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1. Introduction     

As a technology to realize high data rates and high capacity in wireless communication 
systems, Multiple-Input Multiple-Output (MIMO) system has received increasing attention.  
In MIMO systems, high spectral efficiency is achieved by spatially multiplexing multiple 
data streams at the same time and frequency [1].  
The MIMO system with space division multiplexing (SDM) technique is categorized into 
two cases, i.e., no channel state information (CSI) is needed at the transmitter or CSI is 
exploited in both transmitter and receiver. As a method used in the former systems, spatial 
filtering and maximum likelihood detection (MLD) are known [1], where the received SDM 
signal is de-multiplexed with signal processing at the receiver. One of the latter MIMO 
systems is called the Eigenbeam SDM (E-SDM) [1][2], where data streams are transmitted 
through multiple orthogonal eigenpath channels between the transmitter and the receiver.  
Thus, the E-SDM system with power control based on the water-filling theorem [3] improves 
the MIMO channel capacity, provided that accurate CSI is known to the transmitter and the 
receiver. Therefore, it is expected that the E-SDM system achieves significant increase of 
spectral efficiency. In the E-SDM system, it is important to find optimum transmit and receive 
weights for maximizing its capacity. Such the optimum weights are determined based on 
eigenvector of HHH, where H denotes channel matrix and suffix H denotes complex conjugate 
transpose. As a method to find these eigenvectors, eigenvalue decomposition (EVD) of HHH or 
singular value decomposition (SVD) of H is well-known. Generally, SVD or EVD requires 
matrix decomposition operation based on QR decomposition.  
MIMO techniques can be used for multiple access systems where multiple signals are sent 
from multiple terminals at the same time and same frequency, i.e., Space Division Multiple 
Access (SDMA)  or multi-user MIMO (MU-MIMO) [6]-[9]. When such a multi-antenna 
system is used at a transmitter, the transmit weights are optimized under the constraint of 
total transmit power [5]-[9]. However, the maximum transmit power for each antenna 
element in SDMA systems is not restricted in general assumptions. Therefore, in the worst 
case, an amplifier whose maximum output power is the same as total transmit power is 
needed for each antenna element; these amplifiers cause an increase in cost. From this point 
of view, it is desirable to use a reasonable (i.e., low cost) power amplifier for each antenna 
element, where per-antenna transmit power is limited within a permissible output power. 
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To meet this requirement, it is necessary to determine weight coefficients so that the 
transmit power for each antenna is limited below a given threshold. 
In Ref.[10], a method to maximize transmission rate in eigenbeam MIMO-OFDM system 

under constraint of the maximum transmit power for an antenna has been reported, where the 

weights are determined by considering only the suppression of inter-stream interference (i.e., 

the optimum weights are first determined without considering the constraint of per-antenna 

power, and then the total transmit power is normalized to meet the power constraint). 

However, this method does not optimize weight coefficients in presence of noise and 

interference. To find the optimum weights under per-antenna power constraint, these two 

factors (inter-stream interference and signal-to-noise power ratio) have to be taken into 

consideration simultaneously. 

In this paper, first we propose an iterative optimization algorithm to find optimum transmit 

and receive weights in an E-SDM system, where the transmitter is equipped with a virtual 

MIMO channel and virtual receiver to obtain the optimum transmitter weight. The 

transmitter estimates the optimum transmitter weights by minimizing the error signal at the 

virtual receiver. Second, we propose an optimization method of transmit and receive 

weights under constraints of both total transmit power and the maximum transmit power 

for an antenna element in MU-MIMO systems, where the transmit weights are optimized by 

minimizing the mean square error of the received signal to obtain the minimum bit error 

rate (BER) under the per-antenna power constraint, provided that the knowledge of channel 

state information (CSI) and the receive signal to noise power ratio (SNR) is given. In our 

study, we solve this optimization problem by transforming the above constrained 

minimization problem to non-constrained one by using the Extended Interior Penalty Function 

(EIPF) Method [11]. After descriptions of the weight optimization methods, BER and signal-

to-noise and interference power ratio (SINR) performance of MIMO systems are evaluated 

by computer simulation.  

