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1. Introduction 

The market of meat and meat products is growing continuously. In the sector of meat, there 
are many problems and challenges associated with the evaluation of meat quality at 
industrial level. The methods with the potential of industrial application should be accurate 
but also rapid, non-destructive, with no health or environment hazards, with benefits of 
automation and lower risk of human error. The lack of such methods represents a drawback 
for meat industry and the research focusing on the possible application of rapid methods is 
emerging. Many new promising techniques are being tested in meat science such as NIR 
(near infrared) and FT-IR (Fourier transformed infrared) spectroscopy, mass spectrometry, 
hyper- and multispectral imaging techniques, machine/computer vision, biosensors, 
electronic noses (array of sensors), ultrasound techniques, etc. However, the enormous 
amount of information provided by these instruments demands an advanced data treatment 
approach. The artificial intelligent methods can be used for such purposes since their 
primary target is to distinguish objects or groups or populations. Artificial neural networks 
(ANN) are a well-known mathematical tool widely used and tested lately for the problems 
in meat production and technology. Its advantages are in the ability to handle with non-
linear data, highly correlated variables and the potential for identification of problems or 
classification. In particular promising applications of ANN in relation to meat sector is in 
carcass classification, quality control of raw material, meat processing, meat spoilage or 
freshness and shelf-life evaluation, detecting off-flavours, authenticity assessment, etc. In 
this chapter an overview of published studies dealing with the application of ANN in meat 
science is given. In the first part of the chapter basic concepts of artificial neural networks 
(ANN) are presented and described. The next part of the chapter summarizes the relevant 
publications on the use of ANN in case of meat production and technology issues and is 
divided in several paragraphs presenting the relevant research work with the most 
interesting applications of ANN. 

2. Basic concepts of ANN 

The ANN is a machine learning method evolved from the idea of simulating the human 
brain (Rosenblatt, 1961; Zou et al., 2008). Once regarded as an eccentric and unpromising 
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algorithm for the analysis of scientific data, ANN has been developed into a powerful 
computational tool in the past decades (Cartwright, 2008) used in many fields of chemistry 
and biology. The key characteristic of ANN is its ability to learn. Important assets of ANN 
are related to its ability to handle large data sets, to find out interesting relationships or 
behaviour among complex data. It is highly adaptable and has an excellent fault tolerance. 
When a data set is well explained by an appropriate mathematical model (e.g. linear 
regression), a neural network is unlikely to be needed. It becomes useful in the cases where 
the rules that underlie the data are not known, or are only partially known. In this case a 
mechanistic model cannot be derived; instead, a data-driven model may be developed and 
for this purpose the ANN method is well suited.  The functional relationship between input 
and output is formed during the learning process. This chapter will give only a brief and 
elementary description of the ANN used in various studies related to meat production and 
technology. For more detailed information a reader is advised to address the literature 
specialized in description and mathematical concepts of ANN. Different types of ANN are 
known, Kohonen, counter-propagation (CP), back-propagation ANN, the latter being the 
most often applied in studies on meat. Like in the biological neural network, the artificial 
ANN has an interconnection of neurons with three vital components: i) node character 
which controls signals i.e. the number of inputs and outputs, the weights and activation 
function associated with the node, ii) network topology defining how nodes are organized 
and connected and iii) learning rules for the initialization and adjustment of weights. There 
are two groups of ANN, supervised and unsupervised, which differ in the strategy of 
learning. In unsupervised learning, the input data is organised and processed without 
reference to the target, whereas in supervised learning, both the input and target (output) 
are used. Kohonen ANN is an example of unsupervised learning, where no referential 
(output) data are used in training of the network, and the algorithms used are excellent for 
establishing the relationship among complex sets of data. Counter-propagation ANN 
represents an up-grade of Kohonen ANN and is based on two-step learning procedure, 
unsupervised in the first step, and supervised in the second. CP-ANN is the most suitable 
method for classification of data, but can be used also as a method for developing predictive 
models for new objects of unknown properties. Back-propagation ANN is another example 
of supervised learning, where one or more target values are predicted from input data, 
meaning that both inputs and outputs should be known for the training dataset. A special 
type of ANN is radial basis function network which ordinarily does not involve the training 
of network, but is determined using a certain transformed function. However, the majority 
of algorithms work according to an iterative principle, which is similar to training of the 
network.  

