
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322393904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Emmanuelle Sarrouy and Jean-Jacques Sinou
Laboratoire de Tribologie et Dynamique des Systèmes UMR-CNRS 5513

Ecole Centrale de Lyon, 36 avenue Guy de Collongue 69134 Ecully Cedex

France

1. Introduction

Due to the fact that non-linear dynamical structures are encountered in many areas of science

and engineering, strong developments in the treatment of non-linear differential equations

have been proposed and various computational techniques are commonly applied in a wide

range of mechanical engineering problems.

The most common techniques for predicting the non-linear behaviour of systems are based on

numerical integration over time. However, the use of these methods for non-linear systems

with many degrees of freedom can be rather expensive and requires considerable resources

both in terms of computation time and data storage. Due to the complexity of non-linear

systems and to save time, approximate methods for the study of non-linear oscillating systems

described by ordinary non-linear differential equations are usually required. In this category,

the most popular methods for approximating the stationary non-linear responses of systems

are the harmonic balance methods. The principal idea for these non-linear methods is to

replace the non-linear responses and the non-linear forces in the dynamical systems by

constructing linear functions such as Fourier series. The main objective of these non-linear

methods is to extract and characterize the non-linear behaviours of mechanical systems by

using non-linear approximations.

In this chapter, the general formulation and extensions of the harmonic balance method will

be presented. The chapter is divided into four parts. Firstly we propose to present the

general formulation and the basic concept of the harmonic balance method to find periodic

oscillations of non-linear systems. Secondly a generalization of the method is exposed to treat

quasi-periodic solutions. Thirdly, a condensation procedure that keeps only the non-linear

degrees of freedom of the mechanical system is described. This technique may be of great

interest to reduce the original non-linear system and to calculate the dynamical behaviour

of non-linear systems with many degrees of freedom. The last part presents the classical

continuation procedures that let us follow the evolution of a solution as a system parameter

varies. For these two steps procedures, several prediction methods (secant, tangent and
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Lagrange polynomial methods) and correction methods (arc length, pseudo arc length and

Moore-Penrose methods) are detailed.

2. General theory of the harmonic balance method

The most general formulation for a non-linear dynamical system is

Mq̈ + Cq̇ + Kq + f̂ (t, q, q̇) = f
e
(t) (1)

where M, C and K are respectively the mass, damping (including gyroscopic effects if any)

and stiffness matrices, f̂ (t, q, q̇) stands for the non-linear effects in the system and f
e
(t) the

external forces. q is the displacement vector with size n. Looking for periodic solutions q(t)
with a determined period T, it is legitimate to look for the signal as a Fourier series which

is truncated for the sake of the numerical application. Thus we assume that the non-linear

dynamical response of the system may be approximated by finite Fourier series with ω = 2π
T

the fundamental pulsation:

q(t) =
a0√

2
+

m

∑
k=1

(ak cos(kωt) + bk sin(kωt)) (2)

where m is the order of the Fourier series. a0, ak and bk define the unknown coefficients of the

finite Fourier series. It should be noted that these coefficients define q̇ and q̈ too.

The number of harmonic coefficients is selected on the basis of the number of significant

harmonics expected in the non-linear dynamical response. Generally speaking, harmonic

components become less significant when m increases. This formulation includes only

harmonic and super-harmonic responses of the system. Some terms can be added to take

sub-harmonics (with pulsation k′
l ω) into account. So as to keep simple equations these terms

will not be included in the following sections.

In order to determine the value of the n × (2m + 1) unknowns, the decomposition (2) is

reinjected in (1); the time variable is then removed by projecting the resulting system onto

the basis (1/
√

2, cos(kωt), sin(kωt))(k=1,...,m) using the scalar product:

< f , g >T=
2

T

∫ T

0
f (t)g(t)dt (3)

This leads to a set of n × (2m + 1) non-linear (non-differential) equations that can be solved

using a dedicated algorithm such as Broyden method (Broyden, 1965):

H(x̃) = H
l

x̃ + Ĥ(x̃)− He = 0 (4)

where x̃ regroups the unknowns a0, ak and bk,

x̃ =
{

aT
0 aT

1 bT
1 . . . aT

m bT
m

}T
, (5)

H
l

contains the contribution of the linear part of (1), Ĥ(x̃) is the projection of the non-linear

part and He the one of the external forces. For further use, the following quantities are
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defined: first, the blocks of the H
l

(block diagonal) matrix

H
l
=

⎡

⎢
⎢
⎢
⎢
⎣

Λ0 0 . . .

