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A Plane Vibration Model for Natural Vibration 
Analysis of Soft Mounted Electrical Machines 

Ulrich Werner  
Siemens AG, Industry Drive Technologies, Large Drives, Products Development 

Germany   

1. Introduction      

Large electrical machines, which operate at high speeds, are often designed with flexible 
shafts and sleeve bearings, because of the high circumferential speed of the shaft journals. 
Especially for industrial applications, the foundations of this kind of machines are often 
designed as soft foundations (Fig. 1), because of plant specific requirements. Therefore often 
a significant influence of the soft foundation on the vibrations exists (Gasch et al., 1984; 
Bonello & Brennan, 2001). Additionally to the mechanical parameters – such as e.g. mass, 
mechanical stiffness and damping – an electromagnetic field in the electrical machine exists, 
which causes an electromagnetic coupling between rotor and stator and also influences the 
natural vibrations (Schuisky, 1972; Belmans et al., 1987; Seinsch, 1992; Arkkio et al., 2000; 
Holopainen, 2004; Werner, 2006). The aim of the chapter is to show a plane vibration model 
for natural vibration analysis, of soft mounted electrical machines, with flexible shafts and 
sleeve bearings, especially considering the influence of a soft foundation and the 
electromagnetic field. Based on a simplified plane vibration model, the mathematical 
correlations between the rotor and the stator movement, the sleeve bearings, the 
electromagnetic field and the foundation, are shown. For visualization, the natural 
vibrations of a soft mounted 2-pole induction motor (rated power: 2 MW) are analyzed 
exemplary, especially focusing on the influence of the foundation, the oil film stiffness and 
damping and of the electromagnetic field. 
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Fig. 1. Induction motor (2-pole), mounted on a soft foundation 
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2. Vibration model             

The vibration model is a simplified plane model (Fig. 2), describing the natural vibrations in 

the transversal plane (plane y, z) of a soft mounted electrical machine. Therefore no natural 

vibrations regarding the translation in the x-axis, the rotation at the y-axis and the rotation at 

the z-axis are considered. The plane model is based on the general models in (Werner, 2008; 

Werner, 2010), but especially focusing here on the natural vibration analysis.  
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Fig. 2. Vibration model of a soft mounted electrical machine 

The model consists of two masses, rotor mass mw, concentrated at the shaft – rotating with 

angular frequency Ω – and stator mass ms, which has the inertia θsx and is concentrated at 

the centre of gravity S. The moments of inertia of the rotor are not considered and therefore 

no gyroscopic effects. Shaft journal centre point V describes the movement of the shaft 

journal in the sleeve bearing. Point B is positioned at the axial centre of the sleeve bearing 

shell and describes the movement of the bearing housing. The rotor mass is mechanically 

linked to the stator mass by the stiffness of rotor c and the oil film stiffness matrix Cv and the 

oil film damping matrix Dv of the sleeve bearings, which contain the oil film stiffness 

coefficients (cyy, cyz, czy, czz) and the oil film damping coefficients (dyy, dyz, dzy, dzz) (Fig. 3). 

The cross-coupling coefficients – stiffness cross-coupling coefficients cyz, czy and damping 

cross-coupling coefficients dyz, dzy – cause a coupling between vertical and horizontal 

movement and the vertical oil film force Fz and the horizontal oil film forces Fy (Tondl, 1965; 

Glienicke, 1966; Lund & Thomsen, 1978; Lund & Thomsen, 1987; Gasch et al. 2002; Vance et 

al., 2010), which is mathematically described in (1).  
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For cylindrical shell bearings the cross-coupling stiffness coefficients are usually not equal 
(czy ≠ cyz). This leads to an asymmetric oil film stiffness matrix Cv, which is the reason that 
vibration instability may occur (Tondl, 1965; Glienicke, 1966; Lund & Thomsen, 1978; Lund 
& Thomsen, 1987; Gasch et al. 2002; Vance et al., 2010). In this model it is assumed that the 
drive side and the non drive side values are the same, and the bearing housing and end 
shield stiffness matrix Cb is also assumed to be same for the drive side and non drive side. 
The stiffness and damping values of the oil film are calculated by solving the Reynolds-
differential equation, using the radial bearing forces, which are caused by the rotor weight 
and static magnetic pull. The stiffness and damping values of the oil film are assumed to be 
linear regarding the displacements of the shaft journals relative to the bearing housings. 
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Fig. 3. Oil film forces  