2.1 Feed-forward neural network 
Feed-forward neural network was the first type of ANN developed. In this network, the 
information moves only in one direction, forward from the input neurons through the 
hidden neurons (if any) to the output nodes. There are no cycles or loops in the network. 
Perceptron (a linear classifier) is the simplest kind of feed-forward ANN. The most popular 
form is back-propagation (BP) ANN, a multilayer feed-forward network based on back-
propagation learning algorithm. The BP-ANN consists of supervised learning algorithm that 
corrects the weights within each layer of neurons in proportion to the error of the preceding 
layer level i.e. backwards, from the last (output) layer towards the first (input) layer of 
neurons (Zupan, 1994). Giving the input vectors and targets, this network can approximate 
a function or classify input vectors in a way defined by the user. Typical BP-ANN has three 
layers (Fig. 1): the input neurons that receive the information from a data file, the output 
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neurons that provide a response to the input data, in between are the hidden neurons which 
communicate with other neurons, they are a part of the internal pattern which provides a 
solution. In BP-ANN the information flows from one processing element to another within a 
set of weights. During the training, the interconnections can strengthen or weaken, so that a 
neural network produces a more correct answer. The number of neurons in the hidden layer 
influences the number of connections, which affect significantly the network performance 
and should be optimised. If the number of hidden neurons is too low the learning process 
can be obstructed, if the number of hidden neurons is too big the network can be over-
trained. When developing BP-ANN, besides the mentioned number of neurons in hidden 
layer, the following parameters of network should be optimized: learning rate (0.1-0.9), 
momentum term (0.0-1.0), and number of epochs (starting with sample size, optimized on 
test-set error). When ANN is trained to a satisfactory level, the weighted links among the 
units are saved and later used as an analytical tool to predict results for a new set of input 
data.    

2.2 Self-organizing maps (SOM) or Kohonen neural networks  

Kohonen ANN was initially developed with the aim to mimic human brain functioning. In 
human brains similar information is stored in certain regions (neighbouring neurons) of 
cortex. This is related to the mapping of inputs in the Kohonen map which represents a type 
of unsupervised learning strategy and can be rationalised by the way how young children 
learn to recognize objects. They do not have to know the words of objects, they just look at 
the images and they automatically relay e.g. the houses in the same group of objects, no 
matter how many windows or chimneys they have. For the unsupervised learning strategy, 
only the description of objects are needed, i.e. the independent variables for the input 
vectors. The properties are not given, so the map obtained shows only the relationship 
between the independent variables of the objects, regardless of their property that may be 
known, but is not represented in object vectors. The main goal of Kohonen ANN is to project 
or map objects from m-dimensional into two-dimensional space on the basis of input data 
(similarity among objects). Thus Kohonen ANN is most frequently applied for visualization 
and clustering purposes. 
The Kohonen ANN (Fig. 1) has only one (active) layer of N neurons represented as weights 
Wj=(wj1, wj2, wji,…wjm). Each neuron (j=1...N) has several weight levels (i=1...m). There are as 
many weight levels as there are input variables. The learning in the Kohonen network is 
based on unsupervised competitive learning, where only one neuron from the layer is 
selected for each input. Input is a vector of variables i.e. descriptors (Xs=xs1, xs2, xsi,…xsm). The 
winning neuron Wc is the neuron with weights closest to the input Xs according to the 
Euclidean distance. The weights of the winning neuron and its neighbouring neurons are 
corrected so that their weights become more similar to the input variable. A trained 
Kohonen network consists of m-dimensional neurons organised in Nx × Ny matrix with 

weights accommodated to the training set objects. Presenting the entire set of objects to the 
trained network we obtain the locations of the winning neurons in the Nx × Ny map, excited 
by individual objects. If we mark the excited neurons in the map by labels corresponding to 
individual objects, we obtain so-called top-map. The labels can be chosen according to 
known properties of the objects (e.g. feeding regime, breed, quality class, geographical 
location). In the top-map one can find clusters of objects, empty spaces (neuron that were 
not excited by any of the training objects), or conflicts (neurons, excited by two or more 
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objects from different classes or having different properties). Clusters and empty spaces can 
be inspected without prior knowledge of property (dependent variables) of the studied 
objects, while the conflicts can only be determined knowing the properties as well. When 
developing Kohonen ANN the following parameters of network should be optimised: net 
size (number of neurons in x and y direction), boundary condition, neighbourhood 
correction, learning rate (minimal, maximal), number of epochs (starting with sample size, 
optimized on test-set error), the latest being the most influential parameter. 