0 Λ1 0 . . .

. . . 0 Λk 0

. . . 0 Λm

⎤

⎥
⎥
⎥
⎥
⎦

, (6a)

Λ0 = K ∈ Mn(R) (6b)

∀ k ∈ {1, . . . , m}, Λk =

[

K − (kω)2M (kω)C

−(kω)C K − (kω)2M

]

∈ M2n(R) (6c)

Then, the approximation of the non-linear contribution using its projections c0, ck and dk onto

1/
√

2, cos(kωt) and sin(kωt) respectively is written as follow:

f̂ (t, q, q̇) ≈ c0√
2
+

m

∑
k=1

(ck cos(kωt) + dk sin(kωt)) (7)

Using this notations, Ĥ(x̃) is the vector

Ĥ(x̃) =
{

cT
0 cT

1 dT
1 . . . cT

m dT
m

}T
(8)

Cameron and Griffin (Cameron & Griffin, 1989) suggested to compute these quantities using

an alternate frequency/time domain (AFT) method. First, an Inverse Fast Fourier Transform

(IFFT) is used to recompose q(tj) and q̇(tj) from a0, ak, bk coefficients for some tj ∈ [0, T]. Then,

for each time step tj the f̂ (tj, q(tj), q̇(tj)) vectors are computed and c0, ck and dk projections

are finally obtained using a Fast Fourier Transform (FFT) to switch back into the frequency

space.

Usually, the external forces are T-periodic and there is no numerical computation required to

obtain the He vector.

3. Extension of the Harmonic Balance Method for multiple excitations

Now, the general case in which the structural system is excited by several incommensurable

frequencies ω1, ω2, . . . , ωp is discussed. The previous non-linear dynamical equation (1) is

considered with multiple excitations contained in the external excitation forces f
e
(t). So,

non-linear responses are no longer periodic when oscillatory systems are subjected to p

incommensurable frequencies. The non-linear oscillations contain the frequency components

of any linear combination of the incommensurable frequency components

k1ω1 + k2ω2 + · · ·+ kjωj + · · ·+ kpωp

with kj = −m,−m + 1, . . . ,−1, 0, 1, . . . , m − 1, m (9)

where m defines the order for each fundamental frequency and p the number of

incommensurable frequencies.
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Thus the approximation of the dynamic non-linear response of equation (1) can be expressed

with a generalized Fourier series in the following form

q(t) =
m

∑
k1=−m

m

∑
k2=−m

· · ·
m

∑
kp=−m

⎛

⎝ak1,k2,...,kp
cos

⎛

⎝

p

∑
j=1

kjωjt

⎞

⎠ bk1,k2,...,kp
sin

⎛

⎝

p

∑
j=1

kjωjt

⎞

⎠

⎞

⎠ (10)

where ak1,k2,...,kp
and bk1,k2,...,kp

define the unknown Fourier coefficients of any linear

combinations of the incommensurable frequency components ω1, ω2, . . . , ωp. For the reader

comprehension, it may be noted that a definition for retaining m harmonics in a multiple

Fourier series can be given by (Kim & Choi, 1997)

p

∑
j=1

|kj| ≤ m (11)

Considering that all harmonics at negative combination frequencies can be replaced by

harmonic terms at positive combination frequencies due to the following trigonometric

relation

cos

⎛

⎝

p

∑
j=1

kjωjt

⎞

⎠ = cos

⎛

⎝

p

∑
j=1

−kjωjt

⎞

⎠ (12)

sin

⎛

⎝

p

∑
j=1

kjωjt

⎞

⎠ = − sin

⎛

⎝

p

∑
j=1

−kjωjt

⎞

⎠ (13)

it may be concluded that only terms at positive combination frequencies (i.e.
p

∑
j=1

kjωjt ≥ 0)

can be retained in the non-linear response and non-linear force expressions.

