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1. Introduction

The multiuser multiple-input-multiple-output (MIMO) downlink has attracted great research
interests because of its potential of increasing the system capacity(Caire & Shamai, 2003;
Vishwanath et al., 2003; Viswanath & Tse, 2003; Weingarten et al., 2006). Many transmitter
precoding schemes have been reported in order to mitigate the cochannel interference
(CCI) as well as exploiting the spatial multiplexing of the multiuser MIMO downlink.
Tomlinson-Harashima precoding (THP) has become a promising scheme since the successive
interference pre-cancelation structure makes THP outperform linear precoding schemes (Choi
& Murch, 2004; Zhang et al., 2005) with only a small increase in complexity. Many THP
schemes based on different criteria have been reported in the literature(Doostnejad et al.,
2005; Joham et al., 2004; Mezghani et al., 2006; Schubert & Shi, 2005; Stankovic & Haardt,
2005; Windpassinger et al., 2004), in which one is the zero-forcing (ZF) criterion and the other
is the minimum mean square error (MMSE) criterion. This chapter will consider the above
two criteria based THP schemes’ analysis and design, respectively.
For the ZF-THP scheme, initial research mainly focuses on the scenarios that each receiver
is equipped with a single antenna (Windpassinger et al., 2004), where there exists only
the transmit diversity, but without any receive diversity. Presently, the receive diversity
due to multiple antennas at each receiver is taken into account (Stankovic & Haardt, 2005;
Wang et al., 2006).In these literatures, it is commonly assumed that the total number of
receive antennas is less than or equal to that of transmit antennas. Under this assumption,
firstly the layers are divided into groups which correspond to different users, and then the
dominant eigenmode transmission is performed for each group. Hereby, this kind of schemes
is regarded as per-user processing. Actually, it is more common in the cellular multiuser
downlink systems that the number of users is not less than that of transmit antennas at the
base station (BS), which is investigated as the generalized case with THP in this chapter.
In order to avoid complicated user selection and concentrate on the essential of transceiver
filters design, our consideration is limited into a unique case that the number of users equals
the number of transmit antennas, denoted as M. Besides, it is assumed that the channels
of these M users have the same large-scale power attenuation.1 In this case a so-called
per-layer processing can be applied by the regulation that each user be provided with only one

1 In practice, when the number of users is large enough, we can find M users whose large-scale power
attenuations are approximately equal by scheduling.
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subchannel and all the M users be served simultaneously. Based on the criterion of maximum
system sum-capacity, two per-layer joint transmit and receive filters design schemes can be
employed which apply receive antenna beamforming (RAB) and receive antenna selection
(RAS), respectively. Through a theorem and two corollaries, the differences of the equivalent
channel gains and capacities between these two schemes are developed. Theoretical analysis
and simulation results indicate that compared with linear-ZF and per-user processing, these
per-layer schemes can achieve better rate region and sum-capacity performance.
For the MMSE-THP scheme, we address the problem of joint transceiver design under both
perfect and imperfect channel state information (CSI). The authors in (Joham et al., 2004)
designed THP based on the MMSE criterion for the MISO system where the users are
restricted to use a common scalar receiving weight. This restriction was relaxed in (Schubert &
Shi, 2005), i.e., the users may use different scalar receiving weights, where the authors used the
MSE duality between the uplink and downlink and an exhaustive search method to tackle the
problem. The problem of joint THP transceiver design for multiuser MIMO systems has been
studied in (Doostnejad et al., 2005) based on the MMSE criterion. However, a per-user power
constraint is imposed, which may not be reasonable in the downlink. Morevoer, only the
inter-user interference is pre-canceled nonlinearly, whereas the data streams of the same user
are linearly precoded. The work of (Doostnejad et al., 2005) has been improved in (Mezghani
et al., 2006) under a total transmit power constraint, where the users apply the MSE dualtiy
between the uplink and downlink and the projected gradient algorithm to calculate the solution
iteratively. Again, only the inter-user interference is pre-subtracted.
The above schemes have a common assumption that the BS, has perfect CSI. In a realistic
scenario, however, the CSI is generally imperfect due to limited number of training symbols
or channel time-variations. Therefore, the robust transceiver design which takes into account
the uncertainties of CSI at the transmitter (CSIT) is required. Several robust schemes have been
proposed for THP in the multiuser MISO downlink, which can be classified into the worst-case
approach (Payaro et al., 2007; Shenouda & Davidson, 2007) and the stochastic approach
(Dietrich et al., 2007; Shenouda & Davidson, 2007). The worst-case approach optimizes the
worst system performance for any channel error in a predefined uncertainty region. In (Payaro
et al., 2007) a robust power allocation scheme for THP was proposed, which maximizes the
achievable rates for the worst-case errors in the CSI in the small errors regime. The authors
of (Shenouda & Davidson, 2007) designed the THP transmitter to minimize the worst-case
MSE over all admissible channel uncertainties subject to power constraints on each antenna,
or a total power constraint. On the other hand, the stochastic approach optimizes a statistical
measure of the system performance assuming that the statistics of the uncertainty is known.
A robust nonlinear transmit zero-forcing filter with THP was presented in (Hunger et al.,
2004) using a conditional-expectation approach, and has been extended lately in (Shenouda
& Davidson, 2007) by relaxing the zero-forcing constraint and using the MMSE criterion. The
problem of combined optimization of channel estimation and THP was considered in (Dietrich
et al., 2007) and a conditional-expectation approach is adopted to solve the problem. All the
above robust schemes are designed for the MISO downlink where each user has only one
single antenna.
In this chapter for the MMSE scheme, we propose novel joint THP transceiver designs
for the multiuser MIMO downlink with both perfect and imperfect CSIT. The transmitter
performs nonlinear stream-wise (both inter-user and intra-user) interference pre-cancelation.
We first consider the transceiver optimization problem under perfect CSIT and formulate
it as minimizing the total mean square error (T-MSE) of the downlink (Zhang et al., 2005)
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Fig. 1. Block diagram of ZF-THP in multiuser MIMO downlink system.

under a total transmit power constraint. Under the optimization criterion of minimizing the
T-MSE, the stream-wise interference pre-cancelation structure is superior to the structure
of inter-user only interference pre-cancelation combined with intra-user linear precoding
adopted in (Doostnejad et al., 2005) and (Mezghani et al., 2006), which has already been
proven to be true in a particular case, i.e., the single-user MIMO case (Shenouda & Davidson,
2008). By some convex analysis of the optimization problem, we find the necessary conditions
for the optimal solution, by which the optimal transmitter and receivers are inter-dependent.
We extend the iterative algorithm developed in (Zhang et al., 2005) to handle our problem.
Although the iterative algorithm does not assure to converge to the globally optimal solution,
it is guaranteed to converge to a locally optimal solution. Then, we make an extension of
our design under perfect CSIT to the imperfect CSIT case which leads to a robust transceiver
design against the channel uncertainty. The robust optimization problem is mathematically
formulated as minimizing the expectation of the T-MSE conditioned on the channel estimates
at the BS under a total transmit power constraint. An iterative optimization algorithm
similar to its perfect CSIT counterpart can also be applied. Extensive simulation results are
presented to illustrate the efficacy of our proposed schemes and their superiority over existing
MMSE-based THP schemes.
The organization of the rest of this chapter is as follows. In Section 2, the system models for
the multiuser MIMO downlink with THP established. In Section 3, two per-layer ZF-THP
schemes are proposed and the analysis of the equivalent channel gains is given. In Section 4,
the problem of the MMSE-THP design and analysis under both perfect and imperfect CSI is
addressed. Simulation results are presented in Section 5. Section 6 concludes the chapter.

2. System models of multiuser MIMO downlink with THP

In this section, we will consider two system models for ZF-THP and MMSE-THP schemes,
respectively.