2. A least mean square based algorithm to determine the transmit and 
receive weights in Eigen-beam SDM 

2.1 Eigen-beam SDM in MIMO systems 
Figure 1 shows a MIMO system model considered in this paper, where Nt and Nr stand for 

the number of transmit and receive antenna elements, respectively. Wt denotes Nt×Ns 

transmitter weight matrix whose row vectors are given as eigenvector of channel 

autocorrelation matrix HHH, where Ns is the number of data streams. Wr denotes Ns×Nr 

receiver weight matrix. H is Nr×Nt channel matrix. To achieve the maximum capacity, the 

receive weight matrix Wr is determined as  

 H H
r t=W W H   (1) 

When the transmit and receive data stream vectors are defined as s= (s1, s2, ⋅ ⋅ ⋅, sNs)T and  

so=(so1, so2, ⋅ ⋅ ⋅, soNs)T, respectively, the received data stream in E-SDM system is given as  

 H H H H
o r t r t t ts s= + = +s W HW W n W H HW W H n  (2) 

where n=(n1, n2, ⋅ ⋅ ⋅, nNr)T is noise signal vector.  
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2.2 Iterative optimization of transmit- and receive-weights in E-SDM 
a. System Description 
Figure 2 shows a block diagram of an E-SDM system using the proposed LMS based 
algorithm, where it is assumed that the transmitter is equipped with a virtual MIMO 
channel and virtual receiver. Figure 3 shows transmission frame structure assumed in this 
paper, where transmission frame is composed of pilot and data symbols. Pilot symbols are 
used for weight determination at the receiver. In this paper, for simplicity, we assume that 
channel state information is perfectly estimated at the receiver and correctly informed to the 
transmitter by a feedback channel. 
 

Wt Wｒ

s1

sNs

so1

soNs

n1

nNr

#1

#Nt

#1

#Nr

H
・・・

・・・
・・・

・・・

 

Fig. 1. MIMO System Model 
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Fig. 2. E-SDM system with iterative weight optimization 

 

Np pilot symbols

Nd data symbols

 

Fig. 3. Frame format 
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The optimum weight matrices are obtained by minimizing the error signal attributable to 
inter-stream interference and noise at the receiver side, i.e., the error signal is defined as the 
difference between transmit and receive signal vectors. This means that, in E-SDM system 
using the proposed algorithm, weight optimization cannot be performed at the transmitter. 
To solve this problem, we employ a virtual MIMO channel and virtual receiver on the 
transmitter side as shown in Fig.2. The received signal at the virtual receiver is expressed as 

 H H
o r t t ts s′ = =s W HW W H HW  (3) 

where s'o= (s'o1, s'o2, ⋅ ⋅ ⋅, s'oNs) and s'oi is i-th receive stream at the virtual receiver. After 
determining optimum transmitter weight matrix, the weighted data steam is transmitted to 
MIMO channel. At the receiver, optimum receiver weight matrix is calculated by observing 
the pilot symbols. It is noteworthy that the receiver can find optimum receive weight by 
minimizing the error signal at the receiver, if the optimum transmit weight is multiplied at 
the transmitter. 
b. Iterative Algorithm to Determine the Transmit and Receive Weights 
The detailed algorithm to determine optimum weights in the proposed method is explained as 
follows. For simplicity of discussion, it is assumed that channel matrix H is known to the 
transmitter. From the relation of Eq.(1), it can be seen that the maximum capacity in E-SDM 
system is achieved by constructing the matrix Wt whose row vectors are given as eigenvectors 
of HHH. Therefore, in the proposed method, eigenvector of channel matrix is sequentially 
obtained by using a recursive calculation such as least mean square (LMS) algorithm. In the 

following discussion, we consider 2×2 MIMO system for simplicity, i.e., two eigenpaths exist. 