So, the previous expression (10) can be rewritten in a condensed form

q(t) =
a0√

2
+ ∑

k∈Zp

ak cos (k.ω) t + ∑
k∈Zp

bk sin (k.ω) t (14)

where the (.) denotes the dot product, k is the harmonic number vector of each frequency

direction and ω is the vector of the p incommensurable frequencies considered in the solution.

The contributions ak and bk contain the new Fourier decomposition of cosine and sine terms

corresponding to the positive frequency combinations.

For convenience, it is wise to deal with a multiple time parameter. By introducing a non

dimensional multiple time parameter τ = ωt that refers to hyper-time concept proposed by

(Kim & Choi, 1997), the approximated non-linear expression (14) is composed from elements

of cosine and sine terms such as

q(τ) =
a0√

2
+ ∑

k∈Zp

ak cos (k.τ) + ∑
k∈Zp

bk sin (k.τ) (15)
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Injecting this in Eq. (1), one gets

K
a0√

2
+ ∑

k∈Zp

((

K − (k.ω)2 M
)

ak +
(

(k.ω) C
)

bk

)

cos (k.τ)

+ ∑
k∈Zp

((

K − (k.ω)2 M
)

bk −
(

(k.ω) C
)

ak

)

sin (k.τ)

+ f̂ (x̃) = f
e
(t) (16)

where the non-linear forces vector f̂ (t, q, q̇) is approximated by the generalized Fourier series

in a condensed form

f̂ (t, q, q̇) =
c0√

2
+ ∑

k∈Zp

ck cos (k.ω) t + ∑
k∈Zp

dk sin (k.ω) t (17)

Thus, the non-linear equations (16) can be rewritten in the form of an algebraic equation

system similar to (4) for unknown vector of harmonic coefficients with only terms at positive

frequency combinations. In this case x̃ denotes the unknown vector of harmonic coefficients

a0, ak and bk

x̃ =

{
aT

0√
2

aT
1 bT

1 aT
2 bT

2 . . . aT
N bT

N

}T

(18)

where N represents the total number of frequency components including all harmonic terms

up to m of each frequency direction and all the coupling frequencies chosen by using (11). He

and Ĥ(x̃) contain the projection of the external forces f
e
(t) and the non-linear part f̂ (t, q, q̇),

respectively. Ĥ(x̃) is given by

Ĥ(x̃) =

{
cT

0√
2

cT
1 dT

1 cT
2 dT

2 . . . cT
N dT

N

}T

(19)

The non-linear treatment of Fourier coefficients is performed by extending the generalization

of the AFT to a p-dimensional frequency domain with a p-dimensional FFT. H
l

contains the

contribution of the linear part of (1) and refers to the block diagonal matrix:

H
l
=

⎡

⎢
⎢
⎢
⎢
⎣

K 0 . . .

0 Λ1 0 . . .

. . . 0 Λk 0

. . . 0 ΛN

⎤

⎥
⎥
⎥
⎥
⎦

(20)

with

Λ
k
=

[

K − (k.ω)2 M (k.ω)C

− (k.ω)C K − (k.ω)2 M

]

for k ∈ [1, N] (21)
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4. Condensation procedure

If the considered non-linear system has n degrees of freedom but only q of them are used in

the formula of the non-linear forces f̂ (t, q, q̇), then it is possible to work with a system similar

to (4) but with size q(2m + 1) instead of n(2m + 1). For systems with localized non-linearities,

this kind of condensation is very interesting (Hahn & Chen, 1994; Sinou, 2008). To achieve

this, one has to partition the variables into the p linear ones, denoted ql, and the q non-linear

ones, denoted qnl. This implies later a partition of x̃ into x̃l and x̃nl, reflecting the harmonic

components of linear degrees of freedom and non-linear ones respectively. A relation can

then be established that let us express x̃l as function of x̃nl. First, this relationship is exposed

and used to get the reduced non-linear system to solve. In a second part, the link between

q partition and x̃ partition is detailed in order to get the expressions of the partitioned HBM

elements. The procedure is exposed in the case of a simple Harmonic Balance Method but can

easily be extended to the case of quasi-periodic solutions.