Damping of the bearing housings and the end shields are not considered because of the 
usually low damping ratio. For electrical machines, an additional magnetic stiffness matrix Cm 
between the rotor and the stator exists, which describes the electromagnetic coupling between 
the rotor and stator. The magnetic spring constant cm has a negative reaction. This means that a 
radial movement between the rotor and stator creates an electromagnetic force that tries to 
magnetize the movement (Schuisky, 1972; Belmans et al., 1987; Seinsch, 1992; Arkkio et al., 
2000; Holopainen, 2004; Werner, 2006). Here the magnetic spring coefficient cm is defined to be 
positive, which acts in the direction of the magnetic forces. Electromagnetic field damping 
effects, e.g. by the rotor cage of an induction motor, are not considered in this paper. The stator 
structure is assumed to be rigid when compared to the soft foundation. The foundation 
stiffness matrix Cf and the foundation damping matrix Df connect the stator feet, FL (left side) 
and FR (right side), to the ground. The foundation stiffness and damping on the right side is 
assumed to be the same as on the left side. The stiffness values cfy and cfz and the damping 
values dfy and dfz are the values for each machine side. The coordinate systems for V (zv; yv) 
and B (zb; yb) have the same point of origin, as well as the coordinate systems for the stator 
mass ms (zs; ys) and for the rotor mass mw (zw; yw). They are only shown with an offset to show 
the connections through the various spring and damping elements. 

3. Natural vibrations        

To calculate the natural vibrations, it is necessary to derive the homogenous differential 
equation, which is assumed to be linear.  
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3.1 Derivation of the homogenous differential equation system   

The homogenous differential equation system can be derived by separating the vibration 
system into four single systems – (a) rotor mass system, (b) journal system, (c) bearing house 
system and (d) stator mass system – (Fig. 4).  
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Fig. 4. Vibration system, split into four single systems 

The equilibrium of forces and moments for each single system (Fig. 4) leads to following 
equations for each single system: 
- Rotor mass system (Fig. 4a): 

 Ń:           ( ) ( ) 0swmvwww =−⋅−−⋅+⋅ zzczzczm $$  (2) 

 ń:         ( ) ( ) 0swmvwww =−⋅−−⋅+⋅ yycyycym $$  (3) 

- Journal system (Fig. 4b): 

 Ń:           ( ) ( ) ( ) ( ) ( ) 0
2

vwbvzybvzzbvzybvzz =−−−+−+−+− zz
c

yydzzdyyczzc $$$$  (4) 

 ń:         ( ) ( ) ( ) ( ) ( ) 0
2

vwbvyybvyzbvyybvyz =−−−+−+−+− yy
c

yydzzdyyczzc $$$$  (5) 

- Bearing house system (Fig. 4c): 

 Ń:           ( ) ( ) ( ) ( ) ( ) 0sbbzbvzybvzzbvzybvzz =−⋅−−+−+−+− zzcyydzzdyyczzc $$$$  (6) 

 ń:         ( ) ( ) ( ) ( ) ( ) 0sbbybvyybvyzbvyybvyz =−⋅−−+−+−+− yycyydzzdyyczzc $$$$  (7) 
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- Stator mass system (Fig. 4d): 

 Ń:         ( ) ( ) 02 fLffLffRffRfsbbzswmss =⋅−⋅−⋅+⋅+−⋅−−⋅+⋅ zdzczdzczzczzczm zzzz
$$$$  (8) 

 ń:     ( ) ( ) 02 fLffLfyfRffRfsbbyswmss =⋅+⋅+⋅+⋅+−⋅−−⋅+⋅ ydycydycyycyycym yyy
$$$$  (9) 

 
S :  ( ) ( ) 0fLffLfyfRffRffLffLffRffRfs =+++⋅−+++⋅+⋅Θ ydycydychzdzczdzcb yyyzzzzsx

$$$$$$ϕ  (10) 

The equations (2)-(10) lead to a linear homogenous differential equation system (11) with 13 
degrees of freedom (DOF = 13), with the mass matrix Mo, the damping matrix Do and the 
stiffness matrix Co, which have the form 13x13.  

 0qCqDqM =⋅+⋅+⋅ oooooo
$$$  (11) 

The coordinate vector qo is a vector with 13 rows described by:  

 ( )Tswsws yyzzyyzzyyzz fLfRfLfRbvbvo ;;;;;;;;;;;; ϕ=q  (12) 

The linear homogenous differential equation system can be reduced into a system of 9 DOF, 
by considering the cinematic constraints between the stator mass and the machine feet. 

3.2 Kinematic constraints between stator mass and machine feet      

The kinematic constraints are derived for translation of the stator mass and for angular 

displacement of the stator mass and for the superposition of both. 

3.2.1 Kinematic constraints for translation of the stator mass 

If the stator mass centre S makes only a translation (zs, ys) without angular displacement  

(ϕs = 0) the kinematic constraints between stator mass centre S and the machine feet FL and 

FR can be described as follows:  

 szzz == fRfL ; syyy == fRfL  (13) 

3.2.2 Kinematic constraints for angular displacement of the stator mass  

If the stator mass centre S only makes an angular displacement (ϕs) without translation  

(zs = ys = 0) the kinematic constraints between the angular displacement (ϕs) of the stator 

mass centre S and the translation of the machine feet FL and FR are shown in Fig. 5.  