The detailed expression of the received signal in 2×2 MIMO system can be given as  

 1 11 21 11 12 1 1 1
1 2

2 2 212 22 21 22 2

H
o t t t t tH H

t tH
o t t t t t

s w w w w s s

s s sw w w w

∗ ∗

∗ ∗

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

w
H H H H w w

w

 (4) 

where wt1= (wt11,wt21)T and wt2= (wt12, wt22)T denote column vectors of weight matrix, i.e., 

the transmit weight vectors for data streams of s1 and s2. It is noteworthy that the discussion 

for 2×2 MIMO system can be easily extended to the case of arbitrary number of transmit and 

receive antennas as explained later.  

First, we consider the optimization of the first weight vector wt1 corresponding to data 
stream s1. The first received data stream in E-SDM system is given as  

 1 1 1 1
H H

o t ts s= w H Hw    (5) 

where the effect of noise is neglected here. The above equation suggests that the condition 

for orthogonal multiplexing of data streams in E-SDM system is given as 1 1 1H H
t t =w H Hw , 

i.e., when this condition is satisfied, wt1 becomes one of eigenvectors of HHH. Thus, the error 

signal e1 corresponding to the first data stream is defined as  

 1 1 1oe s s= −   (6) 

In this case, the error signal defined in Eq.(6) cannot be obtained at the transmitter. 
Therefore, by substituting so1 for the first virtual received stream s'o1 in Fig.2, the error signal 
is modified to  
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 1 1 1 1 1 1 1
H H

o t te s s s s′= − = − w H Hw  (7) 

Thus, the mean square error is obtained as  

 ( )22 2 2 2
1 1 1 1 1 1 1 12 H H H H

t t t tE e E s E E s E E s⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
w H H w w H H w  (8) 

In Eq.(8), we can see that local minimum value does not exist and therefore optimum 
solution is obtained with a simple iterative algorithm such as LMS method, since Eq.(8) is 
the fourth order equation with respect to the weight vector wt1 and the first, second and 
third terms of right side in Eq.(8) are the zero-th, second and fourth order expressions with 
respect to wt1, respectively.  
By differentiating Eq. (8) with respect to wt1, we can obtain  

 
2 2

1 1 1 1 1 1 14 4H H H H
t t t t tE e E E s E E⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤∇ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

w H H w H H w w H H w   (9) 

where  
x y

j
∂ ∂

∇ = −
∂ ∂

w
w w

 (w = wx +jwy). Thus, the recursive equation to obtain the first 

weight vector is given as  

 
2

1 1 1 1( 1) ( )
4

t t tm m E e
μ ⎡ ⎤+ = − ∇ ⎢ ⎥⎣ ⎦

w w w   (10) 

In this paper, to achieve fast convergence time, we employ the normalized LMS 
algorithm[4]. Hence, after substituting Eq.(9) for the above equation and expectation 
operation is removed,  Eq.(10) is reduced to  

 1 1 1 12
1

( 1) ( ) ( ) ( )
( )

H
t tm m m e m

m

μ ∗+ = +w w H r

r

 (11) 

where m is an integer number corresponding to the number of iterations in the LMS 

algorithm and μ denotes step size.  r1 (m) is the received signal given by r1(m)=Hwt1(m)s1. 
After the first weight vector is determined, we consider optimization of the second weight 
vector wt2 corresponding to data stream s2. Similarly in the first case, the error signal for the 
second data stream is defined as 

 2 2 2 2 2 2 1 1
H H H H
t t t te s s s= − −w H Hw w H Hw   (12) 

where wt1 is set to the optimum value obtained in the first case in Eq. (11). In Eq.(12), the 
second and third terms in right hand side of this equation mean that "condition where the 
second eigenvector exists" and the third term means "condition where a target vector wt2 is 
orthogonal to the first eigenvector wt1". Hence, if e2=0, we can obtain the second eigenvector 
wt2. Thus, mean square error of the error signal e2 is given as  