4.1 Working with a smaller system

Once the partition is achieved, (4) can be rewritten

[

Hll
l

Hlnl
l

Hnll
l

Hnlnl
l

]{
x̃l

x̃nl

}

+

{

Ĥ
l
(x̃nl)

Ĥ
nl
(x̃nl)

}

−
{

Hl
e

Hnl
e

}

= 0 (22)

The first set of lines provides a relationship between x̃l and x̃nl:

x̃l = Hll
l

−1
[

Hl
e − Hlnl

l
x̃nl − Ĥ

l
(x̃nl)

]

(23)

This expression is used to replace x̃l in the second set of equations, leading to a non-linear

system with size q(2m + 1) depending on x̃nl only:

[

Hnlnl
l

− Hnll
l

Hll
l

−1
Hlnl

l

]

x̃nl +
(

Ĥ
nl
(x̃nl)− Hnll

l
Hll

l

−1
Ĥ

l
(x̃nl)

)

−
(

Hnl
e − Hnll

l
Hll

l

−1
Hl

e

)

= 0 (24)

For any solution x̃nl∗ of (24), x̃l∗ is obtained thanks to equation (23).

4.2 Getting the expressions of the partitioned elements

Let us denote R the matrix that reorders the degrees of freedom from the partitioned ones to

the initial ones:

q = R

{

ql

qnl

}

(25)
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Injecting this in (1) and pre-multiplying the equation by RT to reorder the equations, one can

write

[

Mll Mlnl

Mnll Mnlnl

] ¨̂{

ql

qnl

}

+

[

Cll Clnl

Cnll Cnlnl

] ˙̂{

ql

qnl

}

+

[

Kll Klnl

Knll Knlnl

]{

ql

qnl

}

+

⎧

⎨

⎩

f̂
l
(t, qnl, ˙qnl)

f̂
nl
(t, qnl, ˙qnl)

⎫

⎬

⎭
=

{

f l
e
(t)

f nl
e
(t)

}

(26)

Projecting this set of equations onto the basis (1/
√

2, cos(kωt), sin(kωt))(k=1,...,m), one obtains

a set of equations relative to x̃
′

vector of unknowns while equation (4) is relative to x̃ and

partitioned equation (22) uses x̃
′′
:

x̃ =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0

al
1

b1
...

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, x̃
′
=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

al
0

anl
0

al
1

anl
1

bl
1

bnl
1
...

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and x̃
′′
=

{
x̃l

x̃nl

}

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

al
0

al
1

bl
1
...

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

anl
0

anl
1

bnl
1
...

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

This vector is related to x̃ by

x̃ = (I
2m+1

⊗ R)x̃
′

(28)

where ⊗ denotes the Kronecker product.

The last step consists in linking x̃
′

to the vector x̃
′′

where all the linear unknowns harmonics

are at the top and all the non-linear unknowns are at the bottom:

x̃
′
=

[

I
2m+1

⊗
[

I
p

0q,p

]

, I
2m+1

⊗
[

0p,q

I
q

] ]

x̃
′′

(29)

Finally, partitioned and initial harmonics vectors are linked by a matrix T with the following

expression:

x̃ =

[

I
2m+1

⊗
(

R

[
I

p

0q,p

])

, I
2m+1

⊗
(

R

[
0p,q

I
q

]) ]

︸ ︷︷ ︸

T

x̃
′′

(30)
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The partitioned elements of equation (22) are obtained from the initial elements of equation

(4) using

[

Hll
l

Hlnl
l

Hnll
l

Hnlnl
l

]

= TT H
l

T (31a)

{

Ĥ
l
(x̃nl)

Ĥ
nl
(x̃nl)

}

= TT Ĥ (31b)

{

Hl
e

Hnl
e

}

= TT He (31c)

5. Path following: continuation

It may be useful to track the evolution of the system behaviour as one of its parameter, μ,

varies. For instance in the field of rotating machinery, the behaviour of systems is often

calculated for different operational speeds of interest while all the other parameters are kept

constant. Special algorithms should then be implemented for two main reasons: first, such

methods let us take advantage of the fact that if two values of the parameter are close,

solutions of the non-linear system have good chances to be close from one another too.