2.1 System model for ZF-THP scheme

As mentioned in Section 1, for ZF-THP scheme, we consider the unique case that the number
of users equals the number of transmit antennas at BS, denoted as M. Therein, each user is
equipped with N receive antennas, as shown in Fig. 1. Perfect CSI is assumed at the transmitter
(Windpassinger et al., 2004).
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THP transmit filter group consists of a forward filter F, a backward filter B, and a modulo
operator (Windpassinger et al., 2004). The transmit data symbol is denoted by the M× 1 vector
a. After a passes through the THP transmit filter, the precoded symbol, which is denoted by
the M × 1 vector x, is generated. It is assumed that the channel is flat fading. Denote the MIMO
channel of user k by an N × M matrix Hk. Each entry in Hk satisfies zero-mean unit-variance
complex-Gaussian distribution, denoted by CN(0, 1). Through the channels, each user’s N × 1
received signal vector is

yk = Hkx + wk, k = 1, 2, · · · , M. (1)

Therein the noise wk is an N × 1 vector, whose entries are independent and identically
distributed (i.i.d.) random variables with the distribution CN(0, σ2

n).
Under the regulation that only one sub-channel be allocated to a user and all the M users be
served simultaneously, every user’s receive filter is a 1 × N row vector, denoted by rk. For
normalization, we assume ‖rk‖2

2 = 1, where ‖ · ‖2 stands for the Euclidean norm of a vector.
Thus, the detected signal can be expressed as

âk = rkHkx + rkwk = h̃kx + rkwk, k = 1, 2, · · · , M, (2)

where h̃k � rkHk is the equivalent channel row vector of user k. Construct the entire equivalent

channel as H̃ �
[
h̃

H
1 h̃

H
2 · · · h̃

H
M

]H
.

2.2 System model for MMSE-THP scheme

Different from the above system model for ZF-THP scheme, we consider a more generalized
model for MMSE-THP scheme, in which the number of users is not necessarily equal to that
of transmit antennas. Therein, the BS is with M transmit antennas and K users are with Nk

receive antennas at the kth user, k = 1, . . . , K (see Fig. 2). Let Hk ∈ C
Nk×M denote the channel

between the BS and the kth user. The vector dk ∈ CLk×1 represents the transmitted data vector
for user k, where each entry belongs to the interval [−τ/2, τ/2) + j · [−τ/2, τ/2) (τ is the
modulo base of THP as introduced later) and Lk is the number of data streams transmitted for
user k. The data vectors are stacked into d � [dT

1 dT
2 . . . dT

K ]T, which is first reordered by a

permutation matrix Π ∈ CL×L (ΠΠ
T = Π

T
Π = IL, L � ∑

K
k=1 Lk) and then successively

precoded using THP (see Fig. 2). The feedback matrix F ∈ CL×L is a lower triangular
matrix with zero diagonal. The structure of F enables inter-stream interference pre-cancelation
and is different from the one used in (Mezghani et al., 2006) which only enables inter-user
interference pre-cancelation. The modulo device performs a mod τ operation to avoid transmit
power enhancement. Each entry of the output w of the modulo device is constrained in the
interval [−τ/2, τ/2) + j · [−τ/2, τ/2). A common assumption in the literature is that the

entries of w are uniformly distributed with unit variance (i.e., τ =
√

6) and are mutually
uncorrelated. Then w is linearly precoded by a feedforward matrix P ∈ C

M×L and transmitted
over the downlink channel to the K users.
At the kth receiver, a decoding matrix Gk ∈ CLk×Nk and a modulo device are employed to
estimate the data vector dk. Denote the estimate of dk by d̃k, then it is given by

d̃k = (GkHkPw + Gknk) mod τ, (3)

in which nk ∈ CNk×1 is the additive Gaussian noise vector at user k with zero mean and
covariance matrix E{nknH

k } = σ2
n,kINk

. We assume that there is a total power constraint PT at

the BS so that tr
(
PHP

)
= PT.
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Fig. 2. Block diagram of MMSE-THP in multiuser MIMO downlink system.

3. Per-layer ZF-THP design and analysis

In this section, we will firstly propose two per-layer ZF-THP schemes for multiuser MIMO
downlinks based on the system model in Fig. 1.

3.1 Capacity analysis for ZF-THP

Perform QR factorization to the conjugate transpose of the equivalent channel matrix H̃ in (2)
in Section 2.1. This generates

H̃ = SFH , (4)

where F is a unitary matrix and S is a lower-triangular matrix. In (Windpassinger et al., 2004),
it is given that without account of the precoding loss (Yu et al., 2005), the sum-capacity of all
layers is equivalent to

Csum =
M

∑
l=1

Cl =
M

∑
l=1

log
(

1 +
σ2

x,l

σ2
n
|sll|2

)
, (5)

where σ2
x,l is the signal power in layer l. |sll|2 can be interpreted as the equivalent channel gain

of the lth layer.
If all the entries in H̃ have the distribution CN(0, 1), |sll|2 is a random variable with the
chi-square distribution of 2(M − l + 1) degrees of freedom (Windpassinger et al., 2004).
Nevertheless, when the total number of receive antennas is more than that of transmit
antennas, the distribution of entries in H̃ will change with different precessing methods for
receive antennas.
With the assumption that the channels of all the users have the same power attenuation,
serving all the M users simultaneously means that the obtained receive diversity gain, which
is defined by the negative slope of the outage probability versus signal-to-noise ratio (SNR)
curve on a log-log scale (Tse & Viswanath, 2005), can be scaled by MN. In comparison, in
per-user processing only ⌈ M

N ⌉ users are served at one time, so the obtained receive diversity
gain is scaled by M. Therefore, the strategy of serving all the M users simultaneously leads to
N times larger receive diversity gain, which implies that each user should be provided with
only one subchannel.

3.2 Per-layer transmit and receive filters design

From (2), the equivalent channel matrix H̃ is derived from the receive filters {rl , l = 1, · · · , M}.
Due to the channel matrix trianglization in (4), the higher layers will interfere with, but not
be influenced by the lower ones. Denote the mapping fl : h̄l = fl

(
{rp, p = 1, · · · , l}

)
, then

|sll |2 = ‖h̄l‖2
2 = ‖ fl

(
{rp}

)
‖2

2.
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So the optimal {rl , l = 1, · · · , M} that maximizes the sum-capacity can be expressed as

{r
opt
l } = arg max

{rl}

M

∑
l=1

log
(

1 +
σ2

x,l

σ2
n
‖ fl

(
{rp}

)
‖2

2

)
, s. t. ‖rl‖2

2 = 1, l = 1, · · · , M. (6)

According to (6), the design of one layer should take into account of its impact upon all the
lower layers, and for each layer except the last one, there are multiple candidate users. So the
solution of this optimization problem is very complicated. To make it practical, we employ a
suboptimal approach, which conducts a per-layer optimization from high to low and converts
the global optimization (6) into a series of greedy optimization as follows.

r
opt
l = arg max

rl

log
(

1 +
σ2

x,l

σ2
n
‖ fl

(
{rp}

)
‖2

2

)
, s. t. ‖rl‖2

2 = 1, l = 1, · · · , M. (7)

When processing one layer, say layer l, we disregard its impact upon other layers and just
maximize the power in h̄l . Specifically, we suppose all the rest users as candidates, and
generate their own receive filters according to some proper criterion. Thus, for layer l and user

k, the equivalent channel row vector, denoted by h̃
equi
l,k , can be obtained. Here, H̄

null
l−1 represents

the subspace orthogonal to that spanned by {h̃
H
p , p = 1, · · · , l − 1}, and the projection power

of h̃
equi,H
l,k onto H̄

null
l−1 is interpreted as user k’s residual channel gain in layer l. Then, the user

with the largest residual channel gain is selected and placed into layer l. In this way, all the
users can be arranged into the sequence of layers and {h̄l , l = 1, · · · , M} can be obtained
sequentially. Within this per-layer approach, the key is how to design the receive filters. For

layer l and user k, we denote H̄
(l)
k as the projection of HH

k onto H̄
null
l−1 , then the optimal receive

filter rk,l can be obtained by

r
opt
l,k = arg max

r
‖r

(
H̄

(l)
k

)H‖2
2, s. t. ‖r‖2

2 = 1. (8)

