 2 3()t a a t a t a tθ = + + + (11)

The angular velocity and acceleration can be found by differentiation, as follows:

 2
1 2 3() 2 3t a a t a tθ

•
= + + (12)

 2 3() 2 6t a a tθ
••

= + (13)

Substituting the constrains conditions in the above equations results in four equations with
four unknowns:

0 0 ,aθ =
2 3

0 1 2 3 ,f f f fa a t a t a tθ = + + +

00 ,a=
2

1 2 30 2 3f fa a t a t= + +

(14)

The coefficients are found by solving the above equations.

0 0 ,a θ=

1 0,a =

2 02

3
(),f

f

a
t

θ θ= −

3 03

2
()f

f

a
t

θ θ−
= −

(15)

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

464

Angular position and velocity can be calculated by substituting the coefficients driven in
Eqn. (15) into the cubic trajectory Eqns. (11) and (12) respectively (Köker et al., 2004), which
yield:

 2 3
0 0 02 3

3 2
() () () ,i i if i if i

f f

t t t
t t

θ θ θ θ θ θ= + − − − (16)

2
0 02 3

6 6
() () ()i if i if i

f f

t t t
t t

θ θ θ θ θ
•

= − − −

1,2,...........,i n= Where n is the joint number.

(17)

Joint angles generated ranged from amongst all the possible joint angles that do not exceed
the physical limits of each joint. Trajectory used for the training process has meant to be
random trajectory rather than a common trajectory performed by the robot in order to cover
as most space as possible of the robot’s working cell.
The interval of 1 second was used between a trajectory segment and another where the final
position for one segment is going to be the initial position for the next segment and so on for
every joint of the six joints of the robot.
After generating the joint angles and their corresponding angular velocities, these data are
fed to the robot controller, which is provided with a sensor system that can detect the
angular position and velocity on one hand and the Cartesian position and the linear velocity
of the end-effector on the other hand; which are recorded to be used for the networks’
training. As these joints are moving simultaneously with each other to complete the
trajectory together.

4. Artificial Neural Networks

Artificial neural networks (ANNs) are collections of small individual interconnected
processing units. Information is passed between these units along interconnections. An
incoming connection has two values associated with it, an input value and a weight. The
output of the unit is a function of the summed value. ANNs while implemented on
computers are not programmed to perform specific tasks. Instead, they are trained with
respect to data sets until they learn the patterns presented to them. Once they are trained,
new patterns may be presented to them for prediction or classification (Kalogirou, 2001).
The elementary nerve cell called a neuron, which is the fundamental building block of the
biological neural network. Its schematic diagram is shown in Figure 2.
A typical cell has three major regions: the cell body, which is also called the soma, the axon,
and the dendrites. Dendrites form a dendritic tree, which is a very fine bush of thin fibbers
around the neuron's body. Dendrites receive information from neurons through axons-Long
fibbers that serve as transmission lines. An axon is a long cylindrical connection that carries
impulses from the neuron. The end part of an axon splits into a fine arborization. Each
branch of it terminates in a small end bulb almost touching the dendrites of neighbouring
neurons. The axon-dendrite contact organ is called a synapse. The synapse is where the
neuron introduces its signal to the neighbouring neuron (Zurada, 1992; Hasan et al., 2006),
to stimulate some important aspects of the real biological neuron. An ANN is a group of
interconnected artificial neurons usually referred to as “node” interacting with one another
in a concerted manner; Figure 3 illustrates how information is processed through a single

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

465

Fig. 2. Schematic diagram for the biological neuron

Fig. 3. Information processing in the neural unit

node. The node receives weighted activation of other nodes through its incoming
connections. First, these are added up (summation). The result is then passed through an
activation function and the outcome is the activation of the node. The activation function
can be a threshold function that passes information only if the combined activity level
reaches a certain value, or it could be a continues function of the combined input, the most
common to use is a sigmoid function for this purpose. For each of the outgoing connections,
this activation value is multiplied by the specific weight and transferred to the next node
(Kalogirou, 2001; Hasan et al., 2006).
An artificial neural network consists of many nods joined together usually organized in
groups called ‘layers’, a typical network consists of a sequence of layers with full or random
connections between successive layers as Figure 4 shows. There are typically two layers
with connection to the outside world; an input buffer where data is presented to the
network, and an output buffer which holds the response of the network to a given input
pattern, layers distinct from the input and output buffers called ‘hidden layer’, in principle
there could be more than one hidden layer, In such a system, excitation is applied to the
input layer of the network.

