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A Novel Frequency Tracking Method Based on 
Complex Adaptive Linear Neural Network  

State Vector in Power Systems 

M. Joorabian, I. Sadinejad and M. Baghdadi 
Shahid Chamran University 

Iran 

1. Introduction 

In some digital application systems, power system frequency tracking is an important task. 
Accurate power frequency estimation is a necessity to check the state of health of power 
index, and a guarantee for accurate quantitative measurement of power parameters such as 
voltages, currents, active power and reactive power, in multi-function power meters under 
steady states. Many researches have been done in this area.  
Three criteria that a frequency tracking method should satisfy is given as follows 
(Akke,1997):  
1. Fast speed of convergence 
2. Accuracy of frequency estimation 
3. Robustness to noise. 
He compares traditional modulation with new modulation. Traditional demodulation 
introduces a double frequency component that needs to be filtered away. For signals with 
low noise, the filter to reduce the double frequency component can often limit the speed of 
the frequency estimation algorithm. The purpose of this section is to show that the proposed 
method eliminates this problem. If other filters are the bottle-neck of the estimation 
algorithm, we will not capitalise on the benefits. 
Many well-proven techniques such as zero-crossing technique, level-crossing technique, 
least squares error technique, Newton method, Kalman filter, Fourier transform, and 
wavelet transform have been used for power harmonic frequency estimation in the fields of 
measurement, instrumentation, control and monitoring of power systems. Besides, a 
comprehensive analysis of discrete Fourier transform (DFT) error is given in some 
researches, including the cases of synchronous sampling and error rises when sampling 
frequency does not synchronize with signal frequency. A frequency tracking method based 
on linear estimation of phase (LEP) has been introduced. Also, a processing unit for 
symmetrical components and harmonic estimation based on an adaptive linear combiner 
has been proposed. 
This section presents the application of a complex adaptive linear neural network 
(CADALINE) in tracking the fundamental power system frequency. In this method, by 
using stationary-axes Park transformation in addition to producing a complex input 
measurement, the decaying DC offset is effectively eliminated. As the proposed method 
uses a first-order differentiator to estimate frequency changes, a Hamming filter is used to 
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smoothen the response and cancel high-frequency noises. The most distinguishing features 
of the proposed method are the reduction in the size of observation state vector required by 
a simple adaptive linear neural network (ADALINE) and increase in the accuracy and 
convergence speed under transient conditions. This section concludes with the presentation 
of the representative results obtained in numerical simulations and simulation in 
PSCAD/EMTDC software as well as in practical study. 

2. ADALINE structure to track fundamental frequency 

Figure 1 depicts the ADALINE structure to track fundamental frequency which is a 
proposed in this section. 
 

( )sin θ

( )cos Nθ

( )sin Nθ

1

( )cos θ 1W

1x 2x

( )e k

( )y k

LMS 

update

1fDSOPC

2W

FIR Hamming Filter

( )d k

2 1N
W −

2NW

2 1N
W +

 

Fig. 1. ADALINE structure to track fundamental frequency 

Assume that the voltage waveform of power system comprises unknown fundamental, 
harmonics and decaying DC offset components as: 

 ( )0 1
1

( ) sin

t
N

l v
l

V t V l t A e τω
⎛ ⎞−⎜ ⎟
⎝ ⎠

=
= + Φ +∑  (1) 
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where 1V  and 1Φ  are the amplitude and phase of the fundamental frequency respectively. 

vA and τ  are the amplitude and time constant of decaying DC offset respectively; N is the 

total number of harmonics; and 0ω is the fundamental angular frequency in (rad/sec). Time-

discrete expression of (1) is: 

 ( ) 0.
1

1

( ) sin
N

l v
l

V k V l A e

θ
τ ωθ

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

=
= + Φ +∑  (2) 

where 2
s

k
N

πθ = and sN  is sampling rate given by
0

s
s

f
N

f
= , in which sf  is sampling 

frequency and 0f  is fundamental frequency of power system. By using the triangular 

equality: 

 ( ) ( ) ( ) ( ) ( )sin sin cos sin cosα β α β β α+ = +  (3) 

Equation (2) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( ) 0.