2.3 Counter-propagation artificial neural networks (CP-ANN) 

The CP-ANN (Fig. 1) is based on a two-steps learning procedure, which is unsupervised in the 
first step. The first step corresponds to the mapping of objects in the input layer (also called 
Kohonen layer). This part is identical to the Kohonen learning procedure described above. The 
second step of the learning is supervised, which means that for the learning procedure the 
response or target value is required for each input. The network is thus trained with a set of 
input-target pairs {Xs,Ts}, where Ts is the vector representing dependent variables. 
The training of the CP-ANN means adjusting the weights of the neurons in such a way that 
for each input sample Xs from the training set the network would respond with the output 
Outs identical to the target Ts. The training is an iterative procedure similar to the procedure 
described for the Kohonen neural network, only that dependent variables or target vectors 
are considered as well. It involves the feeding of all input-output pairs {Xs,Ts} to the 
network, finding the central neuron in the input layer for each Xs, and correction of weights 
of the neurons, not only in the input but also in the output layer, according to the differences 
between the targets and current outputs (Ts - Outs). As already stressed, the targets are 
needed only in the last part of each iterative learning step. The unsupervised element in the 
CP-ANN learning procedure is the mapping of the objects vectors into the Kohonen layer, 
which is based solely on the independent variables, i.e. X-part of the {Xs,Ts} pairs  of the 
objects from the training set. For this step no knowledge about the target vector (property) is 
needed. Once the position (central neuron c) of the input vector is defined, the weights of 
the input and output layer of the CP-ANN are corrected accordingly. 
When developing CP-ANN the same network parameters should be optimised as 
previously explained for Kohonen ANN. Properly trained CP-ANN can be used as 
predictive models for new objects of unknown properties. First the object is located in the 
Kohonen layer (on the most similar neuron) regarding the independent variables, which 
describe the unknown object. Then the position of the neuron is projected to output layer, 
which gives us the prediction of the sought properties. CP-ANN is also a suitable device for 
clustering, classification and determination of outliers. 

2.4 Differences between CP-ANN and BP-ANN  

There are two main differences between CP-ANN and BP-ANN which relate to the learning 
strategy and the connection between layers (Novič, 2008). Firstly, in contrast to BP-ANN, the 
learning strategy of CP-ANN is not supervised in all subsequent stages of the training 
process. The two steps are iteratively repeated for all objects of the training data: (i) finding 
the position of the object in the two-dimensional map (the most similar neuron in the input 
or Kohonen layer), which is unsupervised routine based solely on the object representation 
or independent variables, and (ii) correction of the weights, which also encompasses the 
output neurons and consequently the property or target values are needed for this purpose. 
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In this stage, the supervised part is introduced into the training process. Secondly, there is 
no hidden layer in the CP-ANN. The output (Grossberg) layer is positioned directly below 
input (Kohonen) layer, with a one-to-one correspondence of neurons. This means that each 
neuron from the input layer at a position (Nx, Ny) has an ascribed property stored in the 

output layer at the same position (Nx, Ny). In fact, the output layer, when properly trained, 

serves as a lookup table for all neurons from the input layer. It has to be stressed here that, 
in the process of training, all the neurons are affected, not only the central neurons fired by 
the object. The neighbouring neurons around the central one may remain “unoccupied” at 
the end of the training; consequently, the output layer contains also values different from 
the properties of the training objects (interpolated values between those from two occupied 
neurons). However, there is no chance to obtain predictions out of the range of properties of 
the training data, which means that extrapolations are not feasible with the CP-ANN. This 
can be regarded as an advantage, because it prevents unreliable extrapolated predictions, 
not viable in the experience-based ANN. 

2.5 Radial basis function networks 

Radial basis function networks (RBF networks) represent a special type of ANN, which are 
closely related to density estimation methods. A thorough mathematical description of RBF  
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Fig. 1. The structure of the a) Kohonen ANN, b) CP-ANN, c) BP-ANN and d) RBF network 
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networks is given by Broomhead & Lowe (1988), a short introduction can be found in 
Lohninger (1993). RBF networks are considered as intermediate between regression models 
and nearest neighbour classification schemes, which can be looked upon as content-
addressable memories (some workers in the field do not regard it as neural networks at all). 
The behaviour of a RBF network can be controlled by a single parameter which determines 
if the network behaves more like a multiple linear regression or a content-addressable 
memory. RBF networks (Fig. 1) have a special architecture, they have only three layers 
(input, hidden, output) and there is only one layer where the neurons show a nonlinear 
response (Lohninger, 1999). Some authors have suggested including some extra neurons 
which serve to calculate the reliability of the output signals (extrapolation flag). The input 
layer has, as in many other network models, no calculating power and serves only to 
distribute the input data among the hidden neurons. The hidden neurons show a non-linear 
transfer function which is derived from Gaussian bell curves. The output neurons in turn 
have a linear transfer function which makes it possible to simply calculate the optimum 
weights associated with these neurons. 

