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1. Introduction 

This chapter deals with the detector of saturation level in the magnetic (iron) core of a 
welding transformer. It is based on an artificial neural network (ANN) and requires only the 
measurement of the transformer’s primary current. The saturation level detector could be 
the substantial component of a middle frequency resistance spot welding system (RSWS), 
where the welding current and the flux density in the welding transformer’s iron core are 
closed-loop controlled by two hysteresis controllers. The resistance spot welding systems, 
described in different realizations (Brown, 1987), are widely used in the automotive 
industry. Although the alternating or direct currents (DC) can be used for welding, this 
chapter focuses on the resistance spot welding system (Fig. 1) with DC welding current. The 
resistances of the two secondary windings R2, R3 and characteristics of the rectifier diodes, 
connected to these windings, can slightly differ. Reference (Klopčič et al., 2008) shows that 
combination of these small differences can result in increased DC component in welding 
transformer’s iron core flux density. It causes increasing iron core saturation with the high 
impact on the transformer’s primary current i1, where currents spikes eventually appear, 
leading to the over-current protection switch-off of the entire system. However, the 
problematic current spikes can be prevented either passively or actively (Klopčič et al., 
2008). When the current spikes are prevented actively, closed-loop control of the welding 
current and iron core flux density is required (Klopčič et al., 2008). Thus, the welding 
current and the iron core flux density must be measured. While the welding current is 
normally measured by the Rogowski coil (Ramboz, 1996), the iron core flux density can be 
measured by the Hall sensor or by a probe coil wound around the iron core. In the case, the 
flux density value is obtained by the analogue integration of the voltage induced in the 
probe coil (Deželak et al., 2008). Integration of the induced voltage can be unreliable due to 
the unknown integration constant in the form of the remanent flux and the drift in analogue 
electronic components. The drift can be kept under control by the use of closed-loop 
compensated analogue integrator.  
An advanced, the two hysteresis controllers based control of the RSWS, where the current 
spikes are prevented actively by the closed-loop control of the welding current and flux 

www.intechopen.com



Artificial Neural Networks - Industrial and Control Engineering Applications 

 

184 

density in the welding transformer’s iron core, is presented in (Klopčič et al., 2008). The 
modified solution requires measuring of the welding current, while instead of measured 
flux density only information about saturation level in the iron core is required (Deželak et 
al., 2010). Some methods, tested on welding transformer’s iron core, that can be applied for 
saturation level detection are presented in (Deželak et al., 2008). All these methods require 
the Hall sensor or probe coils which make them less interesting for applications in the 
industrial RSWS, due to the relatively high sensitivity on vibrations, the mechanical stresses 
and the high temperatures. In order to overcome these problems, an ANN based iron core 
saturation level detector is introduced in this work. Additionally the method proposed for 
the detecting saturation level of the complete loaded RSWS, completed by ANN, is 
presented. Its only (single) input is the measured transformer’s primary current. 
The ANN, applied in the iron core saturation level detector, is trained to recognize the 
waveform of the current spikes, which appear in the primary current when the iron core is 
approaching the saturated region. Before the ANN can be applied, its structure must be 
defined first, and then the ANN must be trained using an appropriate learning method 
(Pihler et al., 1997). In this paper, the ANN structure appropriate for saturation detection in 
the transformer’s iron core and the appropriate learning method are found with the help of 
properly build dynamic model of the RSWS (Deželak et al., 2010). The mentioned dynamic 
model includes models of the hysteresis controllers and the ANN based saturation level 
detector. The well-known trial and error method was used for defining ANN structure. It is 
shown that the three-layer ANN with 30 neurons in the first layer, 7 neurons in the second 
layer, and 1 neuron in the third layer, gives acceptable results. ANN is trained by the 
resilient backpropagation rule, where the measured and calculated samples of transformer’s 
primary current, with different known levels of saturation in the iron core, are used. The 
calculated and measured results, presented in this paper, show that the proposed ANN 
based iron core saturation level detector can be used as a part of the discussed RSWS, 
improving performances of the entire system 