The displacements of the machine feet on the left side of the machine can be described as 

follows: 

 βϕβ sin
2

sin2sin s
fLfL ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luz  (14) 

 βϕβ cos
2

sin2cos s
fLfL ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luy  (15) 

The angle β is described by: 
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Fig. 5. Angular displacement ϕs of the stator mass centre S 

 ƹƹ +=+=−°=
2

90 s
L

ϕταβ  (16) 

The displacements of the machine feet on the right side of the machine can be described as 

follows: 

 γϕγ sin
2

sin2sin s
fRfR ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅=⋅= luz  (17) 

 γϕγ cos
2

sin2cos s
fRfR ⋅⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=⋅−= luy  (18) 

The angle γ is described by: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−°=+−°=

2
9090 s

R

ϕζτζγ  (19) 

For small angular displacements ϕs of the stator mass centre S (ϕs << Ψ and ϕs << ζ) 

following linearizations can be deduced: 

 
22

sin ss ϕϕ
→⎟

⎠
⎞

⎜
⎝
⎛

 (20) 

 ƹƹ ≈→+= βϕβ
2

s  (21) 

 ζγϕζγ −°≈→⎟
⎠
⎞

⎜
⎝
⎛ +−°= 90

2
90 s  (22) 

With these linearizations the displacements of the machine feet on the left side and on the 

right side can be described as follows: 
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 ssfL sin ϕϕ ⋅−=⋅⋅−= bƹlz  (23) 

 ssfL cos ϕϕ ⋅−=⋅⋅−= hƹly  (24) 

 ( ) ssfR 90sin ϕζϕ ⋅=−°⋅⋅= blz  (25) 

 ( ) ssfR 90cos ϕζϕ ⋅−=−°⋅⋅−= hly  (26) 

3.2.3 Kinematic constraints for superposition of translation and angular displacement  

For superposition of the translation and angular displacement of the stator mass centre S 
following kinematic constraints can be derived: 

 ssfL ϕ⋅−= bzz  (27) 

 ssfL ϕ⋅−= hyy  (28) 

 ssfR ϕ⋅+= bzz  (29) 

 ssfR ϕ⋅−= hyy  (30) 

 

Therefore, it is possible to describe the translations of the machine feet (zfL; yfL; zfR; yfR) by the 

movement of the stator mass (zs, ys, ϕs). 

3.3 Reduced homogenous differential equation system      

With the kinematic constraints (27)-(30) the differential equation system (11) – with 13 DOF 

– can be reduced to a differential equation system of 9 DOF. By deriving the reduced 

differential equation system, it is necessary to consider, that the negative vertical 

displacement of the machine foot FL, related to the coordinate system in Fig. 4 is considered 

in the direction of the vertical forces in FL. Therefore the displacement zfL has to be described 

negative zfL ń - zfL, as well as the velocity żfL ń - żfL.  With this boundary condition and with 

the kinematic constraints (27)-(30) the equations for the stator system (8)-(10) become: 
 

 Ń:     ( ) ( ) 0222 sfsfsbbzswmss =⋅+⋅+−⋅−−⋅+⋅ zdzczzczzczm zz
$$$   (31) 

 ń:   ( ) ( ) ( ) ( ) 0222 ssfssfsbbyswmss =⋅−⋅+⋅−⋅+−⋅−−⋅+⋅ ϕϕ $$$$ hydhycyycyycym yy  (32) 

 
S :  0)(22)(22 s

2
fz

2
fysfys

2
fz

2
fysfyssx =⋅++⋅−⋅++⋅−⋅ ϕϕϕ bchcyhcbdhdyhdΘ $$$$  (33) 

 

Therefore, it is now possible to derive the reduced homogenous differential equation 
system, which only has 9 DOF: 

 0qCqDqM =⋅+⋅+⋅ $$$  (34) 

The mass matrix M and coordinate vector q are described by:  
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The damping matrix D is described by: 
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The stiffness matrix C is described by: 
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(37)

 

3.4 Solution of the reduced homogenous differential equation system 

The natural vibrations can be derived by solving the homogeneous differential equation 
(34). Therefore usually a complex ansatz is used.  So the homogeneous differential equation 
is described complex, with the vector q as a complex vector (underlined = complex value), 
the mass matrix M, the damping matrix D and the stiffness matrix C. 