3. Novel technologies using ANN in meat quality evaluation and control 

Meat quality is a very complex term and it comprises various aspects which can differ 
according to the user’s standpoint i.e. different factors or properties are important for animal 
producer, meat processor or consumer. From the animal production perspective the quality 
mainly refers to lean meat content on which the payment to the farmer is based. Processing 
industry on the other hand is interested in meat technological quality (suitability for further 
processing) and factors affecting consumer’s choice. The consumer is sensitive about meat 
appearance (colour, lean to fat ratio), its sensory quality, nutritional value (macro and micro 
nutrients) and safety (presence/absence of toxic compounds, drugs, and pathogen or 
spoilage micro flora).  Other factors like the way meat is produced (animal welfare, ecology) 
can also affect consumer’s choice. In meat production and technology, different properties 
can play an important role in quality classification of meat for different purposes or can be 
critically appraised by consumers (often their basis for meat selection or rejection). In pork 
for example, water-holding capacity of meat has big significance, whereas in beef, 
tenderness is an important attribute. Spoilage detection or meat shelf-life is also an 
important issue in meat sector. In the last decades, the methods used in meat evaluation, 
meat quality control, or inspection have undergone important developments with the 
application of novel technologies like computer (machine) vision, spectral imaging, 
spectroscopy, electronic nose or bio-sensing technologies. Since the application of ANN in 
meat science and technology is mainly associated with novel technologies, a brief 
presentation of technologies encountered is given.  
Electronic nose (also electronic sensing or e-sensing) is an array of electronic chemical 
sensors with partial specificity and an appropriate pattern-recognition system, capable of 
detecting specific or complex odours (Craven et al., 1996). These instruments contain an 
array of sensors that utilize various technologies like organic polymers, metal oxides 
(Harper, 2001). The recognition process is similar to human olfaction and is performed for 
identification, comparison, quantification and other applications. These instruments show 
potential but are presently still in developmental phase due to many weaknesses (sensitivity 
to humid conditions, high alcohol concentration, instrumental drift, sensor span life) that 
should be overcome (Harper, 2001). 
Computer vision is concerned with the theory behind artificial systems that extract 
information from images. The image data can take many forms, such as video sequences, 
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views from multiple cameras, or multi-dimensional data from a medical scanner. The 
application of computer vision in the industry, where information is extracted for the 
purpose of supporting a manufacturing process, is called machine vision. Ultrasonography 
is a kind of imaging technique which uses ultrasound for diagnostic purposes. The reflection 
signature can reveal details about the inner structure of the medium. Spectral imaging or 
spectral analysis comprises different techniques such as hyper-, multi- and ultraspectral 
imaging. In contrast to the human eye, which can see only visible light, hyperspectral 
imaging collects and processes information from across the electromagnetic spectrum. 
Certain objects leave unique ‘fingerprints’ across electromagnetic spectrum. The differences 
among hyper-, multi- and ultraspectral imaging are based mainly on the type of 
measurements i.e. discrete or continuous bands, broad or narrow bands.    
Near infrared (NIR) spectroscopy is a spectroscopic method which extracts the information 
about chemical and physical properties of organic substances on the basis of vibrations of 
bounds caused by NIR light (800 nm to 2500 nm). The characteristics of NIR spectra are 
molecular overtones and combination vibrations which are typically very broad in this part 
of the electromagnetic spectrum. It can be very useful in probing bulk material with little or 
no sample preparation.  
Bio-sensing technology combines a sensitive biological element (e.g. enzymes, 
microorganisms, antibodies, etc.) with a physicochemical detector of an analyte (optical, 
piezoelectric, electrochemical). The physicochemical detector transforms the interaction of 
the analyte with the biological element into a signal which can be measured and quantified. 
The results are displayed in a user-friendly way. 
The mentioned techniques generally produce enormous amounts of very complex information 
(spectra, images, etc.) which require sophisticated data treatment i.e. multivariate calibration 
methods. Due to its dynamic self-adapting system using a learning strategy ANN is able of 
pattern recognition, dealing with complexity of data and non-linear relationships, performing 
complex prediction and classification tasks.  ANN has thus been applied also for solving the 
problems in meat science and technology. New methods were developed to either complete or 
replace subjective sensory testing (e.g. analysis of odour or flavour), to handle complex 
properties (e.g. meat tenderness), to speed up the process or replace human operator in on-line 
inspection. Literature review (Tables 1-4) demonstrates examples of successful or promising 
applications of ANN in meat technology in association with novel technologies.  