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

466

Fig. 4. Schematic diagram of a multilayer feedforward neural network

Following some suitable operation, it results in a desired output. Knowledge is usually
stored as a set of connecting weights (presumably corresponding to synapse efficiency in
biological neural system) (Santosh et al., 1993). A neural network is a massively parallel-
distributed processor that has a natural propensity for storing experiential knowledge and
making it available for use. It resembles the human brain in two respects; the knowledge is
acquired by the network through a learning process, and interneuron connection strengths
known as synaptic weights are used to store the knowledge (Haykin, 1994).
Training is the process of modifying the connection weights in some orderly fashion using a
suitable learning method. The network uses a learning mode, in which an input is presented
to the network along with the desired output and the weights are adjusted so that the
network attempts to produce the desired output. Weights after training contain meaningful
information whereas before training they are random and have no meaning (Kalogirou,
2001).
Two different types of learning can be distinguished: supervised and unsupervised learning,
in supervised learning it is assumed that at each instant of time when the input is applied,
the desired response d of the system is provided by the teacher. This is illustrated in Figure
5-a. The distance ρ [d,o] between the actual and the desired response serves as an error

measure and is used to correct network parameters externally. Since adjustable weights are
assumed, the teacher may implement a reward-and-punishment scheme to adopt the
network's weight. For instance, in learning classifications of input patterns or situations with
known responses, the error can be used to modify weights so that the error decreases. This
mode of learning is very pervasive.
Also, it is used in many situations of learning. A set of input and output patterns called a
training set is required for this learning mode. Figure 5-b shows the block diagram of
unsupervised learning. In unsupervised learning, the desired response is not known; thus,
explicit error information cannot be used to improve network’s behaviour. Since no
information is available as to correctness or incorrectness of responses, learning must
somehow be accomplished based on observations of responses to inputs that we have mar-
ginal or no knowledge about (Zurada, 1992).

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

467

Fig. 5. Basic learning modes

The fundamental idea underlying the design of a network is that the information entering
the input layer is mapped as an internal representation in the units of the hidden layer(s)
and the outputs are generated by this internal representation rather than by the input vector.
Given that there are enough hidden neurons, input vectors can always be encoded in a form
so that the appropriate output vector can be generated from any input vector (Santosh et al.,
1993).
As it can be seen in figure 4, the output of the units in layer A (Input Layer) are multiplied
by appropriate weights Wij and these are fed as inputs to the hidden layer. Hence if Oi are
the output of units in layer A, then the total input to the hidden layer, i.e., layer B is:

 B i ij
i

Sum O W=∑ (18)

And the output Oj of a unit in layer B is:

 ()j BO f sum= (19)

Where f is the non-linear activation function, it is a common practice to choose the sigmoid
function given by:

1

()
1 j

j O
f O

e
−=

+
 (20)

As the nonlinear activation function.
However, any input-output function that possesses a bounded derivative can be used in
place of the sigmoid function. If there is a fixed, finite set of input-output pairs, the total
error in the performance of the network with a particular set of weights can be computed by
comparing the actual and the desired output vectors for each presentation of an input
vector. The error at any output unit eK in the layer C can be calculated by: -

 K K Ke d O= − (21)

Where dK is the desired output for that unit in layer C and OK is the actual output produced
by the network .the total error E at the output can be calculated by:

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

468

 21
()

2 K K
K

E d O= −∑ (22)

Learning comprises changing weights so as to minimize the error function and to minimize E
by the gradient descent method. It is necessary to compute the partial derivative of E with
respect to each weight in the network. Equations (19) and (19) describe the forward pass
through the network where units in each layer have there states determined by the inputs they
received from units of lower layer. The backward pass through the network that involves
“back propagation “ of weight error derivatives from the output layer back to the input layer is
more complicated. For the sigmoid activation function given in Equation (20), the so-called
delta-rule for iterative convergence towards a solution maybe stated in general as:

 JK K JW OηδΔ = (23)

Where η is the learning rate parameter, and the error Kδ at an output layer unit K is given
by:

 (1)()K K K K KO O d Oδ = − − (24)