2. Dynamic model of the resistance spot welding system 

The resistance spot welding system consists of a full wave output rectifier, a single phase 
transformer, an H-bridge inverter and an input rectifier. It is shown in Fig. 1 and described 
in (Klopčič et al., 2008). The three-phase alternating current (AC) voltages u1, u2 and u3, 
supplied from the electric grid, are rectified in the input rectifier in order to produce the DC 
bus voltage. This voltage is used in the H-bridge inverter, where different switching 
patterns and modulation techniques can be applied, to generate AC voltage uH, required for 
supply of the welding transformer. The welding transformer has one primary and two 
secondary windings. They are marked with indices 1, 2 and 3, respectively. The currents, the 
number of turns, the resistances and the leakage inductances of the primary and two 
secondary welding transformer’s windings are denoted by i1, i2, i3, N1, N2, N3, R1, R2, R3, and 
Lσ1, Lσ2, Lσ3. The effects of the eddy current losses are accounted for by the resistor RFe, while 
RL and LL are the resistance and inductance of the load. The output rectifier diodes D1 and 
D2 are connected to both transformer’s secondary coils. They generate the DC welding 
current iL which has a DC value a few times higher than the amplitudes of AC currents i2 
and i3 that appear in the transformer’s secondary coils without rectifier diodes.  
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Fig. 1. The resistance spot welding system 

The supply voltage of the primary coil of the transformer could be generated on the 
different ways (Štumberger et al., 2010). In the existent  system, widely spread in the 
automotive industry, this voltage is generated by the H-bridge inverter applying pulse 
width modulation (PWM) at switching frequency of f = 1 kHz. The PWM principle is shown 
in Fig. 2a, where ut is the triangular voltage, Uref is the reference voltage for PWM, Tp is the 
period of H-bridge inverter output voltage, um is the gate driver input voltage, S1, S4 and S2, 
S3 are the pairs of IGBT-s in the H-bridge inverter (Sabate et al., 1990). 
Additionally Fig. 2b shows the AC voltage generated by the H-bridge applied by PWM, 
where UDC is the DC-bus voltage. 
 

 
Fig. 2. The PWM principle (a) and the AC voltage generated by the H-bridge applied by 
PWM (b) 

As references (Klopčič et al., 2008) and (Deželak et al., 2010) show, the resistances of the 
secondary windings R2, R3 and the characteristics of the rectifier diodes could be slightly 
different. These differences can cause DC component in welding transformer’s iron core flux 
density, which causes increasing iron core saturation with the essential impact on the 
transformer’s primary current i1, where currents spikes appear, leading to the over-current 
protection switch-off of the entire system. 
Aforementioned phenomena could be confirmed by the appropriate dynamic model (Leon 
& Semlyen, 1994) of the complete resistance spot welding system. In this work the model is 
built with the programme package Matlab/Simulink based on the following set of equations 
(1) – (8). 
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 uH = R1i1+Lσ1(di1/dt)+ N1(dφ /dt)   (1) 

 0 = R2i2+Lσ2(di2/dt)+ N2(dφ /dt)+dip1+ RLiL+LL(d(i2+ i3)/dt) (2) 

 0 = R3i3+Lσ3(di3/dt)- N3(dφ /dt)+dip2+ RLiL+LL(d(i2+ i3)/dt) (3) 

 N1ip+N2i2- N3i3=H(B)lic+2δB/μ0  (4) 

 iL = i2+ i3  (5) 

 i1 = iFe+ ip  (6) 

 iFe = N1(dφ /dt)/RFe   (7) 

 φ  = BAFe   (8) 

 θ = N1i1+ N2i2-N3i3   (8) 

In set of equations (1) – (8) φ  stands for magnetic flux, dip1 and dip2 are nonlinear 
characteristics of the output rectifier diodes D1 and D2, H(B) is the magnetizing curve of the 
iron core material, δ is the air gap, B is the iron core flux density, μ0 is the permeability of the 
vacuum, lic is the average length of the magnetic flux line in the iron core, AFe is the cross-
section of the transformer’s iron core and θ is the magnetomotive force. Parameters that 
appear in (1) – (8) are shown in Table 1 and in Table 2. 
 