1

sin cos cos sin
N

l l l l v
l

V k V l V l A e

θ
τ ωθ θ

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

=
= Φ + Φ +∑  (4) 

Rearranging the above equation in the matrix form, we obtain: 

 ( ) ( )T
VV k X k= Ψ ×  (5) 

where ( )V k  represents the measurement at each sampling, ( )X k is the time varying 

observation matrix and VΨ  is the parameter at each iteration to be tracked. ( )X k and VΨ  

are shown in the following formula: 

 

( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 2 2 2 2

0

sin cos sin cos

... sin cos

cos sin cos 2 sin 2

...cos sin 1

V v
N N N N v

V V V V

A
V V A

X k
N N

τ
θ θ θ θ

θθ θ
ω

⎡ ⎤Φ Φ Φ Φ
⎢ ⎥Ψ = ⎢ ⎥Φ Φ −
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥−
⎢ ⎥⎣ ⎦

 (6) 

According to Fig. 1, at kth iteration, the input vector ( )X k  is multiplied by the weighting 

vector ( ) ( ) ( ) ( )1 2 ... PW k w k w k w k= ⎡ ⎤⎣ ⎦ , and then these weighted inputs are summed to 

produce the linear output ( ) ( ) ( )Ty k W k X k= × . In order for the ADALINE output to 

precisely mimic the desired value ( )d k , the weight vector is adjusted utilizing an adaptation 

rule that is mainly based on least mean square (LMS) algorithm. This rule is also known as 

Widrow–Hoff delta rule [27] and is given by: 

 ( ) ( ) ( ) ( )
( ) ( )

1
T

e k X k
W k W k

X k X k

α
+ = +

×
 (7) 
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where α  is the constant learning parameter and ( ) ( ) ( )e k y k d k= −  is the error. When 

perfect learning is attained, the error is reduced to zero and the desired output becomes 

equal to ( ) ( )0
T

d k W X k= × , where 0W  is the weight vector after the complete algorithm 

convergence. Thus, the neural model exactly predicts the incoming signal. To track 

harmonic components of a voltage signal with ADALINE, the variables ( )V kΨ  and ( )V k  

are simply assigned to ( )W k  and ( )d k  respectively, with 2 2P N= × + . 
After mentioned error converges to zero, the weight vector yields the Fourier coefficients of 
power signal as: 

 
( ) ( ) ( ) ( )

( ) ( )
1 1 1 1 2 2 2 2

0

sin cos sin cos

... sin cos v
N N N N v

V V V V

W A
V V A

τ

⎡ ⎤Φ Φ Φ Φ
⎢ ⎥= ⎢ ⎥Φ Φ −
⎢ ⎥⎣ ⎦

 (8) 

Voltage amplitude and phase angle of Nth harmonic are: 

 

( ) ( )
( )

( )

2 2
0 0

1 0
,

0

2 1 2

2 1
tan

2

N

V N

V W N W N

W N
W N

−

= − +

⎛ − ⎞Φ = ⎜ ⎟
⎝ ⎠

 (9) 

Voltage amplitude and phase angle of fundamental frequency extracted by (9) are: 

 

( ) ( )
( )

( )

2 2
1 0 0

1 0
,1

0

1 2

1
tan

2V

V W W

W
W

−

= +

⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

 (10) 

 

By sampling current signal with the same approach, discrete expression of current is: 

 ( ) ( ) ( ) ( ) ( ) 0 .

1

sin cos cos sin
N

l l l l i
l

I k I l I l A e

θ
ω τθ θ

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

=
= Φ + Φ +∑  (11) 

in which, variables ( )I kΨ and ( )I k are simply assigned to ( )W k and ( )d k  respectively, with 

2 2P N= × +  [27]. ( )I kΨ  is defined as: 

 
( ) ( ) ( ) ( )

( ) ( )
1 1 1 1 2 2 2 2sin cos sin cos

... sin cos
I i

N N N N i

I I I I

A
I I A

τ

⎡ ⎤Φ Φ Φ Φ
⎢ ⎥Ψ = ⎢ ⎥Φ Φ −
⎢ ⎥⎣ ⎦

 (12) 

 

Current amplitude and phase of Nth harmonic are calculated as follows: 

 

( ) ( )
( )

( )

2 2
0 0

1 0
,

0

2 1 2

2 1
tan

2

N

I N

I W N W N

W N
W N

−

= − +

⎛ − ⎞Φ = ⎜ ⎟
⎝ ⎠

 (13) 

 