 0qCqDqM =⋅+⋅+⋅ $$$   with: 
Tyyzzyyzz );;;;;;;;(

bvbvswsws ϕ=q   (38) 
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The complex ansatz – with the complex eigenvalue λ and the complex eigenvectors  h
q̂

 –  

  te ⋅⋅= λqq ˆ  with:  
Tyyzzyyzz )ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ;ˆ(ˆ

bvbvswsws
ϕ=q  (39)  

leads to the eigenvalue equation: 

 0qMDC =⋅⋅+⋅+ ˆ][ 2λλ  (40) 

To get the complex eigenvalues λ, it is necessary to solve the determination equation:  

 0]det[ 2 =⋅+⋅+ MDC λλ  (41) 

This leads to a characteristic polynomial of 12th grade:  

 0
12

0

n =⋅∑
=

n

n

A λ  (42) 

With a numerical solution of this polynomial, n complex eigenvalues λn – with the real parts 
αn, which describe the decay of each natural vibration and the imaginary parts ωn, which 
describe the corresponding natural angular frequencies – can be calculated. The eigenvalues 

occur mostly conjugated complex ( j: imaginary unit → 12 −=j ):  

 nnn
ωαλ ⋅±= j  (43) 

With the complex eigenvalues λn the complex eigenvectors  
n

q̂ can be calculated. Therefore 

the natural vibrations can be described by:  

 t

n

ek ⋅

=

⋅⋅=∑ n

12

1
nn

ˆ λqq  (44) 

 

The factors kn can be used, to adapt the natural vibrations to the starting conditions. Using 
the calculated real part αn and the imaginary part ωn of each complex eigenvalue λn the 
modal damping Dn of each natural vibration mode can be derived (Kellenberger, 1987). 

 
2
n

2
n

n
n

ωα

α

+

−
=D  (45) 

3.5 Stability of the vibration system 
If the oil film stiffness matrix Cv of the sleeve bearings is non symmetric (czy ≠ cyz) – for e.g. 
sleeve bearings with cylindrical shell the cross-coupling coefficients of the stiffness matrix 
are mostly unequal (czy ≠ cyz )  – also the system stiffness matrix C (37) gets non symmetric. 
This may lead to instabilities of the vibration system (Gasch et al., 2002), which occur if the 
real part of one or more complex eigenvalues gets positive, leading to negative modal 
damping values (45). The oil film stiffness and damping coefficients are a function of the 
rotary angular frequency Ω of the rotor.  

  )(;)( ijijijij ƺddƺcc == with   i, j = z, y (46) 
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To find the limit of stability of the vibration system, the rotary angular frequency Ω has to be 
increased, until the real part of one or more complex eigenvalues becomes zero. Then the 

limit of stability is reached at the rotary angular frequency Ω = Ω limit. At the limit of stability 

the natural angular frequency of the critical mode becomes ωlimit and no damping exists 

(αlimit = 0).  So the critical complex eigenvalue at the limit of stability becomes:  

 limitlimit
ωλ ⋅±= j with 0limit =α  (47) 

With this complex eigenvalue the complex eigenvector can be calculated. So the undamped 
natural vibration at the limit of stability can be described by:  

 tjtj ekek ⋅−−−⋅++ ⋅⋅+⋅⋅= limitlimit

limitlimitlimitlimitlimit

ˆˆ ωω qqq  (48) 

At the limit of stability, that means at the rotary angular frequency of Ωlimit, which 

represents the rotor speed nlimit (= Ω limit/2π), the undamped mode (with αlimit = 0) oscillates 

with the natural angular frequency of ω limit, as a self exciting vibration. 

4. Example        

In this chapter the natural frequencies of a 2-pole induction motor (Fig. 1), mounted on a 
rigid foundation and also mounted on a soft steel frame foundation, is analyzed.   

4.1 Data of motor, sleeve bearing and foundation    

The machine data, sleeve bearing data and foundation data are shown in Table 1. First the 
stiffness data of the foundation are chosen arbitrarily. The damping ratio Df of the steel 
frame foundation is assumed to be 0.02, which is common for a welded steel frame. 
 
Machine data Sleeve bearing data 

Rated power PN = 2000 kW Type of bearing Side flange bearing 

Number of pole pairs  p = 1 Bearing shell Cylindrical 

Rated voltage UN = 6000 V Lubricant viscosity grade ISO VG 32 

Rated frequency fN = 50 Hz Nominal bore diameter db = 110 mm 

Rated torque MN = 6.4 kNm Bearing width  bb = 81.4 mm 

Rated speed nN = 2990 r/min Ambient temperature  Tamb = 25°C 

Mass of the stator ms = 7200 kg Lubricant supply temp. Tin = 40°C 

Mass of the rotor mw = 1900 kg 

Moment of inertia of the stator Θsx = 1550 kgm2 

Mean relative bearing 
clearance (DIN 31698) 