4. Application of ANN in meat quality evaluation and meat chemical 
composition analysis 

Artificial intelligence methods (ANN) were mainly investigated for the evaluation of meat 
sensory quality i.e. the properties that are subjectively evaluated or classified such as 
tenderness (Li et al., 1999; Li et al., 2001; Tian et al., 2005; Chandraratne et al., 2006), colour 
(Santé et al., 1996; Lu et al. 2000; Tan et al., 2000; Sheridan et al., 2007) or marbling score/level 
(Brethour, 1994; Qiao et al., 2007a).  There were also studies dealing with water-holding 
capacity of pork (Prevolnik et al., 2009; Qiao et al., 2007b), quality of meat products (Dong, 
2009; Valous et al., 2010) and categorization to different pork (Qiao et al., 2007a) or beef quality 
classes (Shiranita et al, 2000). The majority of studies were carried out on beef and pork (Table 
1), and only a few of them to other species such as poultry (Santé et al., 1996) and lamb 
(Sebastian et al., 2004; Chandraratne et al., 2006). Contrary to the frequent use of ANN for meat 
quality assessment, this approach was seldom used for the prediction of meat chemical 
properties (Mittal & Zhang, 2000; Sebastian et al., 2004; Prevolnik et al., 2009). In the studies of 
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meat quality assessment, variants of computer (machine) vision were often applied. The 
overview of the studies (Table 1) shows that ANN was used for the assessment of meat 
properties based on digital images of meat surface (Li et al., 1999; Lu et al., 2000; Shiranita et 
al., 2000; Tan et al., 2000), or based on near infrared spectra (Prevolnik et al., 2009), mass 
spectroscopy (Sebastian et al., 2004), hyperspectral imaging (Qiao et al., 2007a,b), 
ultrasonography (Brethour, 1994; Huang et al., 1998). Only few studies based application of 
ANN for meat quality assessment using just several simple physical measurements of meat 
(Santé et al., 1996; Prevolnik et al., 2009) or carcass traits (Hill et al., 2000).  In the vast majority 
of the reported studies a supervised learning strategy of ANN (multi-layer perceptron neural 
networks with back-propagation learning, back-propagation ANN, feed-forward ANN, multi-
layer perceptron) was used for addressing the issues of meat quality and composition, 
denoting an interest for prediction ability. There was only one study (Prevolnik et al., 2009) 
where a combination of unsupervised (Kohonen ANN) and supervised learning (CP-ANN 
and BP-ANN) and was used. Generally the presented studies (an overview is given in Table 1) 
demonstrate good results, and an improvement when compared to other  
multivariate techniques of data the analysis. The accuracy of classification 
 
OBJECTIVE SAMPLE  INPUT  DATA RESULTS REFERENCE 

CMarbling  
Bovine LD 
n=161 

Ultrasonography, pattern 
recognition  84% correctness Brethour, 

1994 

CMeat colour  
Turkey 
breast, 
n=68+40 

pH, L*, a*, b*, T, haem 
pigment, dielectric loss 
factor 

70% correctness Santé et al., 
1996 

 PWBSF, fat, moisture, 
collagen, sacromere 
length, calpastatine  

Bovine LD 
Wavelet textural features 
from ultrasonic  
elastograms 

R2=0.91-0.99 
Huang et al., 
1998 

PCooked meat 
tenderness 

Bovine loin 
 n=97 

Computer vision (digital 
colour image of meat) R2=0.70 Li et al., 1999 

C,PWBSF 
Bovine LTL
 n=1452 Carcass traits 

PR2=0.37-0.45                

C51-53%  
Hill et al., 
2000 

PMeat colour  
Pork LD 
 n=44 

Computer vision, image 
analysis R2=0.56 

Lu et al., 
2000 

PTemperature and 
moisture during 
cooking 

Frankfurters

ratio fat/protein, initial & 
ambient T, radius, initial 
moisture, relative 
humidity 

System is 
convenient and 
accurate 

Mittal & 
Zhang, 2000 

CMeat grade  
Bovine loin 
 n=36 Image processing 

Effective system, 
difference in 
grades < 1 

Shiranita et 
al., 2000 

CMeat colour  
Pork LD 
 n>200 Colour machine vision 86% correctness Tan et al., 

2000 
CMeat tenderness 
(tough or tender) 

Bovine loin 
 n=59 Image texture analysis 83% correctness Li et al., 2001 

PWBSF, collagen and 
lipid content 

Lamb LD 
 n=120  

Curie point pyrolysis-
mass spectrometry 

r=0.85-0.90,  
10-12% error   

Sebastian et 
al., 2004 

Table 1. The application of ANN in meat chemical composition and quality analysis 
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OBJECTIVE SAMPLE  INPUT DATA RESULTS REFERENCE 
PCooked meat 
tenderness  

Bovine LD 
n=50 

Computer vision 
technology R2=0.62 

Tian et al., 
2005 

PWBSF 
Lamb loin  
n=160 

Image surface 
texture analysis R2=0.62-0.75 

Chandraratne 
et al., 2006 

PMoisture content 
Cooked 
bovine 
joints 

Computer vision 
(colour features) r=0.75 Zheng et al., 

2007 

CPork quality 
class, marbling 

Pork loin 
 n=40 

Hyperspectral 
imaging  

>70 % 
correctness 

Qiao et al., 
2007a 

PDrip loss, L*, pH   
CWHC classes 

Pork loin 
 n=80 

Hyperspectral 
imaging  

Pr=0.77, 0.55 
and 0.86 for drip 
loss, pH and L*, 
respectively 
Csuccessful 

Qiao et al., 
2007b 

CDiscoloration 
(fading) 