Current amplitude and phase of fundamental frequency are achieved by: 
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( ) ( )
( )

( )

2 2
1 0 0

1 0
,1

0

1 2

1
tan

2I

I W W

W
W

−

= +

⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

 (14) 

To track frequency, a center frequency is assumed to be the actual value. It would be the 

operational frequency of the power system which is usually 50 Hz or 60 Hz. Under 

situations that the base power frequency changes, the kth sample of fundamental component 

of voltage or current signal is modeled: 

 ( ) sin(2 )s x ss kT A f kTπ φ= ⋅ +  (15) 

that can be rewritten as: 

 1 0 2 0( ) sin(2 ) cos(2 )s s ss kT x f k T x f k Tπ π= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (16) 

Where 1x  is the in-phase component, 2x  is the quadrature phase component, 0f  is the 

center frequency (60 Hz), 1f  is the frequency deviation, and sT  is the sampling interval 

1

sf

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Before calculating the frequency deviation ( 1f ), 1x  and 2x  pass through a FIR 

Hamming window and parameters 1y  and 2y  are obtained as: 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

0

0

1 1
1

2 2
1

1

1

N

s s
i

N

s s
i

y kT x k i T H i

y kT x k i T H i

=

=

= − + ⋅ ×

= − + ⋅ ×

∑

∑
 (17) 

where ( )H i  is the ith coefficient of the FIR Hamming window coefficients and 0N  is the 

sampling rate given by 0
0

sfN
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. The cut frequency for the low pass Hamming window is 

20 Hz and the length of filter is 40. Fig. 2 shows the impulse response of this Hamming 
window. By using DSOPC principle, 1f  is obtained as: 

 1 2 2 1
1 2 2

2 1

( ) ( ) ( ) ( )1
( )

2 ( ( ) ( ))
s s s s

s
s s

y kT y kT y kT y kT
f kT

y kT y kTπ
′ ′−

= ×
+

 (18) 

1y′  and 2y′  are first-order discrete derivatives defined as: 

 

( ) ( ) ( )

( ) ( ) ( )

1 1
1

2 2
2

s s s
s

s

s s s
s

s

y kT y kT T
y kT

T

y kT y kT T
y kT

T

− −
′ =

− −
′ =

 (19) 

Finally, the real value of fundamental frequency ( xf ) is calculated by adding the frequency 

deviation to the assumed center frequency as: 
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 0 1xf f f= +  (20) 

 

 

Fig. 2. Impulse response of the Hamming window with 20 Hz cut frequency 

3. Complex ADALINE structure to track fundamental frequency 

The proposed complex ADALINE (CADALINE) structure is based on the Widrow–Hoff 
delta rule, explained earlier. The improvement in ADALINE structure is made by 
introducing a complex observation vector. This approach reduces the number of weight 
updates, and so, the number of parameters to be estimated. To produce a complex vector 
measurement the use of the stationary-axes Park transformation is proposed. Stationary-
axes Park transformation is widely employed to study the behavior of rotating electrical 
machines in transient conditions. However, it can be considered a more general and 
powerful tool to study the behavior of three-phase systems. This transformation applied to 
the signals ( ), ( )a by t y t  and ( )cy t  (voltages or currents) of a three-phase system leads to the 

Park components ( ),dy t ( )qy t and 0( )y t  defined as: 

 [ ]
0

.
d a

q b

c

y y

y T y

yy

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (21) 

where [ ]T  is the orthogonal matrix defined as: 

 

2 1 1

3 6 6

1 1
0

2 2

1 1 1

3 3 3

T

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 
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In the d-q frame, it is then possible to define the Park vector as a complex quantity as: 

 d qy y jy= +  (23) 

This vector is used as a desired value. The complex observation matrix Z  is introduced by: 

 0 0 02( ) , , , 1,s s s
Tj kT j kT jN kT

s sZ kT e e e kTω ω ω⎡ ⎤= −⎣ ⎦…  (24) 

0ω  is the center angular frequency (rad/sec), defined as 0 02 fω π= . The complex harmonic 

vector to be tracked at kth sample is ( )skTΓ  and is defined as: 

 [ ]1 2 1 2( ) ( ), ( ) ( ), ( ), ( )
T

s s s N s N s N skT A kT A kT A kT A kT A kT+ +Γ = …  (25) 

where 1( )sA kT  is the complex phasorial expression of center frequency in the d-q frame. 