Parameter Value Unit 

AFe 0.001385 m2 

δ 10 μm 

lic 0.313 m 

f 1000 Hz 

R1 0.01357 Ω 

R2 20 μΩ 

R3 20 μΩ 

RL 100 μΩ 

Lσ1 0.035 mH 

Lσ2 1 nH 

Lσ3 1 nH 

LL 1 μH 

N1 55 / 

N2 1 / 

N3 1 / 

Table 1. Parameters of RSWS dynamic model 
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dip1 - i (A) dip1 - u (V) dip2 - i (A) dip2 - u (V) 

0 0 0 0 
0.003 0.6 0.011 0.6 
0.014 0.65 0.053 0.65 
0.059 0.7 0.25 0.7 
0.247 0.75 1.17 0.75 
1.05 0.8 5.52 0.8 
4.43 0.85 25.9 0.85 
18.75 0.9 121.5 0.9 
79.3 0.95 570 0.95 
335 1 2675 1 
1418 1.05 12555 1.05 
6000 1.1 58912 1.1 

25378 1.15 400416 1.15 
107334 1.2 1297043 1.2 

Table 2. Nonlinear characteristics of the output rectifier diodes D1 - (dip1) and D2 - (dip2) 

With the appropriate dynamic model the two behaviours of RSWS, the symmetrical and 
asymmetrical, could be simulated. Firstly, the symmetrical behaviour is considered by 
parameters shown in Table 3, while obtained results are shown in Fig. 3. The resistances R2 
and R3 in the two secondary welding transformer’s windings are equal, as well the 
characteristics of the output rectifier diodes D1 and D2. Fig. 3 shows the time dependent 
primary current i1 and the magnetic flux density B in the time window of t = 0.1s. 
 

Parameter Value Unit 

R2 20 μΩ 
R3 20 μΩ 
D1 characteristic - dip1 / 
D2 characteristic - dip1 / 

Table 3. Parameters for symmetrical behaviour of the resistance spot welding system 

Different resistances R2 and R3 and different characteristics of the output rectifier diodes D1 
and D2 could cause undesired asymmetry of the spot welding system. In case of considering 
values shown in Table 4, the asymmetrical time dependent magnetic flux density B could be 
obtained by the appropriate model of RSWS. In this way, when the magnetic flux density B 
reaches the saturation level the current spikes appear in the primary current i1, as shown in 
Fig. 4. 
 

Parameter Value Unit 

R2 20 μΩ 
R3 15 μΩ 
D1 characteristic - dip1 / 
D2 characteristic - dip2 / 

Table 4. Parameters for asymmetrical behaviour of the resistance spot welding system 
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Fig. 3. Symmetrical behaviour of the resistance spot welding system 
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Fig. 4. Asymmetrical behaviour of the resistance spot welding system 

As Fig. 4 shows, the iron core becomes more and more saturated, which leads to currents 
spikes in the primary current i1 and finally to the over-current protection switch-off. The 
unwanted current spikes can be prevented passively by using pairs of rectifier diodes with 
matched characteristics, or actively (Klopčič et al., 2008) by controlling the saturation level in 
the iron core. In the letter case, a saturation detector, which generates a signal when the 
preset saturation level is reached, is indispensable for preventing the iron core saturation. 
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This work evaluates the methods appropriate for the detecting saturation level in the stand 
alone transformer’s iron core and in the transformer operating in the resistance spot welding 
system. These methods actually detect the instant when the iron core starts to become 
saturated and generate signals which are used in the control algorithm to prevent iron core 
saturation. All of the presented methods are based on the ANN which is applied as an 
additionally tool for the detection of transformer's core saturation. 

3. The detecting saturation level in the transformer’s iron core 

In this section, the saturation level detection of the stand alone transformer’s iron core, is 
described (Deželak et al., 2008). The iron core of a welding transformer, which is normally 
installed in an industrial resistance spot welding system, is shown in Fig. 5. For test 
purposes, the actual primary and secondary windings were replaced with only one primary 
coil, which was able to produce the same magnetomotive force as the primary and 
secondary winding, together. In Fig. 5, u denotes the primary voltage, i1 is the primary 
current, δ is the length of the air gap, while AFe is the cross-section of the iron core. A 
measurement coil is wound around the iron core for measurement purposes. The primary 
and measurement coils have the same number of turns N. 
 