The solution of this maximization problem can be given by the theory of Rayleigh

quotient (Horn & Johnson, 1985). That is, r
opt
l,k is the conjugate transpose of the eigenvector

corresponding to the maximum eigenvalue of the matrix
(
H̄

(l)
k

)H
H̄

(l)
k . In essential, this

processing method aims to maximize power gain and diversity gain of each layer through the
design of receive antenna beamforming (RAB). The per-layer RAB scheme is summarized in
Table 1-a. Therein EVD(·) returns the set of eigenvalues and eigenvectors, and Householder(·)
returns the Householder matrix. IN stands for an N × N identity matrix.
By this scheme, the user ordering {πl}, the receive filters {r̂l}, and the transmit filter

F̂ = F(M) · · · F(1) are all generated. However, the operations of eigenvalue decomposition
(EVD) still consume a certain complexity. To further reduce the complexity and employ
less analog chains at the receivers (Gorokhov et al., 2003), RAB can be replaced by receive
antenna selection (RAS). Specifically, for a layer and a candidate user, instead of computing
the the eigenvector, we just select the receive antenna whose equivalent channel vector has
the maximum Euclidean norm, as shown in Table 1-b.
Remarks:

• For each layer, the aim of the receive filter design is to adjust the weights of receive
antennas to maximize the power in the equivalent channel vector’s component orthogonal
to the higher layers’ dimensions (i.e., ‖h̄l‖2

2), but not the power in the equivalent channel

vector itself (i.e., ‖h̃l‖2
2).
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(a) The scheme of per-layer RAB (b) The scheme of per-layer RAS
Given all user’s N × M channel matrices Hk, Given all user’s N × M channel matrices Hk,
k = 1, 2, · · · , M. k = 1, 2, · · · , M.
Initialization: The candidate user set Initialization: The candidate user set
Φ = {1, 2, · · · , M}, Φ = {1, 2, · · · , M},

F(0) = IM, H̄
(0)
k = HH

k , k = 1, 2, · · · , M. F(0) = IM, H̄
(0)
k = HH

k , k = 1, 2, · · · , M.
For the layer index l : 1 → M For the layer index l : 1 → M

For the user index k ∈ Φ For the user index k ∈ Φ

H̄
(l)
k = F(l−1)H̄

(l−1)
k H̄

(l)
k = F(l−1)H̄

(l−1)
k

H̄
(l),proj
k is comprised by the H̄

(l),proj
k is comprised by the

lth to Mth rows of H̄
(l)
k lth to Mth rows of H̄

(l)
k

{[λn un], n = 1, · · · , N} = pn is the Euclidean norm of

EVD
(
(H̄

(l),proj
k )HH̄

(l),proj
k

)
the nth column of H̄

(l),proj
k

nmax = arg maxn{λn} nmax = arg maxn{pn}
rk = uH

nmax
rk is a 1 × N vector, [0, · · · , 0, ⋆]

λ(k) = λnmax p(k) = pnmax

end end

k̃ = arg maxk∈Φ{λ(k)} k̃ = arg maxk∈Φ{p(k)}
Φ = Φ\{k̃} Φ = Φ\{k̃}
πl = k̃ πl = k̃
r̂l = r

k̃
r̂l = r

k̃

h̄l is comprised by the lth to Mth rows of H̄
(l)

k̃
rH

k̃
h̄l is comprised by lth to Mth rows of H̄

(l)

k̃
rH

k̃

F(l) =

[
Il−1 0(l−1)×(M−l+1)

0(M−l+1)×(l−1) Householder(h̄l)

]
F(l) =

[
Il−1 0(l−1)×(M−l+1)

0(M−l+1)×(l−1) Householder(h̄l)

]

end end

Table 1. The schemes of per-layer RAB and per-layer RAS.

• In the successive mechanism of THP, the higher a layer, the less it costs for the interference
suppression. In the per-layer schemes, the users with large residual channel gains are
placed into the high layers. In this way, the power wasted in the interference suppression
can be decreased, but the power contributing to the sum-capacity can be increased.

• As a suboptimal solution of (8), per-layer RAS is inferior to per-layer RAB. However, for
the sake of practice, in per-layer RAS only the indexes of the selected antennas should be
informed to the receivers, but in per-layer RAB, the counterparts are the designed receive
filter weights.

3.3 Comparison between per-layer RAB and RAS

Here, we do not order the users and consider the lth layer’s projected channel matrix
(
H̄

(l),proj
k

)H
, ∀k, whose entries have i.i.d. CN(0, 1) distribution. Using per-layer RAB, the

equivalent channel gain is the square of its maximum singular value, while using per-layer
RAS, the equivalent channel gain is the square of its maximum row vector’s Euclidean norm.
We denote these two kinds of channel gains by δ2

RAB(l) and δ2
RAS(l), respectively. With the

decrease of l, the relative difference between δ2
RAB(l) and δ2

RAS(l) tends to decrease, which
can be deduced below.
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Theorem 1. Given a 2 × n matrix A such that all its entries have i.i.d. CN(0, 1) distribution. Denote
the eigenvalues of AA

H as λ′
i, i = 1, 2. Let λ1 � maxi{λ′

i}, λ2 � mini{λ′
i}, and denote ∆λ �

λ1 − λ2. Then with n → ∞, the ratio E(∆λ)/E(λ1) → 0.

Proof: By the bidiagonalization (Th. 3.4 in (Wang et al., 2006)), A is unitarily similar to a
lower-triangular matrix Λ, where

Λ �

[
x2n 0 · · · 0
y2 x2(n−1) · · · 0

]
, (9)

x2
2n , x2

2(n−1)
and y2

2 are independent chi-square distributed random variables with the degrees

of freedom 2n, 2(n − 1) and 2, respectively. Then,

AAH = ΛΛH =

[
x2

2n x2ny2

x2ny2 x2
2(n−1)

+ y2
2

]
. (10)

Therein we denote a new chi-square random variable y2
2n � x2

2(n−1) + y2
2. Further, the

eigenvalues of AAH can be obtained as

λ1,2 =
x2

2n + y2
2n

2
±

√

x2
2ny2

2 +
( x2

2n + y2
2n

2

)2 − x2
2ny2

2n. (11)

Substitute x2
2n + y2

2n by x2
4n , then

∆λ = 2

√

x2
2ny2

2 +
( x2

4n

2

)2 − x2
2ny2

2n. (12)

E(∆λ) ≤
√

E
(
(∆λ)2

)
= 2

√

E
(
x2

2ny2
2

)
+ E

(( x2
4n

2

)2
)
− E

(
x2

2ny2
2n

)
. (13)

According to the character of chi-square distribution (Horn & Johnson, 1985), we have

E
(
x2

2ny2
2

)
= E

(
x2

2n

)
E
(
y2

2

)
= 2n · 2 = 4n, (14)

E
(( x2

4n

2

)2
)

=
4n(4n + 2)

4
= 4n2 + 2n, (15)

E
(
x2

2ny2
2n

)
= E

(
x2

2n

)
E
(
y2

2n

)
= 2n · 2n = 4n2. (16)

Plunging to (13),

E(∆λ) ≤ 2
√

6n. (17)

On the other hand,

E(λ1) ≥ E

(
x2

2n + y2
2n

2
+

√
( x2

2n + y2
2n

2

)2 − x2
2ny2

2n

)
= E

(
x2

2n

)
= 2n. (18)
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So E(∆λ)/E(λ1) ≤
√

6n−1/2.
With n → ∞,

√
6n−1/2 → 0. Considering E(∆λ)/E(λ1) ≥ 0, it can be concluded that with

n → ∞, E(∆λ)/E(λ1) → 0.
�

Corollary 1. Given the same conditions as Theorem 1. Additionally denote the row vectors of A as ai,
i = 1, 2. Then with n → ∞, the ratio E(λ1 − maxi ‖ai‖2

2)/E(λ1) → 0.