And the error Jδ at a hidden layer unit is given by:

 (1)J J J K JK
K

O O Wδ δ= − ∑ (25)

Using the generalize delta rule to adjust weights leading to the hidden units is back
propagating the error-adjustment, which allows for adjustment of weights leading to the
hidden layer neurons in addition to the usual adjustments to the weights leading to the
output layer neurons. A back propagation network trains with two step procedures as it is

Fig. 6. Information flow through a backpropagation network

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

469

shown in figure 6, the activity from the input pattern flows forward through the network
and the error signal flows backwards to adjust the weights using the following equations:

 IJ IJ J IW W Oηδ= + (26)

 JK JK K JW W Oηδ= + (27)

Until for each input vector the output vector produced by the network is the same as (or
sufficiently close to) the desired output vector (Santosh et al., 1993).
ANNs while implemented on computers are not programmed to perform specific tasks.
Instead, they are trained with respect to data sets until they learn the patterns presented to
them. Once they are trained, new patterns may be presented to them for prediction or
classification (Kalogirou, 2001).

5. ANN implementation

Two supervised feedforward ANN have been designed using C programming language to
overcome the singularities and uncertainties in the arm configurations. Both networks
consist of input, output and one hidden layer, every neuron in each of the networks is fully
connected with each other, sigmoid transfer function was chosen to be the activation
function, generalized backpropagation delta learning rule (GDR) algorithm was used in the
training process.
Off-line training was implemented; Trajectory planning was performed for 600 data set for
every 1-second interval from amongst all the possible joint angles in the robot’s workspace,
then data sets were recorded experimentally from sensors fixed on the robot joints as was
recommended by (Karilk and Aydin, 2000), 400 set were used for the training while the
other 200 sets were used for the testing the network.
All input and output values are usually scaled individually such that overall variance in
data set is maximized, this is necessary as it leads to faster learning, all the vectors were
scaled to reflect continuous values ranges from –1 to 1.
FANUC M-710i robot was used in this study, which is a serial robot manipulator consisting
of axes and arms driven by servomotors. The place at which arm is connected is a joint, or
an axis. This type of robot has three main axes; the basic configuration of the robot depends
on whether each main axis functions as a linear axis or rotation axis. The wrist axes are used
to move an end effecter (tool) mounted on the wrist flange. The wrist itself can be wagged
about one wrist axis and the end effecter rotated about the other wrist axis, this highly non-
linear structure makes this robot very useful in typical industrial applications such as the
material handling, assembly of parts and painting.
The networks’ implementation carried out on two phases, the first was the training phase
where the performance of the two networks were compared, and then the network that has
shown better response has been chosen to apply the testing data during the testing phase,
which has been implemented through two stages. The first stage was the simulation then
the results were verified experimentally.

5.1 Training phase
To examine the effect of considering the Jacobian Matrix for the Inverse Kinematics solution
two networks have been designed and compared. ANN technique has been utilized where

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

470

learning is only based on observation of the input output relationship unlike other schemes
that require an explicit system model.

5.1.1 The first configuration (3 - 6 configuration)
As in our previous research (Hasan et al., 2006; Hasan et al., 2007), the input vector for the
network consists of the position of the end effector of the robot along the X, Y and Z
coordinates of the global coordinate system, while the output vector was the angular
position of each of the 6 joints as can be seen in Figure 7.

X Y Z

Cartesian Position

1
θ 2

θ
3

θ 5
θ

6
θ

Angular Position

4
θ

Fig. 7. The topology of the first configuration network

Although the number of training patterns was doubled, number of neurons in the hidden
layer still the same as previous which is 43 only a little difference in the learning factor was
experienced which was 0.5 in this case by trial and error.
Figure 8 shows the building knowledge curve for this configuration while Table 1 shows the
percentage of error of each of the 6 joints after the training was finished after 1.5 million
iterations.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

13.193% 10.855% 3.478% 14.748% 12.243% 8.348%

Table 1. Error percentages obtained after training (first configuration)

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

471

Fig. 8. The learning curve for the first configuration

5.1.2 The second configuration (4 – 12 configuration)
To examine the effect of considering the Jacobian matrix to the IK solution, another network
has been designed, as in Figure 9, the new network consists of the Cartesian Velocity added
to the input buffer and the angular velocity of each of the 6 joints added to the output buffer
of the previous network.
Number of the neurons in the hidden layer was set to be 77 with constant learning factor of
0.9 by trial and error.
Figure 10 shows the building knowledge curve while table 2 shows the percentage of error
of each of the 6 joints after the training was finished after 1.5 million iterations.