According to LMS rule, weight update is: 

 
( )

( ) ( ) ( )
( ) ( )

s s
s s s s s T

s s s s

Z kT T
kT kT T e kT T

Z kT T Z kT T
α −

Γ = Γ − + ⋅ −
− ⋅ −

f
 (26) 

( )se kT
f

 is the complex error obtained as follows: 

 
( ) ( ) ( )

( ) ( ) ( )

T
s s s s

s s s s

Y kT kT Z kT

e kT Y kT y kT

= Γ ×

= −
f  (27) 

where ( )s sY kT  is the complex estimation of the actual values of ( )sy kT  in d-q frame. 

It should be noted that under conditions where power system operates with the nominal 

frequency, 1( )sA kT  is a constant vector, which does not rotate with respect to the time in the 

complex frame. When the base frequency changes, 1( )sA kT  becomes a rotating vector. It is 

the result of the fact that when the base frequency changes, 1( )sA kT  components appear as 

modulated signals and their carrier is the occurred frequency-drift. Therefore, the rate of 

this rotation is the key element to track the frequency deviation from the center frequency. 

The frequency deviation ( 1f ) is achieved by normalizing and differentiating 1( )sA kT . For 

the types of power swing events studied here, it has been found that the non-fundamental 

components cannot be characterized as harmonics. A middle-filter is, therefore, required so 

that the signal is dominated by the fundamental component. The middle-filter, used here, is 

the FIR Hamming type filter as has been used in [18]. It is the same which has been used in 

Section 2. 1( )sA kT  passes through the FIR Hamming window and 1( )sAh kT  is obtained as: 

 ( ) ( )( ) ( )
0

1 1
1

1
N

s s
i

Ah kT A i k T H i
=
⎡ ⎤= − + ⋅⎣ ⎦∑  (28) 

1( )sAh kT  should be normalized to produce the rotating operator ( ( )12 sj f kT
e

π
). ( )12 sj f kT

e
π

 

stands for a normal rotating vector which its amplitude is unity and 1f  is the frequency 

deviation. Therefore, complex normalized rotating state vector 1( )sAn kT  is obtained as: 
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( )

1
1

1

( )
( )

( )
s

s
s

Ah kT
An kT

abs Ah kT
=  (29) 

where ( )abs x  stands for absolute value of x . By using the first-order discrete differentiator, 

1f  is obtained as: 

 1 1
1

1

( ) ( )1
( )

2
s s s

s
s s

An kT An kT T
f kT

j An k T Tπ
⎛ ⎞ ⎛ ⎞− −

= ⋅⎜ ⎟ ⎜ ⎟
⋅ ⋅ ⋅ ⎝ ⎠⎝ ⎠

 (30) 

It can be seen that observation matrix size and the parameters to be estimated have been 

reduced to ( 2N + ) elements in comparison with the simple ADALINE which uses ( 2 2N + ) 

elements. Furthermore, owing to the fact that data from three phases are combined, the most 

important aspect of the proposed technique is that the convergence speed is considerably 

improved. After all, decaying DC offset is effectively eliminated by applying stationary-axes 

Park transformation and using CADALINE. Fig. 3 shows the complex ADALINE structure 

to track fundamental frequency. 

 

 
Fig. 3. Complex ADALINE structure to track fundamental frequency 

4. Review of Kalman and DFT approaches 

4.1 Kalman filter to track fundamental frequency 

Kalman filter has also been used to track fundamental frequency in power system. Consider 

the following deterministic state-variable equation for a periodic signal having harmonic 

components up to Nth order with samples kz , at time kt , ( )2 1n +  samples per period. 

 1k k

k k

x F x

z Q x
+ = ×
= ×

 (31) 
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where ( )2 1N + -dimensional state vector kx  is as follows: 

( )2 1 :kx i − real component of the ith harmonic phasor, 

( )2 :kx i imaginary component of the ith harmonic phasor, 

( )2 1 :kx i + decaying DC component, 

where the ith element of kx  is represented by ( )kx i , and F is: 

 

( )
( )

( )

1 0 0 0

0 2 0 0

0 0

0 0 0 1

f

f

F

f N

ψ
ψ

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

A
A

B B A B B
A B
A

 (32) 

where 0 sTψ ω= , 0ω  is the fundamental supply angular frequency in (rad/sec) and sT  is the 

sampling interval in seconds. 