Ψm = 1.6 ‰ 

Height of the centre of gravity h = 560 mm 

Distance between feet 2b = 1060 mm 
Foundation data 

Rotor stiffness c = 155.7 kN/mm
Vertical foundation 
stiffness at each motor side 

cfz = 133 kN/mm 

Magnetic spring constant cm = 7.15 kN/mm
Horizontal foundation 
stiffness at each motor side 

cfy = 100 kN/mm 

Vertical stiffness of bearing 
house and end shield 

cbz = 570 kN/mm 

Horizontal stiffness of bearing 
house and end shield 

cby = 480 kN/mm 

 
Damping ratio of the steel 
frame foundation 

Df = 0.02 

Table 1. Data of induction motor, sleeve bearings and foundation 
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4.2 Oil film stiffness and damping coefficients    

The oil film stiffness and damping coefficients of the sleeve bearings are calculated for each 
rotor speed in steady state operation, using the program SBCALC from RENK AG. 
 

 

Fig. 6. Oil film stiffness and damping coefficients for different rotor speeds 

4.3 Used FE-Program   

To calculate the natural vibrations and to picture the mode shapes the finite element 

program MADYN is used. A simplified finite element model is used (Fig. 7), which is based 

on the model in Fig. 2. The degrees of freedom of the nodes are chosen in such a way, that 

only movements in the transversal plane (y-z plane) occur.  
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Fig. 7. Finite element model  

Additionally the analytical formulas from chapter 3 could be validated with this finite 

element model, by comparing the calculated eigenvalues, calculated by the analytical 

formulas – which were solved by using the mathematic program MATHCAD – with the 

eigenvalues, calculated with the finite element program MADYN.  
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4.4 Natural vibrations; motor mounted on a rigid foundation 

Before the natural vibrations of the motor, mounted on the soft steel frame foundation, are 
analyzed the natural vibrations of the motor, mounted on a rigid foundation are calculated. 

Therefore the foundation stiffness values are assumed to be infinite high (cfz = cyz →  ∞ ).  

4.4.1 Natural vibrations at rated speed 

First the natural vibrations at rated speed are calculated. The mode shapes are pictured in 
Fig. 8. In the 1st mode the rotor mass – shaft centre point W - moves on an elliptical orbit, 
which is run through forwards. The semi-major axis of the orbit is about 34° shifted out of 
the horizontal axis. The orbit of rotor mass is larger than the orbits of the shaft journals. The 
orbits of the shaft journals – shaft journal points V – have the same orientation as the orbit of 
the rotor mass and are also run through forwards. The orbits of the bearing housing points B 
are much smaller than the orbits of the shaft journal points V, but are also run through 
forwards. Their semi-major axes are about 28° shifted out of the horizontal axis. Because of 
the infinite stiffness of the foundation no movement of the stator mass occurs. In the 2nd 
mode the semi-major axes of all orbits have the nearly the same orientation, shifted about 8° 
out of the horizontal axis. All orbits are run through forwards. In this mode the largest 
orbits are the orbits of the shaft journal points V. In the 3rd mode the semi-major axes of the  
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Fig. 8. Mode shapes, motor mounted on a rigid foundation, operating at rated speed (nN = 
2990 r/min) 
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shaft centre point W and of the shaft journal points V are shifted about 15° out of the vertical 

axis. The semi-major axes of the bearing housing points B are shifted about 20° out of the 

vertical axis. All orbits are run through backwards. In this mode the orbit of the shaft centre 

point W is much larger than the orbits of the shaft journal points V and the orbits of the 

bearing housing points B, which are nearly equal to each other. This leads to a strong 

bending of the rotor shaft with only small orbits in the sleeve bearings. 

The natural frequencies and the modal damping values are shown in Table 2. Because of the 

assumption of an infinite high foundation stiffness (cfz = cyz → ∞) only three natural 

vibrations occur with three natural frequencies f1, f2, f3 and three modal damping values D1, 

D2,D3. The modal damping values are here described in percentage. 

 

Modes 
n 

Natural 
frequency fn [Hz] 

Modal damping
Dn[%] 

1 33.15 5.31 

2 34.62 68.24 

3 41.17 3.82 

Table 2. Natural frequencies and modal damping, motor mounted on a rigid foundation, 
operating at rated speed (nN = 2990 r/min) 

4.4.2 Critical speed map  

In this chapter the natural frequencies and the modal damping for different rotor speeds are 

calculated and a critical speed map is derived (Fig. 9). 

Fig. 9 shows how the natural frequencies fn and the modal damping values Dn change with 

the rotor speed nr, caused by the changing of the oil film stiffness and damping coefficients.  

Where the rotary frequency (Ω/2π) meets the natural frequencies critical speeds regarding 

the 1x excitation may occur if the modal damping value is low at this rotor speed. Usually, if 

the modal damping value Dn is higher than 20% no critical resonance vibrations are 

expected and the rotor speed is usually not assumed to be a critical speed. Here two critical 

speeds have to be passed to reach the operating speed. The 1st critical speed occurs at about 

a rotor speed of 2070 r/min with a modal damping value of about 15%. The 2nd critical 

speed occurs at a rotor speed of 2475 r/min with a modal damping value of about 3.5%. Fig. 