 
Fig. 5. The iron core of a welding transformer 

The proposed method is based on calculation of dynamic inductance Ld (9), where u is the 
measured induced voltage (10) and i is the measured transformer’s primary current. Fig. 6 
shows the dynamic inductance as a function of primary current i. The dynamic inductance is 
defined by (11), where ψ(i) is the magnetically nonlinear iron core characteristic shown in 
Fig. 6. In the given case, the magnetically nonlinear characteristic of the welding 
transformer’s iron core ψ(i) was determined experimentally using numerical integration 
(12). 

 Ld = u/(di/dt) (9) 

 u= dψ/dt  (10) 

 Ld = ∂ψ/∂I  (11) 

 ψ(t) = ψ(0) + ∫ (u(τ)-R1 i(τ))dτ  (12) 
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In (12) ψ(t) is the time behaviour of the flux linkage, i1(t) and u(t) are the measured primary 
current and voltage, while R1 stands for the resistance of the primary winding. 
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Fig. 6. The dynamic inductance and magnetically nonlinear iron core characteristic 

When the value of dynamic inductance Ld(i), shown in Fig. 6b, drops under the value of Ld(i) 
= 0.0003 Vs/A, which is reached at i = 8 A, the iron core can be considered as saturated. 
However, the signal that represents dynamic inductivity Ld(i) calculated by (9) is 
contaminated with noise, as shown in Fig. 6d. The contamination with the noise is 
substantially increased in the vicinity of the reversal points of the hysteresis, which makes 
reliable iron core saturation level detection almost impossible.  
This problem can be effectively solved by supplementing the calculated values of the 
dynamic inductivity in the vicinity of the reversal points of the hysteresis by a signal 
generated by an artificial neural network. The artificial neural network is a parallel multi 
layer information processing structure, with possibility to include expert knowledge into 
existent process. Fig. 7 shows the three-layer artificial neural network, where x1, x2, … stand 
for input parameters or signals, w(x1)1, w(x2)2, w(x1)2, w(x2)2, …, w56 are the weight 
coefficients, 1, 2, 3, …, 6 are the sum blocks, while tansig and lin stand for the sigmoid and 
linear activation functions. Additionally z1, z2, z3, …, z are the output signals of the sum 
blocks, while y1, y2, y3, ..., y are  output signals of the neurons (Hassoun, 1995). The number 
of neurons used in the three-layer artificial neural network shown in Fig. 7 is six - three in 
the first layer, 2 in the second layer and 1 in the output layer. The neural network can be 
supplemented with the bias vector for the each individual neuron. The artificial neural 
networks accumulate the knowledge during the training process, while the effectiveness of 
the artificial neural network depends on the quality of the training procedure. The 
fundamental aim of the training procedure is to adjust all weights in artificial neural 
network to obtain minimal deviations between the target and calculated outputs (Hoyong et 
al., 1993). 

www.intechopen.com



Artificial Neural Network Applied for Detecting the  
Saturation Level in the Magnetic Core of a Welding Transformer 

 