Second, following the path in the (x̃, μ) space helps to find coexisting solutions for the same

μ parameter value. This case is illustrated on Fig. 1 which depicts the evolution of maximum

cycle amplitude versus a continuation parameter. This curve can be obtained by studying the

classical Duffing oscillator which has a cubic stiffness, μ being the excitation frequency. The

resonnance peak is bent on the right: this oscillator belongs to the hardening systems. Plus,

there are two points B and E - turning points - at which the path folds, creating a range where

multiple solutions can coexist. Without a proper continuation scheme, one would obtain at

best parts A to B and C to D by looking for solutions with a positive increment in μ or parts D

to E and F to A with a negative one. The B-E part of the curve would be missed in every case.

Continuation algorithms are based on two main steps applied recursively for each point: first

a prediction is done based on the point(s) previously obtained, then a correction step provides

the new point. Different methods exist for these two steps and are exposed in the next

subsections; the third subsection is dedicated to the step length adaptation techniques which

basically control the distance between two consecutive points. The last part summarizes the

steps and gives a global overview of the entire procedure.

The following notations will be used throughout the current section:

• y(i) = (x̃(i), μ(i)): i-th converged point;

• y(i+1,0) = (x̃(i+1,0), μ(i+1,0)): prediction for (i + 1)-th point;

• y(i+1,j) = (x̃(i+1,j), μ(i+1,j)): (i + 1)-th point after j correction steps.

Moreover, to emphasize the dependency of the equation set (4) with the parameter μ, H(x̃)
will be noted H(x̃, μ).
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μ

x̃

A

B

C
D

E

F

Flat path

High curvature
range

Path
folding

Fig. 1. Continuation applied to a typical hardening oscillator

5.1 Prediction methods

To predict a point, one needs a direction and a distance. The usual way to mesure the

distance between two points is to use the following approximation of the curvilinear abscissa

increment:

∆s(i+1) =
√

(x̃(i+1) − x̃(i))T(x̃(i+1) − x̃(i)) + (μ(i+1) − μ(i))2 (32)

The way to optimize this length is discussed in subsection 5.3.

Different methods provide a direction. Among all of them one finds the secant method, the

tangent method and the use of Lagrange polynomials. For most methods, one needs to have

a few points already converged. To obtain these points, different values μ(i), 1 ≤ i ≤ iini are

chosen and usual algorithms are applied to find the corresponding solutions x̃(i). The three

methods exposed are illustrated on Fig. 2.

5.1.1 Secant method

The secant method (Fig. 2 (a)) uses the two previous points (x̃(i−1), μ(i−1)) and (x̃(i), μ(i)) to

predict (x̃(i+1,0), μ(i+1,0)):

(x̃(i+1,0), μ(i+1,0)) = (x̃(i), μ(i)) + ∆si+1
(

(x̃(i), μ(i))− (x̃(i−1), μ(i−1))
)

(33)

It is a very cheap predictor but it does not suit paths with small curvature radii.

5.1.2 Tangent method

This predictor (Fig. 2 (b)) uses only one previous point (x̃(i), μ(i)) to predict (x̃(i+1,0), μ(i+1,0))
but requires the evaluation of derivatives which can have a prohibitive cost. To evaluate the

tangent vector
−→
t = (

−→
tx̃ , tμ) to the curve at point (x̃(i), μ(i)) the following steps can be used.