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Angular
Position

2.817 % 1.645% 0.88% 3.163% 3.125% 2.09%

Angular
Velocity

2.65% 3.018% 1.683% 3.208% 2.525% 1.6%

Table 2. Error percentages obtained after training (second configuration)

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

472

Y Z V

1
θ

6
θ2

θ
3

θ
4
θ

5
θ 1

ω 2
ω 3

ω
4

ω
5

ω
6

ω

Angular VelocityAngular Position

X

 VelocityCartesian Position
Fig. 9. The topology of the second configuration network

Fig. 10. The learning curve for the second configuration

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

473

5.1.3 Networks’ performance
The performance of the two networks was measured as the difference between desired and
actual system output.
To drive the robot to follow a desired trajectory, it will be necessary to divide the path into
small portions, and to move the robot through all intermediate points. To accomplish this
task, at each intermediate location, the robot’s IK equations are solved, a set of joint
variables is calculated, and the controller is directed to drive the robot to the next segment,
when all segments are completed, the robot would be at the end point as desired.
Figures 11 to 13 show the experimental trajectory tracking for the robot over the X, Y and Z
Coordinates of the global coordinates system for both of the networks compared to each
other verses the desired trajectory.
As can be seen through these Figures, the performance of the first network has improved
when considering the Jacobian Matrix in the second network, in terms of precision and
iteration

-550

-350

-150

50

250

450

0 50 100 150 200 250 300 350 400

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

3 - 6 Network Configurtion

4 - 12 Network Configuration

Fig. 11. Trajectory tracking for both configurations compared to each other after the training
was finished for the X coordinate

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

474

-400

-200

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 400

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

3 - 6 Network Configuration

4 - 12 Network Configuration

Fig. 12. Trajectory tracking for both configurations compared to each other after the training
was finished for the Y coordinate

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

3 - 6 Network Configuration

4 - 12 Network Configuration

Fig. 12. Trajectory tracking for both configurations compared to each other after the training
was finished for the Z coordinate

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

475

5.2 Testing phase
New data that has never been introduced to the network before have been fed to the second
configuration network to test its ability to make prediction and generalization to any set of
data later (as it has shown better response than the first configuration network).
Testing data were meant to pass through singular configurations (fourth and fifth joints);
these configurations have been determined by setting the determinant of the Jacobian matrix
to zero.
Table 3 shows the percentages of error for the testing data set for each joint during
simulation stage.

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Angular
Position

1.8% 0.245% 0.2% 5.32% 9.885% 0.08%

Angular
Velocity

3.82% 2.875% 1.47% 2.64% 3.28% 1.41%

Table 3. Error percentages obtained for testing data through simulation stage

In order to verify the testing results during simulation stage, experiment has been
performed to make sure that the output is the same or sufficiently close to the desired
trajectory, and to show the combined effect of error, Figures 13, 14 and 15 show the
predicted trajectory tracking of the X, Y, and Z coordinates respectively. Locus of which
robot is passing through singular configurations are also shown.

-400

-200

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

PredictedLocus of which robot is passing
through singular configuration

In one Joint
1DOF is expected to be lost

Locus of which robot is passing
through singular configurations

In two Joint
2DOF is expected to be lost

Fig. 13. Predicted trajectory for the X coordinate

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

476

-200

-100

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160 180 200

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

Predicted

Locus of which robot is passing
through singular configuration

In one Joint
1DOF is expected to be lost

Locus of which robot is passing
through singular configurations

In two Joint
2DOF is expected to be lost

Fig. 14. Predicted trajectory for the Y coordinate

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 20 40 60 80 100 120 140 160 180 200

Time (Sec.)

D
is

p
la

ce
m

e
n

t
(

m
m

)

Desired

Predicted

Locus of which robot is passing
through singular configuration

In one Joint
1DOF is expected to be lost

Locus of which robot is passing
through singular configurations

In two Joint
2DOF is expected to be lost

Fig. 15. Predicted trajectory for the Z coordinate

www.intechopen.com

Neural Networks’ Based Inverse Kinematics Solution
for Serial Robot Manipulators Passing Through Singularities

477

The error percentages in the experimental data are shown in table 4.