191 

 
Fig. 7. The example of the three layers artificial neural network 

In this chapter the error backpropagation method is applied. For that reason the 
characteristic input patterns must be selected, while the target signal is generated with 
respect to the input patterns. Training with the error backpropagation learning rule consists 
of the initialization of all weights (and bias) with randomly selected initial values and 
calculations of all outputs signals from each neuron. As soon as the output value of the last 
neuron in the output layer is calculated, the squared error for this (last) neuron can be 
calculated and then errors for the rest of neurons, from the output layer towards the input 
layer can be defined too. Finally, when errors of each neuron are obtained, the new values of 
all weights (and bias) can be calculated and the entire procedure can start with the new 
iteration. The number of iterations of described procedure is called the number of epochs. 
The iterations stop when the error reaches predefined value or the maximal number of 
epochs (iterations) is reached. In the given case, the learning signal was build of 170 patterns 
(signals) obtained by measurements, while the target signal was defined afterwards and was 
set to the values one (saturated) or zero (not saturated). Fig. 8 shows five of these patterns. 
In the case when the value of the target signal (Tar.) equals one, the iron core is considered 
as saturated. After extensive testing of different net configurations, the final artificial neural 
network configuration was defined. It contains three-layer with 50 neurons in the first layer, 
8 neurons in the second - hidden layer, and with one neuron in the third - output layer.  
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Fig. 8. The learning and targets signals in the case of the saturation level detection of the 
transformer’s iron core 
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Once the artificial neural network is trained, which means that all of the weights and bias 
are set, it can be tested. First with the patterns used in the training procedure (Fig. 9 left) and 
then with the new samples which were not used in the training procedure (Fig. 9 right). 
Results presented in Fig. 9 show that the artificial neural network trained in this way is 
appropriate for saturation level detection in the transformer’s iron core. However, the 
results of extended analysis showed that the proposed method gives unreliable results when 
the level of iron core saturation further increases. Fig. 10 shows the results obtained by the 
artificial neural network for the case when transformer’s iron core was highly saturated. Fig. 
10 shows output signal of artificial neural network before (Out) and after (Out’) the final bias 
value (Out’ = 0 means iron core is not saturated, Out’ = 1 means iron core is saturated). 
According to the artificial neural network output signals the highly saturated iron core is 
not saturated at all.  
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Fig. 9. Testing of the ANN with the patterns used in the training procedure (left) and with 
the new samples which were not used in the training procedure (right) 

The results presented show that the artificial neural network is not reliable enough to be 
used for iron core saturation level detection as a stand alone algorithm. However, it could be 
very useful as a supplement to the existing algorithms for iron core saturation detection 
which fails when approaching reversal point on the hysteresis loop. In this region the 
artificial neural network can provide reliable information that the system is approaching 
reversal point of the hysteresis loop, which can be used to stabilize existing algorithms for 
iron core saturation level detection. 
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Fig. 10. Testing of the ANN with the patterns of the highly saturated transformer’s iron core 
before Out (left) and after Out’ (right) the final bias value 
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4. The detecting saturation level in the resistance spot welding system 

Now the algorithm for detecting the saturation level in the iron core of the transformer 
operating in the resistance spot welding system can be presented. One of the possible 
solutions for active prevention of the current spikes, is the closed-loop control of the iron 
core flux density and welding current with two hysteresis controllers (Klopčič et al., 2008). 
Thus, the iron core flux density and the welding current must be measured. The iron core 
flux density can be measured by the Hall sensor or by a probe coil wound around the iron 
core, while the welding current is normally measured by the Rogowski coil. The flux density 
value is obtained by an analogue integration of the voltage induced in the probe coil. It is 
well known that the integration of the induced voltage could be unreliable due to the drift in 
analogue electronic components and the unknown integration constant in the form of 
remanent flux. Because of the mentioned drawback, this work proposes an improved 
solution. Instead to measure the flux density only the information about the saturation level 
in the welding transformer’s iron core is required (Fig. 11). In Fig. 11 S1 – S4 stand for the 
adequate switching of the transistors. 
 

 
Fig. 11. The closed-loop control of the transformer primary current i1 and welding current iL 
using the hysteresis controller and the ANN 

To obtain the information about the saturation level an ANN can be applied as an effective 
tool, where the ANN single input is the measured transformer’s primary current i1 (Deželak 
et al., 2010). The idea is to replace one hysteresis controller with ANN. Basically the ANN is 
trained to recognize the waveform of the current spikes, which appear in the primary 
current when the iron core is approaching the saturated region.  