First, get the −→z vector:

Dx̃ H(x̃(i), μ(i))
−→
tx̃ + Dμ H(x̃(i), μ(i))tμ = 0
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⇔ −→
tx̃ = − Dx̃ H(x̃(i), μ(i))

−1
Dμ H(x̃(i), μ(i))

︸ ︷︷ ︸
−→z

tμ (34)

where Dx̃ H(x̃(i), μ(i)) and Dμ H(x̃(i), μ(i)) denotes the derivatives of H with respect to x̃ and

μ variables respectively at point (x̃(i), μ(i)).
Then normalize the tangent vector:

−→
tx̃

T−→tx̃ + t2
μ = 1

⇔ tμ = ±1/
√

1 +−→z T−→z (35)

The sign depends on the direction chosen to depict the curve; the positive direction is usually

used. The next point can finally be predicted using

(x̃(i+1,0), μ(i+1,0)) = (x̃(i), μ(i)) + ∆si+1(
−→
tx̃ , tμ) (36)

5.1.3 Lagrange polynomials

This last predictor uses Lagrange polynomials of degree d to extrapolate the curve defined by

the d + 1 previous points (Fig. 2 (c)). The variable used for this polynomials is the curvilinear

abscissa s. Let us redefine it locally by taking its origin at the last converged point:

{

s(i) = 0,

∀k ∈ {1, . . . , d}, s(i−k) = s(i−k+1)− ∆s(i−k+1) (37)

where s(i) denotes curvilinear abscissa of point (x̃(i), μ(i))). The Lagrange polynomials define

then the unique polynomial Pd with degree d such that Pd(s
(i−k)) = y(i−k), 0 ≤ k ≤ d. A

classical expression of these polynomials is

Pd(s) =
d

∑
k0=0

⎛

⎜
⎝

d

∏
k=0
k =k0

s − s(i−k)

s(i−k0) − s(i−k)

⎞

⎟
⎠ y(i−k0) (38)

(a) Secant predictor (b) Tangent predictor (c) Lagrange polynomials

y(i)

y(i)

y(i)

y(i−1)

y(i−1)
y(i−2)

y(i+1,0)

y(i+1,0) y(i+1,0)

μ μμ

x̃ x̃x̃

Fig. 2. Predictors illustration
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The predicted point whose curvilinear abscissa is 0 + ∆s(i+1) is finally evaluated using

(x̃(i+1,0), μ(i+1,0)) = Pd(∆s(i+1)) (39)

Orders d greater than 2 or 3 are usually avoided because they require more operations and

draw oscillating paths.

5.2 Correction methods

The aim of the correction step is to move from the predicted point that usually does not satisfy

H(x̃(i+1,0), μ(i+1,0)) = 0 towards y(i+1) = (x̃(i+1), μ(i+1)) that does. This is done recursively

by writing

(x̃(i+1,j+1), μ(i+1,j+1)) = (x̃(i+1,j) + ∆x̃, μ(i+1,j)+ ∆μ) (40a)

H(x̃(i+1,j+1), μ(i+1,j+1)) ≈ H(x̃(i+1,j), μ(i+1,j))

+Dx̃ H(x̃(i+1,j), μ(i+1,j))∆x̃

+DμH(x̃(i+1,j), μ(i+1,j))∆μ

(40b)

The second equation linearizes the problem around y(i+1,j) to get a linear approximation that

algorithms can solve to get corrections ∆x̃ and ∆μ:

Dx̃ H(x̃(i+1,j), μ(i+1,j))∆x̃ + Dμ H(x̃(i+1,j), μ(i+1,j))∆μ = −H(x̃(i+1,j), μ(i+1,j)) (41)

This provides n(2m + 1) scalar equations but there are n(2m + 1) + 1 unknowns to determine

(the additional unknown being ∆μ). To get a square system, one has to add an equation. The

name of the corrector depends on this equation.

Moreover, one usually limits the number of correction steps allowed to move from the

predicted point towards a converged one; if this number jmax is reached, the correction process

is aborted and a new prediction, closer to the previous one is made.

5.2.1 Constant continuation parameter

The easiest equation to add is

∀j ≥ 1, μ(i+1,j) = μ(i+1,0) (42)

That is, the continuation parameter is kept constant and equal to the predicted value. This

very simple additional constraint does not suits folding paths: using such a corrector, the path

portion between the two turning points on Fig. 1 would be missed.