 
( )22 2 2 2

2 2 2 2 2 2 2 2

2
2 1 1 2 1

2 H H H H
t t t t

H H H H H
t t t t

E e E s E E s E E s

E E E s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤+ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

w H H w w H H w

w H H w w H H w

 (13) 
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The above equation implies that local minimum solution does not exist and the optimum 
solution with minimum square error is definitely determined as well as in Eq. (8). Thus, by 
differentiating this equation respect to wt2, we can obtain  

 

2 2
2 2 2 2 2 2 2

2
1 1 2 1

4 4

2

H H H H
t t t t t

H H H
t t t

E e E E s E E

E E E s

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤∇ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤+ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

w H H w H H w w H H w

H H w w H H w

  (14) 

After substituting this equation for Eq.(10) and removing the expectation operation,  Eq.(10) 
is reduced to  

 
2

2 2 2 2 1 1 2 12
2

1
( 1) ( ) ( ) ( ) ( )

2( )

H H H
t t t t tm m m e m m s

m

μ ∗⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

w w H r H w w Hw

r

 (15) 

where r2(m)=H(wt1(m)s1+wt2(m)s2). The optimum weight matrix Wt is obtained by updating 
weight vectors of these two recursive equations, i.e., Eqs. (11) and (15). 

The above discussion on 2×2 MIMO system is easily extended to Nt×2 or 2×Nr MIMO 

system, i.e., for Nt×2 MIMO system, the received signal at the virtual receiver can be given 
as 

 
11 12

11 11 1 1 1
1 2

2 2 212 2 2
1 2

t

t

t t

t t H
t tNo tH H

t tH
o t tN t

tN tN

w w
w ws s s

s s sw w
w w

∗ ∗

∗ ∗

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦′ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

w
H H H H w w

w

A
B B

A
 (16) 

where wt1= (wt11, ⋅ ⋅ ⋅ , wtNt1) T and wt2= (wt12, ⋅ ⋅ ⋅ , wtNt2)T. From this equation, it is clear that 

optimum weight matrixes for Nt×2 MIMO system are obtained by the same way as 2×2 

MIMO case, since channel autocorrelation matrix HHH is given as Nt×Nt matrix. For case of 

2×Nt MIMO system, since the autocorrelation matrix HHH is given as 2×2 matrix, the same 

discussion as 2×2 MIMO case can be applied.  
In addition, the proposed method can be applied to case where the rank of channel matrix is 
more than two, e.g., when the rank of channel matrix is 3, optimum weight matrix is 
obtained by minimizing the error function defined so that the third weight vector wt3 is 
orthogonal to both the first and second weight vectors of wt1 and wt2, where the weight 
vectors obtained in the previous calculation, i.e., wt1 and wt2, are used as the fixed vectors in 
this case. Thus, it is obvious that this discussion can be extended to case of channel matrix 
with the rank of more than 3.  
In the proposed method, the parameter convergence speed depends on initial values of 
weight coefficients. When continuous data transmission is assumed, the convergence time 
becomes faster by employing weight vectors in last data frame as initial parameters in 
current recursive calculation. 

2.3 Simulation results 
We evaluate the performance of a MIMO system using the proposed algorithm by computer 
simulation. For comparison purpose, obtained eigenvalues, bit error rate (BER) and capacity 
performance of the E-SDM systems using the proposed algorithm are compared to cases 
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with SVD. Simulation parameters are summarized in Table 1. QPSK with coherent detection 
is employed as modulation/demodulation scheme. Propagation model is flat uncorrelated 
quasistatic Rayleigh fading, where we assume that there is no correlation between paths. In 

the iterative calculation, an initial value of weight vector is set to (1, 0, 0, ⋅ ⋅ ⋅ , 0)T for both wt1 

and wt2. The step size of μ is set to 0.01 for wt1 and 0.0001 for wt2, respectively. A frame 
structure consisting of 57 pilot and 182 data symbols in Fig.3 is employed. For simplicity, we 
assume that channel parameters are perfectly estimated at the receiver and sent back to the 
transmitter side in this paper.  
 