4.1 Hysteresis control with saturation detector 
The H – bridge inverter output voltage uH (Fig. 1) is equal to DC voltage, while its polarity 
depends on the pair of transistors that are switched on. When all four transistors are 
switched off, the voltage uH equals zero. The welding current iL increases when the primary 
voltage of the transformer uH differs from zero. On the other hand the welding current tends 
towards zero when uH equals zero. The magnetic flux density increases when +DC bus 
voltage is applied and decreases when–DC bus voltage is applied. As soon as the magnetic 
flux density exceeds its limit, the transformer’s iron core becomes highly saturated, which 
causes current spikes in the transformer’s primary current i1. The advanced control of the 
RSWS can be applied to prevent the current spikes. The authors in (Klopčič et al., 2008) 
proposed an advanced hysteresis control of the RSWS based on two hysteresis controllers. 
The first one is used for the closed-loop control of the welding current while the second one 
is used for the closed-loop control of a flux density in the transformer’s iron core. The 
advanced hysteresis control requires information that the preset saturation level in the iron 
core is exceeded. Measurement of the iron core flux density B can be avoided. 
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This subsection proposes an ANN based detector of saturation level in the iron core. The 
only input for the proposed detector is the measured welding transformer’s primary current 
i1. The output signal of the ANN based saturation detector (Tar.) is set to the value one when 
the preset saturation level in transformer’s iron core is exceeded. Operation of the advanced 
hysteresis control, supplemented by the proposed ANN based saturation level detector, is 
illustrated in Fig. 12, where iL is the welding current, uH is the applied H-bridge inverter 
output voltage, and t stands for the time. The upper (iLu) and lower (iLl) welding current 
limits must be set before start.  
 

 
Fig. 12. Operation of the advanced hysteresis control, supplemented by the saturation level 
detector  

The advanced hysteresis control of the RSWS, supplemented by the proposed saturation 
level detector, starts at the time t = 0s. The H-bridge inverter generated transformer’s supply 
voltage uH = UDC, is applied. The welding current iL and the iron core flux density B start to 
increase. At the time t1, the ANN based saturation level detector detects that the preset 
saturation level in the iron core is exceeded. Its output signal Out’ is set to the value 1, while 
the transformer’s supply voltage is changed to uH = -UDC. The welding current still increases 
while the iron core flux density starts to decrease. At time t2, the saturation level detector 
detects the exceeded saturation level again. In this case, it is caused by a high negative value 
of the iron core flux density. The transformer’s supply voltage changes to uH = UDC. The 
welding current still increases while the flux density value starts to increase again. 
Thus, whenever the ANN based saturation level detector detects the exceeded saturation 
level, the polarity of the transformer’s supply voltage changes, causing change in the sign of 
the flux density increment, while the welding current increases all the time. The advanced 
RSWS hysteresis control switches the transformer’s supplied voltage according to the 
described pattern as long as the welding current does not reach its upper limit, which 
happens at the time t4. When the upper limit for the welding current is reached, the supply 
voltage uH = 0 is applied. The welding current starts to decrease. At the time t5, it reaches its 
lower limit. The supply voltage with the same polarity as before the time t4 (uH = -UDC) is 
applied again. At the time t6, the saturation level detector detects the increased saturation 
level again, which causes change in the polarity of the transformer’s supply voltage uH = 
UDC. The RSWS operates as described, keeping the welding current between its lower and 
upper limits, until the welding cycle is completed. The transformer’s supply voltage is set to 
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uH = 0 while the welding current decreases to value zero. The advanced hysteresis control 
controlled RSWS is ready for the new welding cycle. 

4.2 Test result 

The ANN structure used to detect the iron core saturation in the stand alone transformer 
cannot be applied when the transformer operates as a part of the RSWS. In the case of the 
stand alone transformer the ANN was used to supplement the calculated value of dynamic 
inductance Ld in order to evaluate the iron core saturation level. In the case of transformer 
operating as a part of RSWS the primary current i1 supplemented by an ANN is used to 
detect the iron core saturation level. Thus the new ANN structure and learning method 
must be defined. This can be obtained with the proper dynamic model of the RSWS with 
included models of the advanced hysteresis control and the ANN based saturation level 
detector. Once the model is built, the proper structure of the ANN and learning method can 
be easily defined by running simulations with different ANN structures. The trial and error 
procedure was applied in the testing. As already mentioned, the ANN accumulates 
knowledge during the learning process. Fig. 13 shows both signals, which are involved in 
the learning process.  
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Fig. 13. The learning and targets signals in the case when the transformer operates as a part 
of the RSWS 