 ( ) ( ) ( )
( ) ( )

cos sin
1,2, ,

sin cos

i i
f i i N

i i

ψ ψ
ψ

ψ ψ
⎡ ⎤−

= =⎢ ⎥
⎣ ⎦

…  (33) 

and Q is a ( 1  (2n + 1) × ) matrix which gives the connection between the measurement ( kz ) 

and the state vector ( kx ). The sampled value of the signal is considered to be the sum of the 

real components of the harmonic phasors and the decaying DC component. Therefore, Q is 

given by: 

 [1,0,1,0, ,1,0,1]Q = A  (34) 

The harmonic components ih  (RMS) are given by: 

 
( )2 2

2
(2 1) (2 )

1,2, ,
2

k k

i

x i x i
h i N

− +
= = …  (35) 

The problem of estimating the present state of the signal model (Eq. 31) from measurements 
( k z ) involves the design of standard state observers [33]. The observer state can be 

represented by: 

 ( )1
ˆ ˆ ˆ

k k k kx F x P z Qx+ = × + × −  (36) 

where ˆ
kx  denotes the estimate of the state vector kx  and P is the observer gain matrix. The 

primary objective in choosing P is to obtain a stable observer, which is achieved by 

assigning the eigenvalues of the matrix F PQ−  within the unit circle. The locations of the 

eigenvalues determine, among other things, the transient response of the observer. For the 

purpose of frequency tracking, the speed of response and tracking ability are of particular 

importance. After studying various choices, the following case is considered. 

 
[0.248,0.0513,0.173,0.046,0.0674,0.0434,0.00916,

0.0236, 0.000415,0.113,0.0802]T

P =

−
 (37) 
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To estimate fundamental frequency, the approach is based on DSPOC which has been 

described in Eqs. 15–20 is used. 

4.2 DFT filter to track fundamental frequency 

Under situation of frequency change, the kth sample of fundamental voltage or current signal 

is described as denoted in Eq. 15. By using a DFT dynamic window, parameters 1x  and 2x  

in Eq. 16 can be achieved as follows: 

 
1

1
0

2
( ) ( ) ( ) (2 )

sN

s s
ks s

k
x kT s kT sin

N N
π

−

=

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
∑   

 
1

2
0

2
( ) ( ) ( ) (2 )

sN

s s
ks s

k
x kT s kT cos

N N
π

−

=

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
∑  

(38)

 

The fundamental frequency tracking process includes the same approach that has been 

expressed in Eqs. 15–20. 

5. Adaptive linear element 

ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is a single layer 

neural network as the 'least mean square' (LMS) learning procedure, also known as the delta 
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rule. It was developed by ProfessorBernard Widrow and his graduate student Ted Hoff at 

Stanford University in 1960. It is based on the McCulloch–Pitts neuron. It consists of a 

weight, a bias and a summation function.The difference between Adaline and the standard 

(McCulloch-Pitts) perceptron is that in the learning phase the weights are adjusted 

according to the weighted sum of the inputs (the net). In the standard perceptron, the net is 

passed to the activation (transfer) function and the function's output is used for adjusting 

the weights.  The main functional difference with the perceptron training rule is the way the 

output of the system is used in the learning rule. The perceptron learning rule uses the 

output of the threshold function (either -1 or +1) for learning. The delta-rule uses the net 

output without further mapping into output values -1 or +1. The ADALINE network shown 

below has one layer of S neurons connected to R inputs through a matrix of weights W. 

This network is sometimes called a MADALINE for Many ADALINEs. Note that the figure 

on the right defines an S-length output vector a. 

The Widrow-Hoff rule can only train single-layer linear networks. This is not much of a 

disadvantage, however, as single-layer linear networks are just as capable as multilayer 

linear networks. For every multilayer linear network, there is an equivalent single-layer 

linear network. 

5.1 Single ADALINE 
Consider a single ADALINE with two inputs. The following figure shows the diagram for 

this network. 