Proof: By the character of Rayleigh quotient (Horn & Johnson, 1985), ∀r ∈ C1×2, rrH = 1, the
maximum and minimum values of rAAHrH are λ1 and λ2, respectively. Let r′ = [0 1] or
r′ = [1 0], then the value of r′AAHr′H is surely between λ1 and λ2. Obviously, r′AAHr′H is
equivalent to ‖ai‖2

2, i = 1, 2. Thus,

0 ≤ λ1 − max
i

‖ai‖2
2 ≤ ∆λ. (19)

According to Theorem 1, with n → ∞, the ratio E
(
λ1 − maxi ‖ai‖2

2

)
/E(λ1) → 0.

�

According to Corollary 1, when the number of transmit antennas K tends to be infinite, from
the bottom layer (l = K) to the top layer (l = 1), the relative difference between δRAB(l) and

δRAS(l), denoted by ∆Gl �
(
δRAB(l)− δRAS(l)

)
/δRAB(l), tends to decrease until zero.

Next, consider the capacity of each layer in both per-layer RAB and per-layer RAS. Denote the
capacities of layer l in these two schemes as CRAB

l and CRAS
l , respectively, and denote their

difference as ∆Cl � CRAB
l − CRAS

l . Let n = K − l + 1, which means the degree of freedom

in layer l, then ∆Cl can be rewritten as ∆C(n). Denote γ � σ2
x /σ2

n . In the medium and high
(SNR) scenarios, the characteristic of ∆C(n) is described in the following corollary.

Corollary 2. Given the same conditions as in Corollary 1,

E
(
∆C(n)

)
= E

(
log

(
1 + γλ1(n)

)
− log

(
1 + γ max

i
‖ai(n)‖2

2

))
. (20)

In the medium and high SNR scenarios, with n → ∞, it holds that E
(
∆C(n)

)
→ 0.

The details of the proof of Corollary 2 are omitted due to page limit2. Then, we consider the
low SNR scenarios, where γ → 0,

E
(
∆C(n)

)
≈ E

(
γλ1(n)− γ max

i
‖ai(n)‖2

2

)
≤ E

(
γ∆λ(n)

)
. (21)

From (17), it can be inferred that in the low SNR scenarios E
(
∆C(n)

)
increases with n. This

trend is opposite to that in the medium and high SNR scenarios.
Theorem 1 and its corollaries indicate the case of a two-row matrix, which corresponds to the
scenarios with two receive antennas at each receiver. Thus, a conclusion can be drawn that
when the number of transmit antennas increases infinitely, both ∆Gl and ∆Cl (at medium and
high SNR) in those high layers will asymptotically tend to zero. This implies that in the case of
a large number of transmit antennas, for those higher layers, whether applying RAB or RAS,
the differences of channel gains could be approximately negligible, but RAS consumes much
less complexity.

2 Please refer to (Huang et al., 2010).
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Scheme Layer 1 Layer 2

per-layer RAB λ̃max,2
M−2l+2 λ̃max,2

M−2l+1

per-layer RAS p̃max,2
M−2l+2 p̃max,2

M−2l+1

per-user λ̃max,2
M−2l+2 λ̃min,2

M−2l+2

Table 2. The equivalent channel gains of a unit in per-layer RAB, per-layer RAS and per-user
processing.

3.4 Comparison with per-user processing

We still consider the case of two receive antennas for each receiver. In the per-user processing,
each receiver owns a group of two adjacent layers, represented by a 2 × M channel matrix.
The channel matrices of lower groups should be orthogonally projected onto those of higher
groups. Hence the equivalent channel matrix for group l, which includes layers 2l − 1 and 2l,
is a 2 × (M − 2l + 2) matrix, and all its entries can be assumed to be i.i.d. CN(0, 1) random
variables. Here, each group of two adjacent layers is interpreted as a basic unit. For the lth
unit, the two equivalent channel gains are the squares of singular values of a 2× (M − 2l + 2)

matrix, denoted by λ̃max,2
M−2l+2 and λ̃min,2

M−2l+2, respectively.
Accordingly, we also bind every two adjacent layers as a unit in both per-layer RAB and
per-layer RAS schemes. In this way, for the lth unit, in per-layer RAB, one equivalent channel
gain equals the square of the maximum singular value of a 2 × (M − 2l + 2) matrix, and
the other equals the square of the maximum singular value of a 2 × (M − 2l + 1) matrix,

denoted by λ̃max,2
M−2l+2 and λ̃max,2

M−2l+1, respectively; while in per-layer RAS, they are the squares

of the maximum row-norm of a 2 × (M − 2l + 2) matrix and the maximum row-norm of

a 2 × (M − 2l + 1) matrix, denoted by p̃max,2
M−2l+2 and p̃max,2

M−2l+1, respectively. The equivalent
channel gains of a unit in these three schemes are summarized in Table 2.
Remarks:

• In layer 1, per-layer RAB and per-user processing have the same equivalent channel gain,
which is larger than that of per-layer RAS.

• In layer 2, the chances of exploiting the maximum singular value or the maximum
row-norm still exist in per-layer RAB and per-layer RAS; while in per-user processing only
the minimum singular value is used, and hence, the diversity gain is lost.

Based on the above observations, per-layer RAB outperforms the other two schemes evidently.
But the relation between per-layer RAS and per-user processing is indistinct. We analyze
two extreme cases: with very low SNR, where the maximum sum-capacity is approximately
achieved by allocating all the signal power into the best layer, or with very high SNR, where
by allocating the power into all the layers averagely (Tse & Viswanath, 2005).

It can be derived from (19) that E
(

p̃max
K−2l+2

)
< E

(
λ̃max,2

K−2l+2

)
, thus, at low SNR, per-layer RAS

has smaller sum-capacity than per-user processing.
At very high SNR, the capacity depends on the product of the channel gains of two layers.
Let n = K − 2l + 2, then the lower bounds can be developed in Appendix A that for per-user

processing E
(
λ̃max,2

n λ̃min,2
n

)
≥ 4n2 − 6n and for per-layer RAS E

(
p̃max,2

n p̃max,2
n−1

)
≥ 4n2 − 4n.

Though the tightness of these two lower bounds are not proved, the advantage of per-layer
RAS over per-user processing at high SNR can be additionally validated by the simulation
results in Subsection 5.1.

246 MIMO Systems, Theory and Applications

www.intechopen.com



4. Stream-wise MMSE-THP design and analysis

In this section, we firstly propose our joint THP transceiver design under perfect CSIT
using a minimum total mean square error (MT-MSE) criterion. Using convex analysis for
the optimization problem we derive the necessary conditions for the optimal transceiver in
Subsection 4.1.1. Then the iterative algorithm proposed in (Zhang et al., 2005) is extended in
Subsection 4.1.2 to obtain a locally optimal transceiver. Furthermore, we introduce a robust
THP transceiver design for the multiuser MIMO downlink in Subsection 4.2, which is more
effective against the uncertainty in the CSIT than the above simple solution. The robust
optimization problem is mathematically formulated as minimizing the expectation of the
T-MSE conditioned on the channel estimates at the BS under a total transmit power constraint.
Then the iterative algorithm proposed in Subsection 4.1 is applied to solve the problem.

4.1 Transceiver optimization under perfect CSIT

4.1.1 Problem reformulation

Our design is based on the linear representation (Joham et al., 2004) (see Fig. 3) of the system in
Fig. 2, where the modulo devices at the transmitter and receivers are replaced by the additive

vector a � [aT
1 aT

2 . . . aT
K]T and −ãk, k = 1, ..., K, where a ∈ τ

(
ZL×1 + j · ZL×1

)
and ãk ∈

τ
(
ZLk×1 + j · ZLk×1

)
. The vectors a and ãk are chosen to make the same w and d̃k as the

modulo devices at the transmitter and receivers output respectively.

d
ぃ

L

F

w P

1
H

K
H

1
n

K
n

M
1

N

K
N

1
L

K
L

1
G

K
G

1
d#

K
d#

1
d̂

ˆ
K
d

1
−a#

K
−a#

1
b#

K
b#

a

b

Fig. 3. Equivalent linear representation of THP in Fig. 2.