9 shows that a separation margin larger than 15% for the critical speeds to the operating 

speed (2990 r/min) is given, which is required in many standards and specifications. Fig. 9 

shows additionally that limit of stability is reached at a rotor speed of about 3900 r/min. 

Here the modal damping of mode 1 gets zero.  

4.4.3 Stiffness variation map regarding the electromagnetic stiffness  

In this chapter the influence of the electromagnetic stiffness between the rotor and the stator 

on the natural frequencies is analyzed. Therefore the magnetic spring constant cm, which 

describes the electromagnetic stiffness between rotor and stator, is variegated by a factor kcm, 

called magnetic stiffness factor. The rated magnetic spring constant is cm,rated = 7.15 kN/mm 

(Table 1). The magnetic stiffness factor kcm is variegated in the range of 0…2 and the 

influence on the natural frequencies and modal damping values are calculated for operation 

at rated speed (Fig. 10). 
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Fig. 9. Critical speed map, motor mounted on a rigid foundation  

 Magnetic spring constant:      ratedm,cmm ckc ⋅=   (49) 

Fig. 10 shows that mode 1 and mode 3 are clearly influenced by the magnetic spring 

constant. Their natural frequencies and modal damping values change with the magnetic 

stiffness factor, whereas mode 2 is hardly influenced by the magnetic spring value. The 

reason is that the orbits of rotor mass are larger than the orbits of the shaft journals for mode 

1 and mode 3 (Fig. 8), contrarily to mode 2, where the orbits of the shaft journals are larger.   

Therefore the influence of the magnetic spring constant, which acts at the rotor mass, is 

higher for mode 1 and mode 3.   
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Fig. 10. Stiffness variation map regarding the electromagnetic stiffness, motor mounted on a 
rigid foundation, operating at rated speed (nN = 2990 r/min)   

4.5 Natural vibrations; motor mounted on a soft steel frame foundation  
After the natural vibrations of the rigid mounted motor are analyzed, the natural vibrations 
of the motor, mounted on a soft steel frame foundation, are now investigated. The 
foundation data are described in Table 1.  

4.5.1 Natural vibrations at rated speed 
Again, the natural vibrations at rated speed are calculated first. The natural frequencies are 
calculated once without considering of the foundation damping (Df = 0) and once with 
considering of the foundation damping (Df = 0.02). The mode shapes without considering 
foundation damping are pictured in Fig. 11, which can be assumed to be equal to the mode 
shapes with considering foundation damping.  
The first two modes are nearly rigid body modes of the soft mounted machine. Rotor and 
stator are nearly acting like a one-mass system. The orbits of the rotor and of the stator are 
nearly straight lines. In the 1st mode the rotor mass and the stator mass oscillate in phase to 
each other nearly in horizontal direction, while stator mass makes a lateral buckling at the x-
axis, in the same direction as its horizontal movement. In the 2nd mode the rotor mass and the 
stator mass also oscillate in phase to each other, but in vertical direction. Nearly no buckling of 
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Fig. 11. Mode shapes, motor mounted on a soft steel frame foundation (cfz = 133 kN/mm; cfy 

= 100 kN/mm), without considering foundation damping (Df =0), operating at rated speed 
(nN = 2990 r/min) 

the stator mass occurs. For the higher modes stator and rotor behave like a two- mass system 
and elliptical orbits of the rotor mass and stator mass occur. In the 3th mode the semi-major 
axes of orbits of the rotor mass, the bearing housings and the shaft journals are shifted about 
12° out of the horizontal axis, whereas the semi-major axis of the orbit of the stator mass is only 
shifted 5° out of the horizontal axis. All orbits are run through forwards. The rotor mass and 
the stator mass oscillate out of phase to each other, as well as the shaft journals to the bearing 
housings. The largest orbits are the orbits of the shaft journals, compared to the other orbits. 
Because of the large relative orbits between the shaft journals and the bearing housings, the 
modal damping of this mode is very high, due to the oil film damping of the sleeve bearings. 
In the 4th mode the semi-major axis of the orbit of the rotor mass is shifted about 14° out of the 
horizontal axis. The same is valid for the shaft journals, whereas the semi-major axis of the 
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stator orbit is shifted about 47° out of the horizontal axis. The semi-major axes of the orbits of 
the bearing housings are shifted about 62° out of the horizontal axis. All orbits are still run 
through forwards. In the 5th mode the semi-major axis of the orbit of the rotor mass is shifted 
about 12° out of the vertical axis. The other orbits lie nearly in vertical direction.  The stator 
mass and the rotor mass oscillate out of phase to each other. The orbit of the stator mass and 
the orbits of the bearing housing are run through forwards, while the orbit of the rotor mass 
and the orbits of the shaft journals are run through backwards. In the 6th mode the semi-major 
axes of the orbits of the stator mass and of the bearing housings are shifted about 80° out of the 
vertical axis, while the semi-major axes of the orbits of the rotor mass and of the shaft journals 
are shifted about 45° out of the vertical axis. All orbits are run through backwards. 
Additionally the 6th mode shows a strong lateral buckling of the stator mass at the x-axis, 
which leads to large orbits at the motor feet. Contrarily to the 1st mode the lateral buckling of 
the stator mass is contrariwise to its horizontal movement, which means that if the stator mass 
moves to the right the lateral buckling is to the left. To consider the influence of the foundation 
damping on the natural vibrations, a simplified approach is used. Referring to (Gasch et al., 
2002), the damping ratio Df of the foundation can be described by the damping coefficients dfq, 
stiffness coefficients cfq of the foundation and the stator mass ms, as a rough simplification.  