Number of users 1 

Number of data streams 1,  2 

(Number of the transmit antennas × 
Number of the receive antennas) 

(2×2),  (3×2), (4×2), (2×3), (2×4) 

Data modulation /demodulation QPSK / Coherent detection 

Angular spread (Tx & Rx Station) 360° 

Propagation model 
Flat uncorrelated quasistatic 

Ralyleight fading 

Table 1. Simulation parameters 

Figure 4 shows the first and second eigenvalues measured by the proposed method as a 

function of the frame number in 2×2 MIMO system, where these eigenvalues are obtained 
by using channel matrix and the transmit and receive weights determined by the proposed 
algorithm. Figure 4 also shows eigenvalues determined by the SVD method. In Fig. 4, 
although the first eigenvalue obtained by the proposed method occasionally takes slightly 
smaller value than that of SVD, the proposed method finds almost the same eigenvectors as 
the theoretical value obtained by SVD.  
Figure 5 shows BER performance of Ntx2 MIMO diversity system using the maximum ratio 
combining (MRC) as a function of transmit signal to noise power ratio, where average gain 
of channel is unity. Figure 6 also shows BER performance of 2xNr MIMO MRC diversity 
system. In Figs. 5 and 6, the data stream is transmitted by the first eigenpath. Therefore, it 
can be seen that both methods (LMS, SVD) achieve almost the same BER performance. This 
result suggests that the eigenvector corresponding to the highest eigenvalue is correctly 
detected as the first weight vector, i.e., the first eigenpath. It can be also qualitatively 
explained that the highest eivenvalue is first found as the most dominant parameter 
determining the error signal.  

Figures 7 and 8 show BER performance of Nt×2 and 2×Nr E-MIMO, respectively. The number 
of data streams is set to two, since the rank of channel matrix is two. Based on the BER 
minimization criterion [1], the achievable BER is minimized by multiplying the transmit signal 
by the inverse of the corresponding eigenvalue at the transmitter. In Figs. 7 and 8, we can see 
that both methods (LMS and SVD) achieve almost the same BER performance. 
Figures 9 and 10 show the MIMO channel capacity in case of two data streams. In this paper, 
for simplicity, MIMO channel capacity is defined as the sum of each eigenpath channel 
capacity which is calculated based on Shannon channel capacity in AWGN channel [3];  

 C = log2 (1+SNR)      [bit/s/Hz] (17) 
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The transmit power allocation for each eigenpath is determined based on the water-filling 

theorem [3]. In Figs.9 and 10, it can be seen that the E-SDM system with the proposed 

method achieves the same channel capacity as that of the ideal one (SVD). 

 
 

 

Fig. 4. Measured eigenvalues 

 

  

Fig. 5. Bit error rate performance (1 data stream, Nt×2) 
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Fig. 6. Bit error rate performance (1 data stream, 2×Nr) 

 
 

  
 

Fig. 7. Bit error rate performance (2 data stream, Nt×2) 
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Fig. 8. Bit error rate performance (2 data stream, 2×Nr) 

 
 

  
 

Fig. 9. Channel capacity performance (Nt×2) 
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Fig. 10. Channel capacity performance (2×Nr) 

3. Iterative optimization of the transmitter weights under constraint of the 
maximum transmit power for an antenna element in MIMO systems 