Define bk � dk + ak and b̃k � d̃k + ãk and stack them into b � [bT
1 . . . bT

K]T and b̃ �

[b̃
T
1 . . . b̃

T
K ]T. Let H �

[
HT

1 ... HT
K

]T
, n �

[
nT

1 ... nT
K

]T
and G � blockdiag (G1, ..., GK), then

from Fig. 3 we have

Πb + Fw = w ⇒ b = Π
T(IL − F)w (22)

and

b̃ = GHPw + Gn. (23)

We consider the MSE between b and b̃ rather than d and d̃ in order to bypass the impact of the
modulo operations and define it as the total MSE (T-MSE) of the downlink, which is written as
follows:

T-MSE = Ew,n

{∥∥b̃ − b
∥∥2

2

}
= Ew,n

{∥∥∥
(

GHP − Π
T(IL − F)

)
w + Gn

∥∥∥
2

2

}

=
∥∥∥GHP − Π

T(IL − F)
∥∥∥

2

F
+ tr(GHGΣn), (24)

247Analysis and Design of Tomlinson-Harashima Precoding for Multiuser MIMO Systems

www.intechopen.com



where Σn � E{nnH} = blockdiag
(

σ2
n,1IN1

, ..., σ2
n,KINK

)
.

So our transceiver design problem is to find a set
{

Π, F, P, {Gk}K
k=1

}
that minimizes the

T-MSE defined in (24) under a total transmit power constraint. Mathematically it can be
formulated as follows:

min
Π, F, P, {Gk}K

k=1

T-MSE

s.t. tr
(

PHP
)

= PT,

[F]m,n = 0, ∀ 1 � m, n � L and m � n. (25)

4.1.2 Iterative algorithm

In this subsection, through some analysis, we find the necessary conditions for the optimal
Π, F, P and {Gk}K

k=1, which form an inter-dependence among them. This kind of
inter-dependence leads to an iterative algorithm similar to the one proposed in (Zhang et al.,
2005). In each iteration, we first determine the suboptimal reordering matrix Π and update P
and F using the updated {Gk}K

k=1 in the last iteration, then update {Gk}K
k=1 using the above

updated Π, P and F.

For ease of derivation, we introduce two new matrix variables T � β−1P and R � βG to
replace P and G, where β is a positive real number. Then (24) is rewritten as

T-MSE =
∥∥∥RHT − Π

T(IL − F)
∥∥∥

2

F
+ β−2 · tr(RHRΣn). (26)

Moreover, using the total power constraint in (25) we obtain

β = P
1
2

T

(
tr(TTH)

)− 1
2

. (27)

Note that F only appears in the first term of (26). We expand the first term of (26) as follows:

∥∥∥RHT − Π
T(IL − F)

∥∥∥
2

F

= ‖ΠRHT − (IL − F)‖2
F (for Π

T
Π = ΠΠ

T = IL) (28)

=
L

∑
i=1

∥∥∥∥
[

Ai

Bi

]
ti − ei + fi

∥∥∥∥
2

2

, (29)

where
[

Ai

Bi

]
= ΠRH, Ai ∈ C

i×M, Bi ∈ C
(L−i)×M, (30)

ti, ei and fi are the ith columns of T, IL and F respectively. The equality in (28) follows from
the fact that the Frobenius norm of a matrix remains constant after the multiplication of a
unitary matrix (Horn & Johnson, 1985). For fixed Π, T and R, each term in the summation in
(29) can be minimized separately. With the lower triangular and zero diagonal structure of F,
the optimal fi that minimizes the ith term of (29) is easily computed as:

fi = −
[

0i×M

Bi

]
ti, i = 1, . . . , L. (31)
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By substituting (27) and (31) into (26), we rewrite the T-MSE as:

T-MSE =
L

∑
i=1

∥∥∥∥
[

Ai

0

]
ti − ei

∥∥∥∥
2

2

+ ξ
L

∑
i=1

tr(tH
i ti), (32)

where ξ � P−1
T ∑

K
k=1 σ2

n,ktr
(
RH

k Rk

)
is a nonnegative real number, i.e., ξ ≥ 0.

For fixed Π and R, the optimization problem in (25) can be reformulated as:

min
T

g(T) �
L

∑
i=1

∥∥∥∥
[

Ai

0

]
ti − ei

∥∥∥∥
2

2

+ ξ
L

∑
i=1

tr(tH
i ti). (33)

Notice that by the introduction of β the power constraint in the original optimization problem
has been absorbed into the objective function, so (33) is an unconstraint optimization problem.
The Hessian matrix of (32) with respect to ti is calculated and shown below:

∇tT
i

[
∇t∗i

g(T)
]

= AH
i Ai + ξIM � 0. (34)

The Hessian matrix in (34) being positive semidefinite indicates that g(T) is convex respect to
ti. Then the optimal ti is derived by calculating the first order derivative with respect to t∗i and
setting it to zero, i.e.,

∂g(T)

∂t∗i
= AH

i Aiti −
[

Ai

0

]H

ei + ξti = 0 ⇒ ti =
(

AH
i Ai + ξIM

)−1 [
AH

i 0
]

ei. (35)

Now we consider the problem of the optimal ordering, i.e., the optimal Π. (32) can be rewritten
as:

T-MSE =
L

∑
i=1

(
tH
i

(
AH

i Ai + ξIM

)
ti − tH

i

[
AH

i 0
]

ei − eH
i

[
Ai

0

]
ti + 1

)
. (36)

Substituting (35) into (36) and after some algebraic manipulations, we rewrite the T-MSE as

T-MSE = L −
L

∑
i=1

tr

(
eH

i

[
Ai

0

] (
AH

i Ai + ξIM

)−1 [
AH

i 0
]

ei

)
. (37)

The T-MSE in (37) is a function of Π for fixed R. An exhaustive search is needed to find
the optimal reordering matrix that minimizes (37). To avoid the high complexity of this
global optimal approach, we adopt a suboptimal successive reordering algorithm that only
maximizes one term of the summation in (37) and starts from the L-th term till the 1st term.
The maximization of the ith term determines the ith row of Π. The procedure of the reordering
algorithm is listed in Table 3.
Till now we have found the suboptimal Π, the optimal F, T and β for fixed R. Next we calculate
the optimal R under fixed Π, F and T.
The T-MSE in (26) can be expanded as the summation of the K users’ MSEs, and the MSE for
the kth user is written as follows:

MSEk = Ew,n

{∥∥b̃k − bk

∥∥2

2

}
=

∥∥∥RkHkT − ET
k Π

T(IL − F)
∥∥∥

2

F
+ ζk · tr(RH

k Rk), (38)

in which Ek �
[
e

∑
k−1
i=1 Li+1, . . . , e

∑
k
i=1 Li

]
and ζk � P−1

T σ2
n,ktr(THT) ≥ 0.
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Initialization:

A = RH, Π = 0L×L, ξ = P−1
T ∑

K
k=1 σ2

n,ktr
(
RH

k Rk

)
.

For i = L : −1 : 1,

M = A
(

AHA + ξIM

)−1
AH .

l∗ = max
1≤l≤L

[M]l,l.

The ith row ßi of Π is obtained as: ßi = eT
l∗ .

Then set the entries of the l∗th row of A to zeros.
end

Table 3. The suboptimal ordering algorithm for THP.

Since Rk is only related to MSEk, the Hessian matrix of T-MSE with respect to Rk is equal to
that of MSEk, which is calculated as

∂

∂(vec(Rk))T

(
∂T-MSE

∂(vec(Rk))∗

)
=

∂

∂(vec(Rk))T

(
∂MSEk

∂(vec(Rk))∗

)

=
(

HkTTHHH
k + ζkINk

)T
⊗ ILk

� 0. (39)

The Hessian matrix in (39) being positive semidefinite indicates that the T-MSE is also convex
with respect to Rk. Then the optimal Rk is calculated in the same way as (35) :

∂T-MSE

∂R∗
k

=
∂MSEk

∂R∗
k

= RkHkTTHHH
k − ET

k Π
T(IL − F)THHH

k + ζkRk = 0.