      sfqsffq /2 mcmDd ⋅⋅⋅=  with: z,yq =  (50) 

The calculated natural frequencies and modal damping of each mode shape with and 
without considering foundation damping are shown in Table 3. It is shown that considering 
the foundation damping influences the natural frequencies only marginal, as expected. But 
the modal damping values of some modes are strongly influenced by the foundation 
damping. The modal damping values of the first two modes are strongly influenced by the 
foundation damping, because the modes are nearly rigid body modes of the motor on the 
foundation. Also the modal damping of the 6th mode is strongly influenced by the 
foundation damping, because large orbits of the motor feet occur in this mode shape, 
compared to the other orbits. 
 

Without foundation damping (Df = 0) With foundation damping (Df = 0.02) 
Modes 

n 
Natural frequency 

fn [Hz] 
Modal damping 

Dn [%] 
Natural frequency fn

[Hz] 
Modal damping 

Dn [%] 

1 16.05 -0.11 16.05 0.95 

2 25.35 0.51 25.33 1.84 

3 35.22 65.75 35.23 65.72 

4 37.72 6.97 37.67 7.36 

5 48.50 3.39 48.54 4.24 

6 52.63 1.0 52.61 4.17 

Table 3. Natural frequencies and modal damping, motor mounted on a soft steel frame 
foundation (cfz = 133 kN/mm; cfy = 100 kN/mm) with and without considering foundation 
damping (Df = 0.02 and Df = 0), operating at rated speed (nN = 2990 r/min) 

4.5.2 Critical speed map 

Again, a critical speed map is derived to show the influence of the rotor speed on the natural 
frequencies and the modal damping and to derive the critical speeds (Fig. 12). 
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Fig. 12. Critical speed map, motor mounted on a soft steel frame foundation (cfz = 133 
kN/mm; cfy = 100 kN/mm; Df =0.02)             

 

Critical speed Critical speed [r/min] Modal damping Dn [%] 

1 950 1.6 

2 1540 2.3 

3 2340 12.2 

4 2900 4.3 

5 3160 4.2 

Table 4. Critical speeds, motor mounted on a soft steel frame foundation (cfz = 133 kN/mm; 
cfy = 100 kN/mm; Df =0.02) 

Fig. 12 shows that the limit of stability is here reached at about 4650 r/min, because the 

modal damping of mode 4 gets zero at this rotor speed. For the rigid foundation the limit of 

stability is already reached at a rotor speed of about 3900 r/min. But contrarily to the rigid 

mounted motor here four critical speeds have to be passed before the operating speed (2990 

r/min) is reached. Additionally a 5th critical speed is close above the operating speed. The 

critical speeds and the modal damping in the critical speeds are shown in Table 4. 
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Table 4 shows that two critical speeds (4th and 5th) with low modal damping values are very 
close to the operating speed (2990 r/min), having less than 5% separation margin to the 
operating speed. Therefore resonance vibrations problems may occur. The conclusion is that 
the arbitrarily chosen foundation stiffness values are not suitable for that motor with a 
operation speed of 2990 r/min. To find adequate foundation stiffness values, a stiffness 
variation of the foundation is deduced and a stiffness variation map is created (chapter 
4.5.4). But preliminarily the influence of the electromagnetic stiffness on the natural 
frequencies and modal damping values is investigated for the soft mounted motor. 