 

 
The weight matrix W in this case has only one row. The network output is: 

 ( ) ( ) ( )a purelin n purelin Wp b Wp b= = + = +  (39) 

Equation a can be written as follows: 

 1,1 1 1,2 2a w p w p b= + +  (40) 

Like the perceptron, the ADALINE has a decision boundary that is determined by the input 

vectors for which the net input n is zero. For n = 0 the equation Wp + b = 0 specifies such a 

decision boundary, as shown below: 
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Input vectors in the upper right gray area lead to an output greater than 0. Input vectors in 
the lower left white area lead to an output less than 0. Thus, the ADALINE can be used to 
classify objects into two categories. 
However, ADALINE can classify objects in this way only when the objects are linearly 
separable. Thus, ADALINE has the same limitation as the perceptron. 

5.2 Networks with linear activation functions: the delta rule 
For a single layer network with an output unit with a linear activation function the output is 
simply given by: 

 
1

n

i i
i

y w x θ
=

= +∑  (41) 

Such a simple network is able to represent a linear relationship between the value of the 

output unit and the value of the input units. By thresholding the output value, a classifier 

can be constructed (such as Widrow's Adaline), but here we focus on the linear relationship 

and use the network for a function approximation task. In high dimensional input spaces 

the network represents a (hyper) plane and it will be clear that also multiple output units 

may be defined. Suppose we want to train the network such that a hyper plane is fitted as 

well as possible to a set of training samples consisting of input values pd  and desired (or 

target) output values pd . For every given input sample, the output of the network differs 

from the target value pd by ( )p pd y− where py  is the actual output for this pattern. The 

delta-rule now uses a cost- or error-function based on these differences to adjust the 

weights. The error function, as indicated by the name least mean square, is the summed 

squared error. That is, the total error E  is denoted to be: 

 ( )21

2

p p p

p p

E E d y= = −∑ ∑  (42) 

Where the index p ranges over the set of input patterns and pE represents the error on 

pattern p . The LMS procedure finds the values of all the weights that minimize the error 

function by a method called gradient descent. The idea is to make a change in the weight 

proportional to the negative of the derivative of the error as measured on the current pattern 

with respect to each weight: 
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where γ is a constant of proportionality. The derivative is 
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Because of the linearity, 
p

j

E

w

∂
∂

is as follows: 

 ( )
p

p p

j

E
d E

w

∂
= − −

∂
 (46) 

Where p p pd Eδ = − is the difference between the target output and the actual output for 

pattern p .The delta rule modifies weight appropriately for target and actual outputs of 

either polarity and for both continuous and binary input and output units. These 

characteristics have opened up a wealth of new applications.  

6. Simulation results 

Simulation examples include the following three categories. Numerical simulations are 
represented in Section 5.1. for two cases, simulation in PSCAD/EMTDC software is 
presented in Section 5.2. Lastly, Section 5.3. presents practical measurement of a real fault 
incidence in Fars province, Iran. 

6.1 Simulated signals 
Herein, a disturbance is simulated at time 0.3 sec. Three-phase non-sinusoidal unbalanced 
signals, including decaying DC offset and third harmonic, are produced as: 

 

0
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3
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220sin( t+ )
3

A

B

C

V

V

V

ω
πω

πω

⎧
⎪ =
⎪
⎪ = ≤ ≤⎨
⎪
⎪ =⎪⎩

 (47) 

After disturbance at 0.3 sec, signals are: 
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V =400sin( t)+40sin(3 t)+400

2
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3
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e
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V

ω ω
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⎧
⎪
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 (48) 
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where 0ω  is the base angular frequency and xω  is the actual angular frequency after 

disturbance. 

6.1.1 Case 1  

In this case, a 1-Hz frequency deviation occurs and tracked frequency using CADALINE, 

ADALINE, Kalman, and DFT approaches is revealed in Fig. 4; three-phase signals are 

shown in Fig. 5. Estimation error percentage according to the samples fed to each algorithm 

after frequency drift is shown in Fig. 6. Second set of samples including 100 samples, 

equivalent to two and half cycles, which is fed to all algorithms is magnified in Fig. 6. It can 

be seen that CADALINE converges to the real value after first 116 samples, less than three 

power cycles, with error of -0.4 %; and reaches a perfect estimation after having more few 

samples. Other methods’ estimations are too fare from real value in this snapshoot. DFT, 

ADALINE and Kalman respectively need 120, 200 and 360 samples to reach less than one 

percent error in estimating the frequency drift. It should be considered that for 2.4-kHz 

sampling frequency and power system frequency of 60 Hz, each power cycle includes 40 

samples. The complex normalized rotating state vector 1( )sAn kT  with respect to time and in 

d-q frame is shown in Fig. 7. It has been seen that for 1-Hz frequency deviation ( 1 1f = Hz), 

CADALINE has the best convergence response in terms of speed and over/under shoot. 