⇒ Rk = ET
k Π

T(IL − F)THHH
k

(
HkTTHHH

k + ζkINk

)−1
. (40)

As the inter-dependence among the optimal Π, F, T, β and {Rk}K
k=1 has been found, we now

summarize our iterative algorithm in Table 4, where the notations with the superscript (·)(n)

denote the related variables in the nth iteration.
The convergence of our proposed iterative algorithm can be guaranteed. The proof of
convergence is in Appendix B.

4.2 Robust optimization of transceivers under imperfect CSIT

4.2.1 Channel uncertainty model

We consider a TDD system where the BS estimates the CSI using the training sequences in the
uplink. The maximum-likelihood estimate of the actual channel matrix Hk can be modeled as
(Hassibi & Hochwald, 2003) Ĥk = Hk + ∆Hk, where ∆Hk denotes the error matrix whose
entries are i.i.d. complex Gaussian distributed with zero mean and variance σ2

e,k. ∆Hk is
statistically independent of Hk. According to (Kay, 1993), the distribution of Hk conditioned
on Ĥk is Gaussian and can be expressed as

Hk | Ĥk = ρkĤk + ∆H̃k, (41)

where ρk = σ2
h,k/(σ2

h,k + σ2
e,k) and the entries of ∆H̃k are i.i.d. complex Gaussian distributed

with zero mean and variance σ̃2
k = σ2

e,kσ2
h,k/(σ2

h,k + σ2
e,k). We assume that the information of

Ĥk, σ2
h,k and σ2

e,k, k = 1, . . . , K is known at the BS.
Note that the channel uncertainty caused by the slow time-variations of the channel can also
be modeled in the same manner as (41) except that ρk has a different relationship with σ̃2

k
(Khaled et al., 2004).
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Step (1) Set the iteration number n = 0 and initialize Π
(0) = IL and

R
(0)
k = UH

k , where Uk comprises the Lk dominant left singular
vectors of Hk.

Step (2) Set n = n + 1. Calculate the reordering matrix Π̃ using the

algorithm described in Table 3 and R(n−1).

Calculate (37) using Π̃ and R(n−1) and denote the result as C̃.

Calculate (37) using Π
(n−1) and R(n−1) and denote the result as C.

If C̃ � C

Π
(n) = Π̃,

else

Π
(n) = Π

(n−1).
end
Update transmit processing:

t
(n)
i =

(
A

(n),H
i A

(n)
i + ξIM

)−1 [
A

(n),H
i 0

]
ei,

f
(n)
i = −

[
0

B
(n)
i

]
t
(n)
i , i = 1, . . . , L,

and β(n) = P
1
2

T

(
tr(T(n)T(n),H)

)− 1
2
,

where[
A

(n)
i

B
(n)
i

]
= Π

(n)R(n−1)H, A
(n)
i ∈ Ci×M, B

(n)
i ∈ C(L−i)×M,

and ξ = P−1
T ∑

K
k=1 σ2

n,ktr
(

R
(n−1),H
k R

(n−1)
k

)
.

Update receiver processing:

R
(n)
k = ET

k Π
(n),T(IL − F(n))T(n),HHH

k ·(
HkT(n)T(n),HHH

k + ζkINk

)−1
, k = 1, . . . , K,

where ζk = P−1
T σ2

n,ktr(T(n),HT(n)).

Step (3) If ‖ R
(n)
k − R

(n−1)
k ‖2

F≥ ǫ, ∃ k ∈ {1, . . . , K}, then go
to Step (2). Otherwise, stop the iteration and the solution is given by

Π = Π
(n), P = β(n)T(n), F = F(n), β = β(n) and Gk =

(
β(n)

)−1
R

(n)
k .

Table 4. The iterative algorithm for joint THP transceiver design.

4.2.2 Robust optimization problem formulation and iterative algorithm

When only the channel estimates Ĥk, k = 1, . . . , K are available at the BS, the definition of
T-MSE in (26) and MSEk in (38) cannot be directly applied to the transceiver design. Instead,
the expectation of MSE conditioned on Ĥk is an applicable performance measure and provides
the robustness against the channel uncertainties in an average manner (Dietrich et al., 2007;
Shenouda & Davidson, 2007). By (38), the conditional expectation of MSE of user k is expressed

251Analysis and Design of Tomlinson-Harashima Precoding for Multiuser MIMO Systems

www.intechopen.com



as

EHk |Ĥk
{MSEk} = EHk |Ĥk

{∥∥∥RkHkT − ET
k Π

T(IL − F)
∥∥∥

2

F
+ ζk · tr(RH

k Rk)

}

= tr

(
Rk · EHk|Ĥk

{
HkTTHHH

k

}
· RH

k − Rk · EHk |Ĥk
{Hk} · T

(
ET

k Π
T(IL − F)

)H

−ET
k Π

T(IL − F)TH · EHk|Ĥk

{
HH

k

}
· RH

k + ET
k Π

T(IL − F)
(

ET
k Π

T(IL − F)
)H

)

+ ζk · tr(RH
k Rk). (42)

Using (41) it can be easily verified that

EHk|Ĥk
{Hk} = ρkĤk, (43)

EHk |Ĥk

{
HH

k

}
= ρkĤ

H
k . (44)

Next we calculate the quadratic term Qk � EHk |Ĥk

{
HkTTHHH

k

}
. Let Hk =

[
hT

k,1 hT
k,2 . . . hT

k,Nk

]T
, where hk,m is the mth row of Hk. Then the element at the mth row and

nth column of Qk can be written as

[Qk]m,n = EHk |Ĥk

{
hk,mTTHhH

k,n

}
= EHk|Ĥk

{
tr

(
hk,mTTHhH

k,n

)}

= EHk |Ĥk

{
tr

(
hH

k,nhk,mTTH
)}

= tr
(
EHk |Ĥk

{
hH

k,nhk,m

}
TTH

)
. (45)

According to (41), we have

EHk |Ĥk

{
hH

k,nhk,m

}
= ρ2

kĥ
H
k,nĥk,m + E

{
∆h̃

H
k,n∆h̃k,m

}
, (46)

where

E
{

∆h̃
H
k,n∆h̃k,m

}
=

{
σ̃2

k IM, m = n
0. m �= n

Therefore,

[Qk]m,n =

{
ρ2

kĥk,mTTHĥ
H
k,n + σ̃2

k tr
(
TTH

)
, m = n

ρ2
kĥk,mTTHĥ

H
k,n. m �= n

Finally, Qk can be expressed as

Qk = ρ2
kĤkTTHĤ

H
k + σ̃2

k tr
(

TTH
)

INk
. (47)

By substituting (43), (44) and (47) into (42), we can obtain the explicit expression of
EHk |Ĥk

{MSEk} as follows:

EHk |Ĥk
{MSEk} =

∥∥∥ρkRkĤkT − ET
k Π

T(IL − F)
∥∥∥

2

F
+ ζ̃k · tr(RH

k Rk), (48)
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in which ζ̃k � (P−1
T σ2

n,k + σ̃2
k ) · tr(THT). Then the conditional expectation of the T-MSE can be

expressed as:

EH|Ĥ {T-MSE} =
K

∑
k=1

EHk |Ĥk
{MSEk} =

∥∥∥RĤT − Π
T(IL − F)

∥∥∥
2

F
+ ξ̃ · tr(THT), (49)

where Ĥ �
[
ρ1Ĥ

T
1 ... ρKĤ

T
K

]T
and ξ̃ � ∑

K
k=1

(
P−1

T σ2
n,k + σ̃2

k

)
tr

(
RH

k Rk

)
.