5.2.2 Arc length constraint

This method adds a distance condition between the corrected point and the previous

converged point:

∀j ≥ 1, ||x̃(i+1,j+1)− x̃(i)||2 + |μ(i+1,j+1)− μ(i)|2 = (∆s(i+1))2 (43)

As illustrated on Fig. 3 (a), it forces the successive point y(i+1,j) to lie on the (hyper)sphere

with center y(i) and radius ∆s(i+1).
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This constraint being quadratic, it is not verified exactly and it is in fact the tangent system

that is used to complete (41):

2∆x̃T(x̃(i+1,j) − x̃(i)) + 2∆μ(μ(i+1,j)− μ(i)) =

(∆s(i+1))2 −
(

||x̃(i+1,j) − x̃(i)||2 + |μ(i+1,j)− μ(i)|2
)

(44)

5.2.3 Pseudo arc length constraint

This method adds an orthogonality condition between the prediction vector y(i+1,0)− y(i) and

the corrected points as depicted on Fig. 3 (b):

∀j ≥ 1, (x̃(i+1,0) − x̃(i+1,j+1))T(x̃(i+1,0) − x̃(i))

+ (μ(i+1,0)− μ(i+1,j+1))(μ(i+1,0) − μ(i)) = 0 (45)

In terms of ∆x̃ and ∆μ it gives the exact linear condition:

∀j ≥ 1, ∆x̃T(x̃(i+1,0) − x̃(i)) + ∆μ(μ(i+1,0)− μ(i)) = 0 (46)

5.2.4 Moore-Penrose pseudo-inverse

A last way to add a constraint is to use the Moore-Penrose pseudo-inverse matrix. This

matrix provides a way to solve underconstrained systems Ax = b where A has less rows

than columns. The pseudo-inverse matrix of this system is

A+ = AT(AAT)−1. (47)

In fact, no explicit extra condition is added but it adds implicitely an orthogonality condition

with the kernel of matrix A; this is illustrated in Fig. 3 (c) where
−→
kj are representative of the

kernel for the j-th correction step.

In the case of the studied system (41),

A =
[

Dx̃ H(x̃(i+1,j), μ(i+1,j)), Dμ H(x̃(i+1,j), μ(i+1,j))
]

. (48)

(a) Arc length (b) Pseudo arc length (c) Moore-Penrose pseudo-inverse

y(i)y(i) y(i)

y(i+1,0)y(i+1,0)
y(i+1,0)

y(i+1,1)
y(i+1,1)

y(i+1,1)

y(i+1,j)y(i+1,j)
y(i+1,j)

μμ μ

x̃x̃ x̃

C
D

D1

D2

−→
k1

−→
k2

Fig. 3. Correctors illustration
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5.3 Step length adaptation

As mentionned in subsection 5.1, a prediction distance has to be decided. Using a constant

distance does not suit paths with regions of different curvature. Within a region of low

curvature (“Flat path” on Fig. 1), the distance can be great because x̃ does not vary a lot

with μ; on the contrary, it is more efficient to make small steps in regions with high curvature

(“High curvature range” on Fig. 1) in order to avoid a lot of correction steps.

The step length ∆s(i) is adapted in two cases: if the correction procedure did not converge

towards a point on the path or everytime a point is obtained. Different methods can be used

to determine the step length correction (Allgower & Georg, 2003). One of the cheapest but still

efficient is to monitor the number of correction steps j used to get y(i+1):

• if j = jmax, a new prediction is made with a smaller step length;

• if j ≤ j1, the correction process converged very quickly and ∆s(i+1) can be increased;

• if j2 ≤ j < jmax, the correction process converged slowly and a smaller step length is used

for the next prediction;

• if j1 < j ≤ j2, step length is left unchanged for the next prediction .

The ratios used to increase or decrease ∆s(i+1) are arbitrary, as j1, j2 and jmax values. A typical

set of values would be j1 = 2, j2 = 10, jmax = 15 and divide ∆s(i+1) by 2 to decrease it or

multiply it by 2 to increase it.