The input learning signal (pattern) of the ANN in the learning process is the absolute value 
of the transformer’s primary current i1 (1 pu = 400 A) obtained with the RSWS dynamic 
model. According to the saturation level in the iron core, the output learning signal (Tar.) 
was set to the value zero or one. The current spikes in the transformer’s primary current 
clearly show that the iron core becomes highly saturated. In that case, the output of the 
ANN based saturation level detector must be set to the value one, which changes the 
polarity of the transformer’s supply voltage in the RSWS controlled by the advanced 
hysteresis control. Fig. 13 shows learning signals during samples 4000 and 4200, while the 
number of all samples is 6000. 
The ANN output signals are very sensitive on the ANN net configuration, therefore an 
extensive testing of different net configurations was performed. The proper net structure 
can be defined with the proper model of a whole RSWS. The high computational effort 
required for simulations of the whole system forced us to apply the trial and error method 
in determining the ANN structure, instead of applying optimization techniques. The 
correlation coefficients between the target signal and calculated outputs were the root mean 
square errors (RMSE). The learning rates were controlled. Based on results of the extensive 
numerical analysis, the ANN structure with 30 neurons in first, 7 neurons in second and 1 
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neuron in last layer was chosen (RMSE = 3.89 %). More or less neurons in the first layer gave 
worse RMSE. In addition for determining the ANN structure, the model was applied also 
for determining the most appropriate learning rule. From all learning rules tested, the 
resilient and Levenberg-Marquardt backpropagation algorithms gave the best RMSE values. 
However, the resilient backpropagation was adopted due to the lowest computational effort 
required.  
As soon as the structure of the ANN and learning rule is defined, they can be applied on to 
the measured signals, while the ANN trained with the measured signals can be applied as a 
saturation level detector in the RSWS controlled by the advanced hysteresis control. Fig. 14 
shows the output signals from the ANN for two different transformer’s primary currents 
(absolute, per unit value, 1 pu = 400 A) measured on the RSWS.  
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Fig. 14. Testing of the ANN with the different patterns 

As soon as the ANN, through the characteristic form of the primary current, detects that the 
saturation level in the iron core is high enough, the value of the ANN output (Out’) changes, 
causing change in the polarity of the applied supply voltage. This leads to the change in the 
sign of the magnetic flux density derivative. The magnetic flux density move in the opposite 
direction until the ANN detects increased saturation level again. The polarity of the applied 
supply voltage is changed again and the complete procedure is repeated. 

5. Conclusion 

This chapter deals with an evaluation of method appropriate for the iron core saturation 
level detection in welding transformer built into resistance spot welding system. The 
welding transformer is a part of a resistance spot welding system, where current spikes in 
the transformers primary current, caused by the iron core saturation, can cause the over-
current protection switches-off of the entire spot welding system. For that reason the 
saturation level detection is an indispensable part of modern resistance spot welding 
systems. It makes the control of the iron core flux possible, which leads to better iron core 
exploitation and prevents over-current protection switch-offs. The main aim of this work is 
to present a reliable method for detection of the iron core saturation that does not require 
any additional sensor. 
Firstly, an artificial neural network supplemented algorithm for detecting the saturation 
level in the iron core of a welding transformer is described. In order to prevent iron core 
saturation and current spikes in the primary current, the iron core saturation level detection, 
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based on the dynamic inductances, is investigated. The drawbacks of the applied method 
could be effectively eliminated by using an artificial neural network as a supplement to the 
existing method. 
After that the algorithm for detecting the saturation level in the iron core of the transformer 
operating as a part of the resistance spot welding system was presented. The proposed 
ANN based detector requires measurement of the welding transformer’s primary current. 
The applied ANN is trained to recognize the waveform of the currents spikes which is used 
for saturation level detection. The applied ANN contains 3 layers with 30, 7 and 1 neuron in 
the first, second and third layer, respectively. It is trained by the resilient backpropagation 
rule using samples obtained by measurements and the dynamic model of the RSWS. 
Performances of the trained ANN were evaluated by the tests performed with the different 
measured samples. The results of the laboratory tests, shown in Fig. 13, are very promising 
and show reliable recognition of the iron core saturation. 
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