Finally, the robust transceiver optimization problem is mathematically formulated as below:

min
Π, F, T, {Rk}K

k=1

EH|Ĥ {T-MSE}

s.t. [F]m,n = 0, ∀ 1 � m, n � L and m � n. (50)

Following the derivation of transceiver design under perfect CSIT, we can easily obtain the
necessary conditions for the optimal robust transceiver under imperfect CSIT as follows. For
fixed Π and R, the optimal fi and ti are listed below:

fi = −
[

0i×M

B̂i

]
ti, (51)

ti =
(

Â
H
i Âi + ξ̃IM

)−1 [
Â

H
i 0

]
ei, i = 1, . . . , L, (52)

where
[

Âi

B̂i

]
= ΠRĤ, Âi ∈ C

i×M, B̂i ∈ C
(L−i)×M. (53)

By substituting (51) and (52) into (49), we reformulate EH|Ĥ {T-MSE} as:

EH|Ĥ {T-MSE} = L −
L

∑
i=1

tr

(
eH

i

[
Âi

0

] (
Â

H
i Âi + ξ̃IM

)−1 [
Â

H
i 0

]
ei

)
. (54)

Then the suboptimal successive ordering algorithm presented in Table 3 can be applied with

H replaced by Ĥ and the expression of ξ replaced by ξ̃ = ∑
K
k=1

(
P−1

T σ2
n,k + σ̃2

k

)
tr

(
RH

k Rk

)
.

For fixed Π, F and T, the optimal Rk is given by

Rk = ρkET
k Π

T(IL − F)THHH
k

(
ρ2

kHkTTHHH
k + ζ̃kINk

)−1
. (55)

Now that we have found the inter-dependence among Π, F, T and {Rk}K
k=1 as shown in

(51)-(55), the thread of the iterative algorithm proposed in Subsection 4.1 can be again adopted
here to compute the robust transceiver. In each iteration, we first determine the suboptimal
reordering matrix Π and update T and F using {Rk}K

k=1 updated in the last iteration, then

update {Rk}K
k=1 using the above updated Π, T and F until convergence. The formulation of

the algorithm is similar to that described in Table 4 except for some notation and expression
changes so we do not list the details of the modified algorithm.
The convergence of the iterative algorithm is also guaranteed. The proof of convergence is
also similar to that in Appendix B.
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Fig. 4. The cumulative distribution function of equivalent channel gains of four layers
applying per-layer RAB and RAS in (2 × 4) × 4 systems.

5. Simulation results

In this section, we will present some simulation results to verify the effectiveness of our
proposed per-layer ZF-THP schemes and stream-wise MMSE-THP schemes, respectively.

5.1 Results of per-layer ZF-THP

We consider the system settings of one transmitter with M antennas and M receivers each with
N antennas, denoted by (N × M) × M. For comparison, we also simulate the performance of
the parallel linear-ZF precoding where each user combines its receive antennas according to
the eigenmode, and the performance of the per-user processing which selects ⌈ M

N ⌉ users with
the largest channel gains and allocates each of them with N adjacent layers.
Fig. 4 and Fig. 5 compare the equivalent channel gains and capacities respectively of the four
layers by per-layer RAB and RAS with the equal power allocation among layers. Here, we
place users into layers according to their indexes, i.e., πl = l, l = 1, · · · , 4. It can be found that
for the layers from 4 to 1, the relative differences of channel gains between these two schemes
gradually decrease, though the rates of decreasing get slower. At the same time, the order of
layers according to the differences of channel capacities between per-layer RAB and per-layer
RAS exhibits two results. When SNR<3dB, the capacity difference is the largest in layer 1, and
the smallest in layer 4. On the contrary, when SNR>7dB, the order from large to small is layer
4 to layer 1. These results are consistent with Corollary 1 and 2.
In Fig. 6, the rate regions of the (2 × 2) × 2 systems are considered, whose boundaries are
generated by averaging channel realizations. For THP, the rate regions are asymmetric, which
means the higher layer has the larger capacity than the lower one. With the ideal power
allocation among layers, the order of the maximum sum-capacities from large to small is RAB,
RAS, per-user, and linear-ZF.
In Fig. 7, the ergodic sum-capacity of the (2 × 4) × 4 system is evaluated. Here, in order to
achieve the potential sum-capacity, the water-filling power allocation (Tse & Viswanath, 2005)
among layers is applied. Among these four curves, the advantage of THP over linear-ZF, and
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the advantage of RAB over RAS and per-user are obvious; the curves of RAS and per-user
are intersected at SNR≈5dB, i.e., when SNR<5dB, per-user outperforms RAS, but when
SNR>5dB, it is the opposite.
To sum up, the essential of these comparison results among THP schemes is as follows.

• With the larger power gain and diversity gain, per-layer beamforming outperforms
per-user processing.

• Per-layer RAS and per-user processing actually exploit the same number of receive
antennas, though for the former, these antennas belong to K users, while for the latter,
they belong to ⌈ K

N ⌉ users. In the low SNR scenarios, per-user method can obtain larger
power gains due to its dominant intra-user processing and less inter-user interference
suppression. However, in the high SNR scenarios, this effect of power gains makes trivial
contribution to the system sum-capacity, but the larger multiuser and multi-antenna
selection diversity gain in per-layer RAS turns to the dominant factor.

5.2 Results of stream-wise MMSE-THP

In this subsection, some results are presented to show the performance superiority of our
proposed joint stream-wise THP transceiver designs in comparison with some existing THP
schemes. The illustration is divided into two parts. The first part illustrates the performance
under perfect CSIT and the second part focuses on the performance under imperfect CSIT. We
assume quasi-static i.i.d. Rayleigh flat fading channel with unit channel variance between each
transmit antenna at the BS and each receive antenna at each user. We also assume σ2

n,k = 1, k =

1, . . . , K. The signal-to-noise ratio (SNR) in the following figures is defined as SNR � 10 ·
log10PT. QPSK or 16-QAM modulations are used in the simulations. We set the convergence

threshold in the iterative algorithms ǫ = 10−5.
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5.2.1 Performance under perfect CSIT

We examine the performance of our proposed joint THP transceiver design under perfect CSIT
in comparison with some existing MMSE-based THP schemes.
Figs. 8-9 compare our proposed stream-wise THP transceiver (denote as “SW-THP”) with
the user-wise THP transceiver in (Mezghani et al., 2006) (denoted as “UW-THP”) and
“TxWF-THP” in (Joham et al., 2004) in terms of average uncoded bit error rate (BER). In
Fig. 8, we set M = 6, K = 3, Nk = N = 2, Lk = L = 2, ∀k and use QPSK. For
“TxWF-THP” we assume that the 2 antennas at the same receiver are decentralized, i.e., there
are 6 virtual users in the system. From the simulation results we can see that our scheme
clearly outperforms the other two schemes. The superiority over “UW-THP” comes from
that our scheme performs stream-wise interference pre-cancelation while “UW-THP” only
enables inter-user interference pre-cancelation and multiple streams of the same user are
linearly precoded. Moreover, our scheme outperforms “TxWF-THP” because in our scheme
the received signals from multiple antennas of one user can be jointly processed while in
“TxWF-THP”, the receive antennas of the same user are assumed to be decentralized and
a common scaling factor is imposed for each single receive antenna, which is apparently
suboptimal.
In Fig. 9, we increase N by 1 and keep the other parameters unchanged. Since N > L,
“TxWF-THP” cannot be directly applied. Here we simply select UH

k as the receiver for user

k, where Uk comprises the Lk dominant left singular vectors of Hk, then apply UH
k Hk as the

equivalent Lk × M channel matrix, which is suitable for implementation of “TxWF-THP”. It is
shown in this figure that our scheme still performs best.
It is an interesting phenomenon that the comparison results of “UW-THP” and “TxWF-THP”
in Fig. 8 and 9 are just opposite, so are those for 16-QAM3. This can be explained that for Fig. 8,
more interferences are pre-canceled in “TxWF-THP” than in “UW-THP”. For Fig. 9, however,

3 Due to page limit, we don’t show the results of 16-QAM here. Please refer to (Miao et al., 2009).
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the additional receive antenna at each user provides more diversity for each data stream
in “UW-THP” through joint transceiver design while the simple and suboptimal receiver
structure we have adopted for “TxWF-THP” restricts its performance improvement.
We also present some simulation results to verify the convergence of our proposed iterative
algorithm. We use the notation [M, N1(L1), ..., NK(LK)] to denote a K-user MIMO system that
has M antennas at the BS and Nk antennas at the kth receiver to support Lk data streams for
user k, k = 1, ..., K. Fig. 10 shows the average uncoded BER of 16-QAM versus the number
of iterations for our scheme under two system configurations at a fixed SNR = 22dB. The
dashed lines denote the steady state performance. It can be seen that after about 10 iterations
(for [6, 2(2), 2(2), 2(2)]) or 25 iterations (for [6, 3(2), 3(2), 3(2)]) the BER performance is quite
close to the steady state performance. Similar results hold for QPSK, thus are not shown here
for brevity.