3.1 System model 
Figure 11 shows MU-MIMO system considered in this paper, where K antenna elements 

and single antenna element are equipped at the Base Station (BS) and Mobile Station (MS), 

respectively. Single antenna is assumed for each Mobile Station (MS). The number of users 

in SDMA is N. The receive signal at receive antenna Y=[y1, ⋅ ⋅ ⋅ ,yN]T is expressed as 

 H H H
r t r= +Y W HW X W n   (18) 

where superscript T and superscript H denote transpose and Hermitian transpose, 

respectively. H is N×K complex channel metrics, Wt is N×K complex transmit weight 

matrices, Wr=diag(w1, ⋅ ⋅ ⋅, wN) is receive weight metrics, X=[x1, ⋅ ⋅ ⋅,xN]T is transmit signal, 

and μ=[n1, ⋅ ⋅ ⋅,nN]T is noise signal. The average power of transmit signal is unity (i.e., E[xi2] 

=1), where E[ ] denotes ensemble average operation) and there is no correlation between 

each user signal (i.e., E[xi1 xi2] =0), the condition to keep the total average transmit power to 

be less than or equal to Pth is given as 

 
2

1 1

N K

ij th
i j

w P
= =

≤∑∑  (19) 

where wij denotes the transmit weight of antenna #j for user #i. Then, the condition to 

constrain the average transmit power per each antenna to be less than or equal to pth is 

given as 

www.intechopen.com



 MIMO Systems, Theory and Applications 

 

276 

 
2

1

N

ij th
i

w p
=

≤∑   j∀    (1 ≤ j ≤ K) (20) 
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Fig. 11. MU-MIMO Systems 
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rŴ

Base Station

User #1

1n 1w

・・・・

1n̂

Nn̂

1x

Nx

1ŷ
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Fig. 12. System configurations 
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Fig. 13. Frame format 

3.2 Transmitter and receiver model 
Figure 12 shows the system configuration of the transmitter and receiver in MU-MIMO 
system considered in this paper, where the number of transmit antennas and the number of 
receive antennas are K and 1, respectively. A virtual channel and virtual receiver are 
equipped with the transmitter to estimate mean square error at the receiver side, where 
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ˆ
rW =diag( 1ŵ , ⋅ ⋅ ⋅ , ŵN ) and n̂ =[ 1n̂ , . . . , n̂N ]T denote the virtual receive weight and the 

virtual noise, respectively. We assume that the average power of additive white Gaussian 

noise (AWGN) is known to the transmitter, i.e., we assume 2
in̂E⎡ ⎤

⎣ ⎦ =E[ni2]. Then, the receive 

signal at the virtual receiver Ŷ  is given as 

 ˆ ˆ ˆ ˆH H H
r t r= +Y W HW X W n  (21) 

The transmit weights are optimized by minimizing the error signal between transmit and 
receive signals at the virtual receiver under constraints given as Eqs.(19) and (20). Figure 13 
shows a frame format assumed in this paper, where each frame consists of Np pilot symbols 
and Nd data symbols. Pilot symbols are known and used for optimizing the receive weights 
on the receiver side. 

3.3 Weight optimization 
a. Problem Formulation 
The transmit weights are optimized by minimizing the mean square error between transmit 
and receive signals at the virtual receiver under constraint given as Eqs. (19) and (20). From 
Eq.(21), the error signal between transmit signal X and receive signal at the virtual receiver 

Ŷ  is given as 

 ˆ ˆ ˆ ˆH H H
r t re = − = − −X Y X W HW X W n   (22) 

where e=[e1, . . . ,eN]. From Eqs.(19) and (20), the problem to minimize the mean square error 
under two constraints can be formulated as the following constrained minimizing problem; 

                                                Minimize  
2

( )E e⎡ ⎤
⎢ ⎥⎣ ⎦

W  

 Subject to 
2

1 1

( ) 0
N K

ij th
i j

g w P
= =

= − ≤∑∑W  (23) 