X Y Z
6.444% 16.355% 0.462%

Table 4. Error percentages obtained for testing data through experimental stage

6. Conclusions and recommendations

In order to overcome the drawbacks of some control schemes which depends on modeling
the system being controlled, ANN technique has been utilized where learning is done
iteratively based only on observation of input-output relationship unlike most other control
schemes, which is a significant advantage of using ANN technology.
In the first network, although the number of hidden neurons was the same with the previous
research despite the fact that the number of training patterns was doubled, an important
remark is that the error percentage was higher than it was in the previous research which leads
to a conclusion that this network configuration does not have the ability to learn huge number
of patterns and its use will be limited to small number of data patterns.
As this research has shown, the consideration of the Jacobian Matrix in the solution of the
Inverse Kinematics problem using neural networks gives a better response. As compared to
the Fuzzy Learning Control algorithm results, the trained network was able to remember
not only the training data but also was able to predict unknown trajectories as well as can be
seen through the testing phase which is a significant advantage of using this approach.
Backpropagation algorithm has been used as a learning algorithm with sigmoid transfer
function as an activation function in all neurons, we would like to recommend that a different
learning algorithm, different activation function and/or different number of hidden layers to
be used in order to achieve, if possible, a better response in terms of precision and iteration.

7. References

Al-Assadi, H.M.A.A.; Hamouda, A.M.S.; Ismail, N. & Aris, I. (2007). An adaptive learning
algorithm for controlling a two-degree-of-freedom serial ball-and-socket actuator.
Proceedings of the IMechE Part I Journal of Systems & Control Engineering, Vol.221, No.
7,pp.1001-1006.

Antonelli, G.; Chiaverini, S. & Fusco, G. (2003). A new on-line algorithm for inverse
kinematics of robot manipulators ensuring path-tracking capability under joint
limits. IEEE Transaction on Robotics and Automation, Vol.19, No.1, pp. 162-167.

Bingual, Z.; Ertunc, H.M. & Oysu, C. (2005). Comparison of Inverse Kinematics Solutions
Using Neural Network for 6R Robot Manipulator with Offset. ICSC congress on
Computational Intelligence.

Driscoll, J.A. (2000). Comparison of neural network architectures for the modeling of robot
inverse kinematics. Proceedings of the IEEE, south astcon, pp. 44-51.

D'Souza, A.; Vijayakumar, S. & Schaal, S. (2001). Learning Inverse Kinematics. Proceedings of
the 2001 IEEE/ RSJ International Conference on Intelligent Robots and Systems, pp.298-
303, Maui, Haw- USA.

Fu, K.S.; Gonzalez, R.C. & Lee, C.S.G. (1987). Robotics control, Sensing, Vision and intelligence,
McGraw-Hill Book Co, New York.

Funahashi, K.I., 1998. On the approximate realization of continuous mapping by neural
networks. Journal of Neural Networks, Vol.2, No.3, pp.183-192.

www.intechopen.com

 Artificial Neural Networks - Industrial and Control Engineering Applications

478

Graca, R.A. & Gu, Y. (1993). A Fuzzy Learning Algorithm for Kinematic Control of a Robotic
System. Proceeding of the 32nd Conference on Decision and Control, pp.1274-1279, San
Antonio, Texas, USA.

Hasan, A.T.; Hamouda, A.M.S.; Ismail, N. & Al-Assadi, H.M.A.A. (2007). A new adaptive
learning algorithm for robot manipulator control. Proceeding of the IMechE, Part I:
Journal of System and Control Engineering, Vol.221, No.4, pp. 663-672.

Hasan, A.T.; Hamouda, A.M.S.; Ismail, N. & Al-Assadi, H.M.A.A.(2006). An adaptive-
learning algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot
manipulator. Journal of Advances in Engineering Software, Vol.37, pp. 432-438.

Haykin S. (1994). Neural Networks. A Comprehensive Foundation. New York: Macmillan.
Hornik, K. (1991). Approximation capabilities of multi-layer feed forward networks. IEEE

Trans. Neural Networks, Vol.4, No.2, pp. 251-257.
Hu, Z.; FU, Z. & Fang, H. (2002). Study of singularity robust inverse of Jacobian matrix for

manipulator, Proceedings of the First International Conference on Machine Learning and
Cybernetics, pp. 406-410,China, Beijing.