5.2.2 Performance under imperfect CSIT

In this subsection, we examine the performance of SW-THP introduced in Subsection 4.1 and
the robust version of SW-THP introduced in Subsection 4.2 under imperfect CSIT.
Fig. 11 compare “SW-THP” and “Robust SW-THP” for M = 6, K = 3, Lk = 2, Nk =
N = 2 and 3 (the parameters are consistent with those in Subsection 5.1). We assume
σ2

e,k = σ2
e = 0.01, k = 1, . . . , K for 16-QAM. It can be seen that the non-robust and robust

schemes have close performance at low SNR since the noise is dominant in this regime.
However, the gap between the two schemes enlarges as the SNR increases because the channel
uncertainty gradually dominates and the efficacy of the robust scheme shows up.
In Fig. 12 we test the performance of “SW-THP” and “Robust SW-THP” under different
channel errors. The antenna configurations are the same as above, i.e., M = 6, K = 3, Lk =
2, Nk = N = 2 and 3. We fix SNR = 40 dB, and change σ2

e from 0.01 to 0.1 for 16-QAM
in Fig. 12. The simulated curves reveal that “Robust SW-THP” always holds a considerable
superiority over the non-robust “SW-THP” as the channel error increases.
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We also compare our robust THP scheme with “Statistically Robust Tomlinson-Harashima
precoding” (denoted as “Stat. Robust THP”) reported lately in (Shenouda & Davidson, 2007).
The results are shown in Fig. 13. We choose M = 4, K = 2, Lk = L = 2, Nk = N = 2. For
16-QAM we set σ2

e,k = σ2
e = 0.005 and 0.01. Since “Stat. Robust THP” is designed only for the

MISO downlink, it cannot be directly applied here. So for “Stat. Robust THP”, we assume that
the 2 antennas at the same receiver are decentralized, i.e., there are 4 virtual users in the system.
From Fig. 13 we can find out that “Robust SW-THP” outperforms “Stat. Robust THP” in the
entire SNR regime and also has a much lower BER floor at high SNR. The advantage of our
scheme comes from two aspects. First, we jointly optimize the transmitter, the receivers and
the precoding order with consideration of the channel errors. In contrast, only the transmitter
of “Stat. Robust THP” is robustly designed and the receivers and the precoding order are
determined as if the estimated CSI was the true one. Second, the received signals from the
two antennas of the same user can be jointly processed using “Robust SW-THP” but can only
be processed independently by “Stat. Robust THP”.

6. Conclusions

In this chapter, the multiuser MIMO downlink systems with THP based on ZF and MMSE
criteria have been investigated, respectively.
For the ZF-THP schemes, based on the criterion of maximum system sum-capacity, two
per-layer joint transmit and receive filters design schemes have been studied, which apply
RAB and RAS, respectively. Furthermore, the comparison between equivalent channel gains
and capacities within these two per-layer schemes have been proved, including the trend with
the layers from low to high and the trend with the increase of the number of transmit antennas
to infinite.
For the MMSE-THP schemes, we have jointly designed the THP transceiver under both
perfect and imperfect CSIT. First, we deal with the perfect CSIT case. Based on the equivalent
linear representation of the THP downlink, we formulate a T-MSE minimization problem
under the total power constraint. After some analysis, an iterative algorithm is proposed to
obtain a locally optimal solution. Next, we consider the imperfect CSIT case. By minimizing
the conditional-expectation of the T-MSE, we extend the algorithm derived under perfect
CSIT to the robust version that is more effective against the channel uncertainty. The two
characteristics of our schemes, i.e., the stream-wise interference pre-cancelation and the joint
design of transceiver, ensure its performance superiority over the existing MMSE-based THP
schmes, which has been verified by the simulation results.4

7. Appendix

7.1 Appendix A: Lower bounds for per-user processing and per-layer RAS

Derived from the proof of Theorem 1, E
(
λ̃max,2

n − λ̃min,2
n

)2
= 24n. Besides,

E
(
λ̃max,2

n + λ̃min,2
n

)2 ≥
[

E
(
λ̃max,2

n + λ̃min,2
n

)]2
= (4n)2. (56)

4 This work is partially supported by National Basic Research Program (2007CB310608), National Science
and Technology Pillar Program (2008BAH30B09), National Natural Science Foundation of China
(60832008), National Major Project (2008ZX03O03-004), China 863 Project (2009AA011501) and PCSIRT.
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For per-user processing,

E
(
λ̃max,2

n λ̃min,2
n

)
=

1

4

[
E
(
λ̃max,2

n + λ̃min,2
n

)2 − E
(
λ̃max,2

n − λ̃min,2
n

)2
]
≥ 4n2 − 6n. (57)

For per-layer RAS, due to the operations of maximization,

E
(

p̃max,2
n p̃max,2

n−1

)
≥ E

(
x2

2nx2
2n−2

)
= 2n · (2n − 2) = 4n2 − 4n, (58)

where x2
2n and x2

2n−2 stand for two chi-square distributed random variables with 2n and 2n− 2
degrees of freedom, respectively.

7.2 Appendix B: Proof of convergence of the proposed iterative algorithm

We use the notation f
(

Π
(n), F(n), T(n), R(n)

)
to represent the T-MSE calculated after the nth

iteration of our iterative algorithm. If we fix Π
(n) and R(n), and update F(n) and T(n) using the

optimal conditions derived in (31) and (35), then due to the convexity of T-MSE with respect
to ti, we have the following inequality:

f
(

Π
(n), F(n), T(n), R(n)

)
� f

(
Π

(n), F′, T′, R(n)
)

, (59)

where F′ and T′ are the updated matrices using Π
(n) and R(n).

We define h (Π, R) � min
F,T

f (Π, F, T, R). Obviously h (Π, R) is equal to (37). From the definition

of h we know that

h
(

Π
(n), R(n)

)
= f

(
Π

(n), F′, T′, R(n)
)

. (60)

We denote the permutation matrix calculated using R(n) and the suboptimal ordering
algorithm in Table 3 as Π

′. As stated in Table 4, if Π
′ leads to a smaller value of (37) than

Π
(n), then Π

(n+1) = Π
′. Otherwise, Π

(n+1) = Π
(n). Then the following inequality holds:

h
(

Π
(n), R(n)

)
� h

(
Π

(n+1), R(n)
)

. (61)

From the definition of h and iteration procedure, we have:

h
(

Π
(n+1), R(n)

)
= f

(
Π

(n+1), F(n+1), T(n+1), R(n)
)

. (62)

Since f is also convex with respect to Rk, the following inequality holds:

f
(

Π
(n+1), F(n+1), T(n+1), R(n)

)
� f

(
Π

(n+1), F(n+1), T(n+1), R(n+1)
)

Combing (59)-(63) we finally get:

f
(

Π
(n+1), F(n+1), T(n+1), R(n+1)

)
� f

(
Π

(n), F(n), T(n), R(n)
)

. (63)

The inequality in (63) indicates that during the iterations of our proposed iterative algorithm,
the T-MSE is decreasing. Moreover, T-MSE is obviously lower bounded by 0. Therefore, the
iterative algorithm guarantees the convergence.
Thus, we have completed the proof. �
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