ADALINE method convergence speed is half that in the CADALINE and shows a really 

high overshoot. Besides, Kalman approach shows the biggest error. in the first 7 power 

system cycles, it converges to 61.7 Hz instead of 61 Hz and its computational burden is 

considerably higher than other methods. In this case, presence of a long-lasting decaying DC 

offset affects the DFT performance. Consequently, its convergence speed and overshoot are 

not as improved as CADALINE. 
 

 
Fig. 4. Tracked frequency (Hz) 
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Fig. 5. Three-phase signals 

 

 

Fig. 6. Estimation error percentage according to samples fed to each algorithm after 
frequency drift 

As can be seen in Fig. 7, 1( )sAn kT  starts rotation simultaneously when the frequency 

changes at time 0.3 sec. 
 

 

Fig. 7. Complex normalized rotating state vector ( 1An ) 
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6.1.2 Case 2 
In this case, a three-phase balanced voltage is simulated numerically. The only change 

applied is a step-by-step 1-Hz change in fundamental frequency to study the steady-state 

response of the proposed method when the power system operates under/over frequency 

conditions. The three-phase signals are: 

 

220sin( t)

2
220sin( t- )

3
2

220sin( t+ )
3

A x

B x

C x

V

V

V

ω
πω

πω

⎧
⎪ =
⎪
⎪ =⎨
⎪
⎪

=⎪⎩

 (49) 

where 2x xfω π= , and values of xf  are shown in Table I. The range of frequency that has 

been studied here is 50–70 Hz. Results are revealed in Table I and average convergence time 

is shown in Fig. 8 for CADALINE, ADALINE, Kalman filter and DFT approaches. The 

results from this section can give an insight into the number of samples that each algorithm 

needs to converge to a reasonable estimation. According to the fact that each power cycle is 

equivalent to 40 samples, average number of samples that is needed for each algorithm to 

have estimation with less than one percent error is represented in Table I.  

 

 
Fig. 8. Average convergence time (cycles) to track static frequency changes 

6.2 Simulation in PSCAD/EMTDC software 
In this case, a three-machine system controlled by governors is simulated in 

PSCAD/EMTDC software, shown in Fig. 9. Information of the simulated system is given in 

Appendix I. A three-phase fault occurs at 1 sec. Real frequency changes, estimation by use of 

ADALINE, CADALINE and Kalman approaches are shown in Fig. 10. Instead of DFT 

method, the frequency measurement module (FMM) performance which exists in PSCAD 

library is compared with the presented methods. Phase-A voltage signal is shown in Fig. 11. 
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 Approaches 

(Hz)xf CADALINE KALMAN ADALINE DFT

70 95 360 202 111 

69 97 421 188 114 

68 93 358 186 118 

67 90 384 187 114 

66 95 385 178 114 

65 97 305 138 139 

64 92 361 211 114 

63 93 328 193 116 

62 98 430 206 115 

61 96 360 231 116 

60 92 385 220 112 

59 83 234 155 97 

58 81 281 181 116 

57 88 313 197 117 

56 98 216 178 123 

55 97 377 192 117 

54 96 336 206 122 

53 90 331 195 114 

52 96 290 190 108 

51 96 374 184 120 

50 105 405 113 112 

Table I Samples needed to estimate with 1 percent error for 50-70 frequency range  

The complex normalized rotating state vector ( 1( )sAn kT ) is shown in Fig. 12. The best 

transient response and accuracy belongs to ADALINE and CADALINE, but CADALINE 

has faster response with a considerable lower overshoot, as can be seen in Fig. 10. Kalman 
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approach has a suitable response in this case, but its error and overshoot in estimating 

frequency are bigger than that in CADALINE. The PSCAD FMM shows drastic fluctuations 

in comparison with other methods proposed and reviewed here. 