5.4 Sum up

Fig. 4 summarizes the different steps of a continuation algorithm. Besides the choice of

the prediction and correction methods, a few parameters have to be chosen: initial step

length ∆s(1), maximum number of correction iterations jmax, as well as parameters j1 and

j2 mentionned in section 5.3 that drive the recast of the step length. Note that the proposed

convergence criterion can be slightly different. Anyhow a convergence criterion requires the

choice of an ǫ value.

Finally, one needs to add a criterion for stopping the algorithm: usually a range of interest

for μ is known and the algorithm is stopped as soon as a point outside this range is obtained.

This is then checked each time a new point is found.

6. Conclusion

This chapter aims to provide a comprehensive overview of the basic theory of the harmonic

balance methods and continuation for non-linear periodic and quasi-periodic vibrations

in mechanical systems. In the past decades, these approaches have been at the focus of

attention of many researchers in order to obtain very efficient tools of great importance for

mechanical engineering communities. This is why, in recent years, various developments

of the harmonic balance techniques have been extensively published not only to estimate

the non-linear vibration of mechanical systems but also to better assess and understand

some specific non-linear behaviors in mechanical systems. Moreover, the need to be able to

propose more practical and commonly implemented techniques in the early stage in complex

mechanical structures has led to the increase of the harmonic balance methods and new

developments. Giving an exhaustive list of illustrative examples and applications showing

efficiency and robustness of the harmonic balance methodology is not possible. However,
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Initialization:

y(0) = (x̃(0), μ(0)), ∆s(1), i ← 0

❄
Prediction:

y(i+1,0) = (x̃(i+1,0), μ(i+1,0))

j ← 0

❄
||H(x̃(i+1,j), μ(i+1,j))|| < ǫ ?✛

True

✻
Steplength adaptation: ∆s(i+1)

New point:

y(i+1) = (x̃(i+1), μ(i+1))

i ← i + 1

✲

False

❄
j < jmax ?

❄

True

Correction:

y(i+1,j+1) = (x̃(i+1,j+1), μ(i+1,j+1))

✻

j ← j + 1

✛

False

Fig. 4. General algorithm of a continuation procedure

for the interested reader, some non-exhaustive studies that have been previously published

by the authors, can be found in practical cases of mechanical applications, aeronautics and

car manufacturers communities, rotating machinery or structural health monitoring such as:

the non-linear periodic vibration of a flexible rotor supported by ball bearings (Sinou, 2009;

Villa et al., 2008), multi-dimensional harmonic balance applied to rotor dynamics (Guskov

et al., 2008), the steady-state responses of autonomous mechanical systems with frictional

interfaces for single or multiple input frequencies linked to unstable modes (Coudeyras,

Nacivet & Sinou, 2009; Coudeyras, Sinou & Nacivet, 2009), damage detection in mechanical

systems from changes in the measurement of non-linear vibrations (Sinou, 2007; 2008; Sinou

& Lees, 2005; 2007), periodic non-linear response of blisks with friction ring dampers (Laxalde

et al., 2007), periodic non-linear vibration for bolted structures (Jaumouillé et al., 2010), use

of the Harmonic Balance Method to realize a global analysis of the dynamical behaviour of a

simplified rotor supported by a squeeze-film damper (Sarrouy & Thouverez, 2010).
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7. Nomenclature

q displacement vector

q̇ velocity vector

q̈ acceleration vector

M mass matrix

K stiffness matrix

C damping matrix (including gyroscopic effects if any)

f
e
(t) vector of external forces

f̂ (t, q, q̇) vector of non-linear forces

m order of the Fourier series

ak Fourier coefficients of the cosine function for the kth order

bk Fourier coefficients of the sine function for the kth order

ql p linear degrees of freedom of the system

qnl q non-linear degrees of freedom of the system

A ⊗ B Kronecker product of matrices A and B

Dx̃ H(x̃, μ) Derivatives of H function with respect to x̃ at point (x̃, μ):
[
Dx̃ H(x̃, μ)

]

ij =
∂H

i
∂x̃j

(x̃, μ)

Dμ H(x̃, μ) Derivatives of H function with respect to μ at point (x̃, μ):
{

Dμ H(x̃, μ)
}

i
=

∂H
i

∂μ (x̃, μ)

xT vector or matrix transposition
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