Kalogirou, S.A. (2001) Artificial Neural Networks In Renewable Energy Systems
Applications: a review. Renewable and Sustainable Energy Reviews. Vol. 5,pp.373-401.

Karilk, B. & Aydin, S. (2000). An improved approach to the solution of inverse kinematics
problems for robot manipulators. Journal of Engineering applications of artificial
intelligence, Vol.13, pp.159-164.

Köker, R. (2005). Reliability-based approach to the inverse kinematics solution of robots
using Elman’s networks. Engineering Applications of Artificial Intelligence, Vol.18, pp.
685-693.

Köker, R.; Öz, C.; Çakar.T. & Ekiz, H. (2004). A study of neural network based inverse
kinematics solution for a three-joint robot. Journal of Robotics and Autonomous
Systems, Vol.49, pp. 227–234.

Kuroe, Y.; Nakai, Y. & Mori, T. (1994). A new Neural Network Learning on Inverse
Kinematics of Robot Manipulators, International Conference on Neural Networks, IEEE
world congress on computational Intelligence. Vol.5, pp. 2819-2824.

Nakamura, Y. & Hanafusa, H. (1986). Inverse kinematic solutions with singularity
robustness for robot manipulator control, Journal of Dynamic Systems Measurements
Control, Vol. 108,pp. 163–171.

Ogawa, T.; Matsuura, H. & Kanada, H. (2005). A Solution of Inverse Kinematics of Robot
Arm Using Network Inversion. Proceedings of the International Conference on
Computational Intelligence for Modelling, Control and Automation.

Santosh, A. ;Devendra P. Garg. (1993). Training back propagation and CMAC neural
networks for control of a SCARA robot. Journal of Engineering Applications of
Artificial Intelligence. Vol.6.No.2. pp.105-115.

Wampler, C. W. & Leifer, L. J. (1988). Applications of damped least-squares methods to
resolved-rate and resolved-acceleration control of manipulators. Journal of Dynamic
Systems Measurements Control, Vol. 110,pp. 31–38.

Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods, IEEE Transaction Syst., Man,
Cybernetics. Vol. 16,pp. 93–101.

Whitney. E. (1969). Resolved motion rate control of manipulators and human prostheses.
IEEE Transaction Man–Mach. Systems, Vol. MMS–10,pp.47–53.

Zurda, M. J. (1992). Introduction to Artificial Neural System Network. West Publishing
 Companies, ISBN 0-314-93397-3, St. Paul, MN, USA.

www.intechopen.com

Artificial Neural Networks - Industrial and Control Engineering

Applications

Edited by Prof. Kenji Suzuki

ISBN 978-953-307-220-3

Hard cover, 478 pages

Publisher InTech

Published online 04, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Artificial neural networks may probably be the single most successful technology in the last two decades which

has been widely used in a large variety of applications. The purpose of this book is to provide recent advances

of artificial neural networks in industrial and control engineering applications. The book begins with a review of

applications of artificial neural networks in textile industries. Particular applications in textile industries follow.

Parts continue with applications in materials science and industry such as material identification, and

estimation of material property and state, food industry such as meat, electric and power industry such as

batteries and power systems, mechanical engineering such as engines and machines, and control and robotic

engineering such as system control and identification, fault diagnosis systems, and robot manipulation. Thus,

this book will be a fundamental source of recent advances and applications of artificial neural networks in

industrial and control engineering areas. The target audience includes professors and students in engineering

schools, and researchers and engineers in industries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ali T. Hasan, Hayder M.A.A. Al-Assadi and Ahmad Azlan Mat Isa (2011). Neural Networks’ Based Inverse

Kinematics Solution for Serial Robot Manipulators Passing Through Singularities, Artificial Neural Networks -

Industrial and Control Engineering Applications, Prof. Kenji Suzuki (Ed.), ISBN: 978-953-307-220-3, InTech,

Available from: http://www.intechopen.com/books/artificial-neural-networks-industrial-and-control-engineering-

applications/neural-networks-based-inverse-kinematics-solution-for-serial-robot-manipulators-passing-

through-sing

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