 

 

Fig. 9. A three-machine connected system simulated in PSCAD/EMTDC software 
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Fig. 10. Tracked frequency (Hz) 
 

 

Fig. 11. Phase-A voltage (kV) 

 

 

Fig. 12. Complex normalized rotating state vector ( 1An ) 
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6.3 Practical study 

In this case, a practical example is represented. Voltage signal measurements are applied 

from the Marvdasht power station in Fars province, Iran. The recorder’s sampling frequency 

( sf ) is 6.39 kHz and fundamental frequency of power system is 50 Hz. A fault between 

pahse-C and groung occurred on 4 March 2006. The fault location was 46.557 km from 

Arsanjan substation. Main information on the Marvdasht 230/66 kV station and other 

substation supplied by this station is given in Tables II and  III, presented in Appendix II. 

Fig. 13 shows the performance of CADALINE, ADALINE, Kaman and DFT approaches. 

Besides, phase-C voltage and residual voltage are revealed in Fig. 14 (A) and Fig. 14 (B) 

respectively. Complex normalized rotating state vector ( 1An ) is shown in Fig. 15. 

 

 

Fig. 13. Tracked frequency (Hz), case V.C. 

 

 

Fig. 14. (A): phase-C voltage and (B): residual voltage, case V.C.  
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Fig. 15. Complex normalized rotating state vector ( 1An ), case V.C. 

7. Conclusion 

This section proposes an adaptive approach for frequency estimation in electrical power 

systems by introducing a novel complex ADALINE (CADALINE) structure. The proposed 

technique is based on tracking and analyzing a complex rotation state vector in d-q frame 

that appears when a frequency drift occurs. This method improves the convergence speed 

both in steady states and dynamic disturbances which include changes in base frequency of 

power system. Furthermore, the proposed method reduces the size of the state observer 

vector that has been used by simple ADALINE structure in other references. The numerical 

and simulation examples have verified that the proposed technique is far more robust and 

accurate in estimating the instantaneous frequency under various conditions compared with 

methods that have been reviewed in this section. 

8. Appendices 

8.1 Appendix I. multi-machine system information simulated in PSCAD/EMTDC 
software 
1. Basic data of all generators are: 

Number of machines: 3 
Rated line-to-neutral voltage (RMS): 7.967 [kV] 
Rated line current (RMS): 5.02 [kA] 
Base angular frequency: 376.991118 [rad/sec] 
Inertia constant: 3.117 [s] 
Mechanical friction and windage: 0.04 [p.u.] 
Neutral series resistance: 1.0E5 [p.u.] 
Neutral series reactance: 0 [p.u.] 
Iron loss resistance: 300.0 [p.u.] 

2. Fault characteristics: 
Fault inductance: 0.00014 [H] 

Fault resistance: 0.0001 [Ω] 
3. Load characteristics: 
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Load active power: 190 [MW] 
Load nominal line-to-line voltage: 13.8 [kV] 

8.2 Appendix. II  
Main information on the Marvdasht 230/66 (kV) station and other substation supplied by 
this station is given in Tables II and III. 
 

1-PHASE SHORT 
CIRCUIT 

CAPACITY (MVA) 

3-PHASE SHORT 
CIRCUIT 

CAPACITY (MVA) 

FEEDER 
NO. TAG 

SUBSTATION 
NAME 

NO. 

1184 1460 - 
Marvdasht 230/66 
(kV) 

1 

640 896 602 Marvdasht City 2 

423 631 601 Mojtama 3 

718 1005 607 Kenare 4 

500 751 603 Sahl Abad 5 

121 203 604 Dinarloo 6 

237 381 608 Seydan 7 

84 145 605 Arsanjan 8 

Table II Marvdasht substation capacities 
 

Z  

(Ω ) 

1-PHASE 
SHORT 

CIRCUIT 
CURRENT 

(kA) 

3-PHASE 
SHORT 

CIRCUIT 
CURRENT 

(kA) 

FEEDER 
NO. TAG 

SUBSTATION 
NAME 

NO. 

2.983562 10.35731 12.77169 
- 

Marvdasht 230/66 
(kV) 

1 

4.861607 5.598548 7.837967 602 Marvdasht City 2 

6.903328 3.70029 5.519818 601 Mojtama 3 

4.334328 6.280871 8.79147 607 Kenare 4 

5.800266 4.373866 6.569546 603 Sahl Abad 5 

21.45813 1.058475 1.775789 604 Dinarloo 6 

11.43307 2.073212 3.332886 608 Seydan 7 

30.04138 0.734809 1.268421 605 Arsanjan 8 

Table III Marvdasht substation three-phase and single-phase short circuit capacities and 

impedances ( Z ) 
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