4.5.3 Stiffness variation map regarding the electromagnetic stiffness  

In this chapter the influence of the electromagnetic stiffness on the natural frequencies and 
the modal damping values at rated speed is analyzed again, but now for the soft mounted 
motor. Again the magnetic stiffness factor kcm is variegated in a range of 0….2 and the 
influence on the natural frequencies and the modal damping values is analyzed. Fig. 13  
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Fig. 13. Stiffness variation map regarding the electromagnetic stiffness, motor mounted on a 
soft steel frame foundation (cfz = 133 kN/mm; cfy = 100 kN/mm; Df = 0.02), operating at rated 
speed (nN = 2990 r/min) 
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shows that mainly the natural frequencies of the 4th mode and the 5th mode are influenced 
by the magnetic spring constant. The natural frequencies of the other modes are hardly 
influenced by the magnetic spring constant. The reason is that for the 4th mode and the 5th 
mode the relative orbits between the rotor mass and the stator mass are large, compared to 
the other orbits. Large orbits of the rotor mass and of the stator mass occur for these two 
modes and both masses – the rotor mass and the stator mass – vibrate out of phase to each 
other (Fig. 11), which lead to large relative orbits between these two masses. Therefore, the 
electromagnetic interaction between these two masses is high and therefore a significant 
influence of the magnetic spring constant on the natural vibrations occurs for these two 
modes. In the 1st and 2nd mode the motor is acting like a one-mass system (Fig. 11) and 
nearly no relative movements between rotor mass and stator mass occur. Therefore the 
electromagnetic coupling between rotor and stator has nearly no influence on the natural 
frequencies of the first two modes. The 3th mode is mainly dominated by large relative orbits 
between the shaft journals and the bearing housings – compared to the other orbits – leading 
to high modal damping. A relative movement between the rotor mass and the stator occurs, 
but is not sufficient enough for a clear influence of the electromagnetic coupling. The 6th 
mode is mainly dominated by large orbits of the motor feet, compared to the other orbits. 
Again the relative movement of the stator and rotor is not sufficient enough that the 
electromagnetic coupling influences the natural frequency of this mode clearly. The modal 
damping values of all modes are only marginally influenced by the magnetic spring 
constant, only a small influence on the modal damping of the 4th mode is obvious.  

4.5.4 Stiffness variation map regarding the foundation stiffness 

The foundation stiffness values cfz and cyz are changed by multiplying the rated stiffness 
values cfz,rated and cfy,rated from Table 1 with a factor, called foundation stiffness factor kcf. 

 Vertical foundation stiffness:      ratedfz,cffz ckc ⋅=  (51) 

 Horizontal foundation stiffness:  ratedfy,cffy ckc ⋅=  (52) 

Therefore the vertical foundation stiffness cfz and the horizontal foundation stiffness cfy are 

here changed in equal measure by the foundation stiffness factor kcf. The influence of the 

foundation stiffness at rated speed on the natural frequencies and on the modal damping is 

shown in Fig. 14.  

It is shown that for a separation margin of 15% between the natural frequencies and the 

rotary frequency Ω/2π the foundation stiffness factor kcf has to be in a range of 2.5…3.0. If 

the foundation stiffness factor is smaller than 2.5 the natural frequency of the 5th mode gets 

into the separation margin. If the foundation stiffness factor is bigger than 3.0 the natural 

frequency of the 4th mode gets into the separation margin. Both modes – 4th mode and 5th 

mode – have a modal damping less than 10% in the whole range of the considered 

foundation stiffness factor (kcf = 0.5…4). Because of the low modal damping values of these 

two modes, the operation close to the natural frequencies of these both modes suppose to be 

critical. Therefore the first arbitrarily chosen foundation stiffness values (cfz,rated = 133 

kN/mm; cfy,rated = 100 kN/mm) have to be increased by a factor of kcf = 2.5…3.0. With the 

increased foundation stiffness values the foundation can still be indicated as a soft 

foundation, because the natural frequencies of the 1st mode and the 2nd mode – the mode 
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shapes are still the same as in Fig. 11 – are still low, lying in a range between 24 Hz and 26 

Hz for the 1st mode and between 33 Hz and 35 Hz for the 2nd mode. 
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Fig. 14. Stiffness variation map regarding the foundation stiffness, motor mounted on a soft 
steel frame foundation, operating at rated speed (nN = 2990 r/min) 

5. Conclusion        

The aim of this paper is to show a simplified plane vibration model, describing the natural 
vibrations in the transversal plane of soft mounted electrical machines, with flexible shafts 
and sleeve bearings. Based on the vibration model, the mathematical correlations between 
the rotor dynamics and the stator movement, the sleeve bearings, the electromagnetic and 
the foundation, are derived. For visualization, the natural vibrations of a soft mounted 2-
pole induction motor are analyzed exemplary, for a rigid foundation and for a soft steel 
frame foundation. Additionally the influence of the electromagnetic interaction between 
rotor and stator on the natural vibrations is analyzed. Finally, the aim is not to replace a 
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detailed three-dimensional finite-element calculation by a simplified plane multibody 
model, but to show the mathematical correlations based on a simplified model. 
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