        
2

1

( ) 0
N

j ij th
i

h w p
=

= − ≤∑W                          j∀  

where   ⋅  denotes vector norm. W is N×(N+K) complex matrix defined as W=[Wt, ˆ
rW ]. 

b. A EIPF based Approach for Weight Optimization 
By introducing the extended interior penalty function (EIPF) method into the problem 
shown in Eq.(23), this problem can be transformed into the following non-constrained 
minimizing problem [11]; 

Minimize  { }2
( ) ( ) ( )E e r⎡ ⎤ + Φ + Ψ⎢ ⎥⎣ ⎦
W W W  

 Subject to 
2

1
( )

2 ( )

if   ( )
( )

if   ( )

g

g

g

g
ε

ε

ε

ε−

⎧ − ≤⎪Φ = ⎨
− >⎪⎩

W

W

W

W

W
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1

( ) ( )
K

j
j

ψ
=

Ψ = ∑W W  

                                            

2

1
j( )

2 ( )

j

if   ( )

( )
if   ( )

j

j

h

j h

h

h
ε

ε

ε
ψ

ε
−

⎧ − ≤
⎪= ⎨
⎪− >
⎩

W

W

W

W

W

 

Here, ε(<0) and r(>0) denote the design parameters for non-constrained problem. In Eq.(24), 

( )Φ W  and ( )Ψ W  increase rapidly as  approaches to the boundary. When g(W) = ε and 

hj(W)=ε, the continuity of ( )Φ W and ( )Ψ W  is guaranteed as well as derivatives of these 

two functions. Thus, Eq. (24) can be minimized by using the Steepest Descent method; W is 
updated as 

 { }2
( 1) ( ) ( ) ( ) ( )m m E e rμ ⎛ ⎞⎡ ⎤+ = − ∇ + Φ + Ψ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

W W w W W W  (28) 

where μ is a step size to adjust the updating speed. ∇w  denotes a gradient with respect to 

W, which is defined as  

 
11 1 1

1

ˆ

ˆ

K

N NK N

w w w

w w w

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∇ =
⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

W

0

0

A

B D B D

A

 (29) 

where j denotes an imaginary unit and 

 
{ } { }Re( ) Im( )ij ij ij

j
w w w

∂ ∂ ∂
= +

∂ ∂ ∂
,  (30) 

 
{ } { }ˆ ˆ ˆRe( ) Im( )i i i

j
w w w

∂ ∂ ∂
= +

∂ ∂ ∂
,  (31) 

When W is updated as in Eq. (28) at every symbols, Eq. (28) can be reduced to 

 { }2
( 1) ( ) ( ) ( ) ( )m m rμ ⎡ ⎤+ = − ∇ + Φ + Ψ⎢ ⎥⎣ ⎦W

W W e W W W . (32) 

3.4 Performance evaluation 
Performance of MU-MIMO system using the considered algorithm is evaluated by 
computer simulation. Simulation parameters are shown in Table 2. As a channel model, we 
consider a set of 8 plane waves transmitted in random direction within the angle range of 12 
degrees at the BS. Each of the plane waves has constant amplitude and takes the random 

phase distributed from 0 to 2π. All users are randomly distributed with a uniform 
distribution in a range of the coverage area of a BS. Channel states and distribution of users 

www.intechopen.com



Iterative Optimization Algorithms to Determine Transmit and Receive Weights for MIMO Systems   

 

279 

change independently at every frame. Transmit weights are determined with recursive 
calculation given in Eq.(32). Receive weights are determined by observing the pilot symbols. 
The upper limit of the average transmit power for an antenna element normalized by the 
upper limit of the total transmit power is denoted as 

 th

th

p

P
γ = , (33) 

where  

 
1

1
K

γ≤ ≤  (34) 

In Eq.(34), γ=1 corresponds to the case without constraint of per-antenna transmit power. 