Cured ham 
L*, a*, b or 
spectral 
reflectance 

Successful 
discriminating 
different stages 
of fading  

Sheridan et 
al., 2007 

PWHC (drip loss) 
Pork LD 
 n=312 

pH, L*, a*, b*  
NIR 
spectroscopy 

R2=0.37-0.51,  
error=2.2-2.5% 

Prevolnik et 
al., 2009 

Sensory texture Cooked 
sausage 

Instrumental 
texture 
measurements 

Lower errors  as 
compared to  
regression 
analysis 

Dong, 2009 

Quality class Cooked 
ham Computer vision 84-96% 

correctness 
Valous et al., 
2010 

LD – longissimus dorsi; TB – triceps brahii; LTL – longissimus thoracis et lumborum; R2 – coefficient of 
determination; r – correlation coefficient; P – prediction; C – classification; WHC – water holding 
capacity; WBSF – Warner-Bratzler shear force; NIR – near infrared. 

Table 1. Continued. Application of ANN in meat chemical composition and quality analysis 
reported is high (70 to 85 %). In case where ANN approach was used for prediction, the 
results varied from moderate to excellent; however, for the most part the authors consider 
application of ANN as promising and successful.  

5. Application of ANN for carcass quality or classification 

Meat industry is interested in lean and conformed carcasses which provide high meat yields. 
The so called carcass grading or classification (used for pig, bovine, lamb carcasses) is 
performed at the end of the slaughter line and represents a basis for the payment to the 
farmer.  Another example is in poultry, where the carcasses are inspected at the slaughter line 
for the wholesomeness and those with an abnormal aspect (tumorous, bruised, skin-torn, 
septicemic, cadaver, air-sacculitis) are discarded. The mentioned procedures are mostly based 
on the visual appraisal and thus subjected to human limitations (speed, error, fatigue). The 
overview of the problems encountered in this field of research, where possible application of 
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ANN was investigated, is given in Table 2. In regard to carcass classification of domestic 
mammals, the research was mainly focused on either improving or replacing methods that 
are currently used. Many studies were carried out on classification or carcass quality 
evaluation in bovine carcasses (Borggaard et al., 1996; Hwang et al., 1997; Díez et al., 2003; 
Hatem et al., 2003; Lu & Tan, 2004), but also for lamb (Chandraratne et al., 2007) or goat (Peres 
et al., 2010). In these species the principle of grading is similar and consists of visual notes given 
by the classifier, which are the indicators of lean meat quantity. In these cases the aim was 
either to predict carcass lean meat content (Hwang et al., 1997; Berg et al., 1998; Lu & Tan, 
2004) or to replace the classifier using automated grading (Borggaard et al., 1996).  
 

OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 

Inspection – carcass 
wholesomeness 

Poultry 
n=87 

Multispectral 
imaging 

83-97% success 
in sorting 

Park & Chen, 
1994 

PConformation, 
fatness, fat colour, 
rib eye area, 
saleable meat % 

Bovine 
n=3,500 Computer vision 

R2=0.66-0.93,  
20% lower error 
as classifier 

Borggaard et 
al., 1996 

Inspection – carcass 
wholesomeness 

Poultry 
n=559 

VIS-NIR 
spectroscopy 

93–97% success 
in sorting 

Chen et al., 
1996 

Inspection – carcass 
wholesomeness 

Poultry 
n=288 

Multispectral 
imaging 

91% success in 
sorting 

Park et al., 
1996 

Inspection – carcass 
wholesomeness Poultry VIS-NIR 

spectroscopy 
>95% success in 
sorting 

Chen et al., 
1998a 

Inspection – carcass 
wholesomeness Poultry VIS-NIR 

spectroscopy 
98% success in 
sorting 

Chen et al., 
1998b 

Lean meat content 
prediction (carcass 
and prime cuts) 

Pig 
 n=50 

Electromagnetic 
scanning 

Improvement  in 
comparison to 
linear regression 

Berg et al., 
1998 

Inspection – carcass 
wholesomeness 

Poultry 
 n=91 

Multispectral 
imaging 

90-93% success 
in sorting 

Park et al., 
1998 

Inspection – carcass 
wholesomenes Poultry Machine vision 

(dual-camera) 
80-100% success 
in sorting 

Chao et al., 
2000 

Table 2. Application of ANN for carcass classification 

Other studied applications were interested in prediction of fat depots based on in vivo 
measurements (Peres et al., 2010) or prediction of carcass maturity (Hatem et al., 2003). In 
the case of pig classification, studies using ANN are rare (Berg et al., 1998), probably 
because the current classification methods are based on objective measurements on the 
carcass which are well correlated to lean meat content thus providing sufficient accuracy 
using standard regression methods. There was an interesting study in bovine carcass 
classification addressing the problem of classifier effect and repeatability in bovine carcass 
grading (Díez et al., 2003), demonstrating another possible application of ANN for the 
purposes of monitoring. Much work has also been devoted to the automatic inspection of 
wholesomeness of chicken carcasses using different optical techniques (Park & Chen, 1994; 
Chen et al., 1996, Park et al., 1996, 1998; Chen et al., 1998a,b; Chao et al., 2000, 2002; Ibarra et  
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OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Inspection – carcass 
wholesomeness Poultry Spectral 

imaging 
83–91% success in 
sorting  

Park & Chen, 
2000 

Inspection – carcass 
wholesomeness 

Poultry 
n=14,591 

Machine vision 
(dual-camera) 