The minimum value of γ is 1/K which corresponds to, the strictest case where per-antenna 

transmit power is limited within the minimum value. The maximum permissible power per 

user (Pth/N) to noise power ratio is defined as 

 max 2[ ]
SNR th

i

P /N

E |n |
=  (35) 

where E[ni2] denotes the average noise power corresponding to the user #i. 
 

Channel Model Flat uncorrelated quasistatic Rayeigh fading 

Modulation Method QPSK 

Number of Pilot Symbols (Np) 34  [symbols/frame] 

Number of Data Symbols (Nd) 460  [symbols/frame] 

Average propagation loss 0  [dB]  (Except for Figs.20 and 21) 

Antenna element spacing 5.25λ 

Table 2. Simulation Parameters 

Figures 14(a) and (b) show complementary cumulative distribution function (CCDF) of 

average transmit power of transmit signal measured at every frames with respect to antenna 

#1. The number of transmit antennas is set to 4 and 8, respectively. The number of users is 2. 

The maximum permissible transmit power is set to Pth=1.0, and average noise power is set 

to E [ni2]=0.1. From these figures, we can see that transmit power of the signal at antenna #1 

can be kept below pth. 

Figures 15 and 16 show the received SINR as a function of γ, where SNRmax is set to 10 dB. 

Note that SINR is the same as SNR when the number of users is 1. In these figures, we can 

see that the degradation in SINR at γ=1/K is about 0.5dB and 0.6∼1.0dB for K=4 and 8 as 

compared with the case of γ =1. It is shown that SINR is slightly degraded when γ ≤ 0.4 and 

γ ≤ 0.3 for K=4 and K=8, respectively. This is because the probability that transmit power of 

the signal at a certain antenna element exceeds γ becomes low as γ increases. The received 

SINR is degraded as the number of users increases, because the diversity effect is reduced 

attributable to the decrease of a degree of freedom on the number of antennas. 
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Figures 17 and 18 show BER performance as a function of SNRmax, where the number of 

users is set to 1∼3 for K=4 in Fig.17, and set to 3 for K=8 in Fig.18. In these figures, we can 
see that, when the maximum per-antenna transmit power is limited to 1/K, BER 

performances is degraded by about 0.7∼0.8 dB at BER=10-2 as compared with case of γ=1. 
 

 

 
 

(a) K=4, N=2 

 

 
 

(b) K=8, N=2 
 

Fig. 14. CCDF of average transmit power of the signal measured at every frames with 
respect to antenna #1 
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Fig. 15. SINR vs. γ (K=4, SNRmax=10dB) 

 
 
 
 
 

 
 
 

Fig. 16. SINR vs. γ (K=8, SNRmax=10dB) 
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Fig. 17. Bit Error Rate Performance (K=4) 

 
 
 
 

 
 

Fig. 18. Bit Error Rate Performance (K=8, N=3) 
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4. Conclusion 

We proposed optimization algorithms of transmit and receive weights for MIMO systems, 

where the transmitter is equipped with a virtual MIMO channel and virtual receiver to 

calculate the transmitter weight. First, we proposed an iterative optimization of transmit 

and receive weights for E-SDM systems, where a least mean square algorithm is used to 

determine the weight coefficients. The proposed method can be easily extended to the case 

of E-SDM in MIMO system with arbitrary number of transmit and receive antennas. Second, 

we proposed a weight optimization method of MIMO systems under constraints of the total 

transmit power for all antenna elements and the maximum transmit power for an antenna 

element. The performance of the proposed method is evaluated for QPSK signal in MU-

MIMO system with K antenna elements on the transmitter side and single antenna element 

at the receive side. It is clarified that the degradation of received SINR attributable to 

constraint of per antenna power is 0.5∼1.0 dB in case where the maximum transmit power 

for an antenna element is limited to 1/K for the number of antenna of K=4 and 8. These 

results mean that the proposed optimization algorithm enables to use a low cost power 

amplifier at base stations in MIMO systems. 
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