87-94% success in 
sorting 

Chao et al., 
2002 

Inspection – carcass 
wholesomeness- 
diseased air sacks 

Poultry 
 n=100 

Computer 
vision - color 
classification 

97% success rate 
Ibarra et al., 
2002 

Classifier effect and 
repeatability  

Bovine  
n=227 

Computer 
vision (image 
analysis) 

Higher 
uncertainty when 
grading light 
than standard 
carcasses 

Díez et al., 
2003 

Skeletal maturity 
grading 

Bovine 
cartilage 
 n=138 

Machine vision  
(colour features 
of cartilage) 

65-75% 
correctness 

Hatem et al., 
2003 

Lean weight and 
lean percentage 
prediction 

Bovine  
n=241 

Computer 
vision (image 
analysis) 

No advantage to 
linear methods  Lu & Tan, 2004 

Carcass grading  
Lamb 
 n=160 

Computer 
vision (image 
analysis) 

87-100% 
correctness 

Chandraratne 
et al., 2007 

Fat depots 
assessment  

Goats, 
n=56 

Ultrasound 
technology 

R2=0.82-0.96, 
RPD=1.7-4.3 

Peres et al., 
2010 

LD – longissimus dorsi; VIS – visible; NIR – near infrared; R2 – coefficient of determination;  
r – correlation coefficient; P – prediction; C – classification; RPD – residual predictive deviation. 

Table 2. Continued. Application of ANN for carcass classification 

al., 2002). The usefulness of ANN as coupled with computer vision for such purposes has been 
demonstrated by several studies. The success rate of such classification is very high, typically 
above 90%. In all studies dealing with carcass classification or inspection a supervised learning 
strategy was applied, mainly BP-ANN, with the exception of a few studies using other types of 
ANN such as RBF networks (Peres et al., 2010) or learning vector quantization (Ibarra et al., 
2002). In general, ANN showed its potential and advantage over conventional regression 
methods especially in case of non-linearity between system inputs and outputs. 

6. Application of ANN for spoilage identification/storage time assessment 

Meat and meat products are highly susceptible to spoilage or contamination, affecting the 
quality and safety of the products. Many of the methods used for the detection of spoiled or 
contaminated meat are based on immunological or nucleic acid based procedures which are 
time consuming, laborious and demand trained personnel. At present no method is 
available for a real-time, non-destructive, reagentless, quantitative and relatively 
inexpensive monitoring. According to Ellis & Goodacre (2001) interesting analytical 
approaches include biosensors, electronic noses, infrared spectroscopy upgraded with 
machine learning methods (ANN, genetic algorithms).  
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OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Pstorage time, 
spoiled meat 

Ground beef, 
pork n=20 

Electronic 
nose Successful Winquist et al., 

1993 

PMeat freshness Chicken 
Electronic 
nose 

Successful 
prediction of 
storage time  

Galdikas et al., 
2000 

PBacterial 
growth (L. sake) 

Cooked meat 
products 

T, aw, CO2 

Max. specific 
growth rate 

R2=0.94, 
RMSE=0.011 
Lag phase λ  

R2=0.97, 
RMSE=6.70 

Lou & Nakai, 
2001 

PBacterial 
growth (L. 
monocytogenes)  

Meat broth 
Fluctuating 
conditions (T, 
pH, NaCl, aw) 

ANN can be used 
to 
describe/predict 
bacterial growth in 
dynamic 
conditions  

Cheroutre-
Vialette & 
Lebert, 2002 

PInternal 
temperature 
estimation  

Chicken 
n=85 

IR and laser 
range 
imaging 

R2=0.94-0.96 Ma & Tao, 2005 

PShelf-life 
estimation 

Cooked meat 
products 

T, pH, NaCl, 
NaNO2 

Error, bias and 
accuracy factors 
show successful 
validation 

Zurera-Cosano 
et al., 2005 

CIdentification 
of spoiled meat 

Bovine LD 
n=156 

Electronic 
nose 

83-100% 
correctness 

Panigrahi et al., 
2006 

PSurvivival of 
Escherichia coli 

Fermented 
sausage 

pH, aw, iso-
thiocyanate 
concentration 

Accurate ANN 
based models 

Palanichamy et 
al., 2008 

C,PMeat 
spoilage 
identification 

Bovine LD 
n=156 

Electronic 
nose 

Sorting accuracy 
>90%  
Microbial count 

R2>0.70 

Balasubramanian 
et al., 2009 

C,PSpoilage 
identification 

Beef fillets 
n=74 

FT-IR 
spectroscopy 

Sorting accuracy  
81-94% 
Satisfactory 
prediction of 
microbial counts 

Argyri et al., 
2010 

 

LD – longissimus dorsi; R2 – coefficient of determination; r – correlation coefficient; P – prediction;  
C – classification; IR – infrared. 

Table 3. Application of ANN for spoilage or storage time prediction  
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7. Various other applications of ANN in meat science and technology 

In addition to the mentioned subjects of interest for ANN application in meat science there 
are various other applications related to meat technology issues (Table 4). These involve 
identification of animal species in ground meat mixtures (Winquist et al., 1993) or fat tissue 
(Beattie et al., 2007), recognition of animal origin (distinction between Iberian and Duroc 
 

OBJECTIVE SAMPLE INPUT DATA RESULTS REFERENCE 
Species  
recognition  

Ground beef, 
pork, n=20 

Electronic 
nose 

Successful Winquist et al., 
1993 

Visual guidance 
of evisceration 

Pig carcasses Computer 
vision 

Efficient ANN 
based system  

Christensen et 
al., 1996 

Lean tissue 
extraction 
(image 
segmentation) 

Bovine LD 
n=60 

Computer 
vision (hybrid 
image) 

Better efficiency 
and robustness of 
ANN based 
system 

Hwang et al., 
1997 

Fermentation 
monitoring Sausage 

Electronic 
nose 

Lowest error in 
case of ANN 
compared to 
regression  

Eklöv et al., 
1998 

Estimation of 
meat internal T  

Cooked 
chicken meat IR imaging 

Great potential 
for monitoring of 
meat doneness 
(error of ±1°C)  

Ibarra et al., 
2000 

Determination 

of RN- 
phenotype  

Pig 
n=96 

NIR 
spectroscopy 96% correctness  

Josell et al., 
2000 

Identification of 
feeding and 
ripening time 

Pig; dry-
cured ham 

Electronic 
nose 

Best prediction 
for N at 250°C; 
misclassified 
hams ≈8% 

Santos et al., 
2004 

Species  
recognition on  
adipose tissue  

Lamb, beef 
chicken,pork 
n=255 

Raman 
spectroscopy >98% correctness 

Beattie et al., 
2007 

PCooking 
shrinkage 

Bovine TB 
 n=25 

Computer 
vision 
technique 

r=0.52-0.75  
Zheng et al., 
2007 

Walk-through 
weighing  Pigs Machine 

vision 
relative error  
≈3% 

Wang et al., 
2008 

Differentiation 
of Iberian and 
Duroc  

Pigs 
n=30 

VIS-NIR 
spectroscopy  >95% correctness 

del Moral et al., 
2009 

LD – longissimus dorsi; TB – triceps brachii; R2 – coefficient of determination; r – correlation coefficient;  
P – prediction; C – classification; VIS – visible; NIR – near infrared; IR - infrared. 

Table 4. Other applications of ANN in meat science and technology  
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pigs) as affected by rearing regime and/or breed (del Moral et al., 2009), hybrid image 
processing for lean tissue extraction (Hwang et al., 1997), detection of RN- phenotype in pigs 
(Josell et al., 2000), the “walk-through” weighing of pigs (Wang et al., 2008), the efficiency of 
ANN for visual guidance of pig evisceration at the slaughter line (Christensen et al., 1996) 
and the use of ANN for the processing control of meat products (Eklöv et al., 1998; Ibarra et 
al., 2000; Santos et al., 2004). Again, in the majority of studies, ANN approach was an 
instrument to deal with the complex output signal of novel technologies applied. Again, 
based on the literature reports, supervised learning strategy of ANN (BP-ANN, RBF) was 
applied in the majority of studies. There were also a few studies where unsupervised 
learning has been tested (Winquist et al., 1993; Beattie et al., 2007). A bibliographic overview 
given in Table 4 demonstrates the efficiency and successful classification rate of ANN based 
systems.  

8. Conclusions and future perspectives 

The existing research work of ANN application in meat production and technology 
provided many useful results for its application, the majority of them in association with 
novel technologies. Among interesting ideas that have not been encountered in the literature 
review is the combination of ANN with bio-sensing technology. ANN shows great potential 
for carcass and meat (product) quality evaluation and monitoring under industrial 
conditions or bacterial growth and shelf-life estimation. However, the potentially interesting 
relevance of ANN, for which the literature information is scarce, is its application for meat 
authenticity or meat (product) quality forecast based on the information from rearing phase. 
Overall the presented applications are relatively new and the full potential has not yet been 
discovered. 
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