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1. Introduction 

The vibration analysis is an important stage in the design of mechanical systems and 
buildings subject to dynamic loads like wind and earthquake. The dynamic characteristics of 
these structures are obtained by the free vibration analysis. 
The Finite Element Method (FEM) is commonly used in vibration analysis and its 
approximated solution can be improved using two refinement techniques: h and p-versions. 
The h-version consists of the refinement of element mesh; the p-version may be understood 
as the increase in the number of shape functions in the element domain without any change 
in the mesh. The conventional p-version of FEM consists of increasing the polynomial 
degree in the solution. The h-version of FEM gives good results for the lowest frequencies 
but demands great computational cost to work up the accuracy for the higher frequencies. 
The accuracy of the FEM can be improved applying the polynomial p refinement. 
Some enriched methods based on the FEM have been developed in last 20 years seeking to 
increase the accuracy of the solutions for the higher frequencies with lower computational 
cost. Engels (1992) and Ganesan & Engels (1992) present the Assumed Mode Method 
(AMM) which is obtained adding to the FEM shape functions set some interface restrained 
assumed modes. The Composite Element Method (CEM) (Zeng, 1998a and 1998b) is 
obtained by enrichment of the conventional FEM local solution space with non-polynomial 
functions obtained from analytical solutions of simple vibration problems. A modified CEM 
applied to analysis of beams is proposed by Lu & Law (2007). The use of products between 
polynomials and Fourier series instead of polynomials alone in the element shape functions 
is recommended by Leung & Chan (1998). They develop the Fourier p-element applied to 
the vibration analysis of bars, beams and plates. These three methods have the same 
characteristics and they will be called enriched methods in this chapter. The main features of 
the enriched methods are: (a) the introduction of boundary conditions follows the standard 
finite element procedure; (b) hierarchical p refinements are easily implemented and (c) they 
are more accurate than conventional h version of FEM. 
At the same time, the Generalized Finite Element Method (GFEM) was independently 

proposed by Babuska and colleagues (Melenk & Babuska, 1996; Babuska et al., 2004; Duarte 

et al., 2000) and by Duarte & Oden (Duarte & Oden, 1996; Oden et al., 1998) under the 

following names: Special Finite Element Method, Generalized Finite Element Method, Finite 

Element Partition of Unity Method, hp Clouds and Cloud-Based hp Finite Element Method. 
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Actually, several meshless methods recently proposed may be considered special cases of 

this method. Strouboulis et al. (2006b) define otherwise the subclass of methods developed 

from the Partition of Unity Method including hp Cloud Method of Oden & Duarte (Duarte & 

Oden, 1996; Oden et al., 1998), the eXtended Finite Element Method (XFEM) of Belytschko 

and co-workers (Sukumar et al, 2000 and 2001), the Generalized Finite Element Method 

(GFEM) of Strouboulis et al. (2000 and 2001), the Method of Finite Spheres of De & Bathe 

(2001), and the Particle-Partition of Unity Method of Griebel & Schweitzer (Schweitzer, 

2009). The GFEM, which was conceived on the basis of the Partition of Unity Method, allows 

the inclusion of a priori knowledge about the fundamental solution of the governing 

differential equation. This approach ensures accurate local and global approximations. 

Recently several studies have indicated the efficiency of the GFEM and others methods 

based on the Partition of Unity Method in problems such as analysis of cracks (Xiao & 

Karihaloo, 2007; Abdelaziz & Hamouine, 2008; Duarte & Kim, 2008; Nistor et al., 2008), 

dislocations based on interior discontinuities (Gracie et al., 2007), large deformation of solid 

mechanics (Khoei et al., 2008) and Helmholtz equation (Strouboulis et al., 2006a; Strouboulis 

et al., 2008). In structural dynamics, the Partition of Unity Method was applied by De Bel et 

al. (2005), Hazard & Bouillard (2007) to numerical vibration analysis of plates and by Arndt 

et al. (2010) to free vibration analysis of bars and trusses. Among the main challenges in 

developing the GFEM to a specific problem are: (a) choosing the appropriate space of 

functions to be used as local approximation and (b) the imposition of essential boundary 

conditions, since the degrees of freedom used in GFEM generally do not correspond to the 

nodal ones. In most cases the imposition of boundary conditions is achieved by the 

degeneration of the approximation space or applying penalty or Lagrange multipliers 

methods. 
The purpose of this chapter is to present a formulation of the GFEM to free vibration 
analysis of framed structures. The proposed method combines the best features of GFEM 
and enriched methods: (a) efficiency, (b) hierarchical refinements and (c) the introduction of 
boundary conditions following the standard finite element procedure. In addition the 
enrichment functions are easily obtained. The GFEM elements presented can be used in 
plane free vibration analysis of rods, shafts, Euler Bernoulli beams, trusses and frames. 
These elements can be simply extended to spatial analysis of framed structures. The main 
features of the GFEM are discussed and the partition of unity functions and the local 
approximation spaces are presented. The GFEM solution can be improved using three 
refinement techniques: h, p and adaptive versions. In the adaptive GFEM, trigonometric and 
exponential enrichment functions depending on geometric and mechanical properties of the 
elements are added to the conventional Finite Element Method shape functions by the 
partition of unity approach. This technique allows an accurate adaptive process that 
converges very fast and is able to refine the frequency related to a specific vibration mode 
even for a coarse discretization scheme. 
In this chapter the efficiency and convergence of the proposed method for vibration analysis 

of framed structures are checked. The frequencies obtained by the GFEM are compared with 

those obtained by the analytical solution, the CEM and the h and p versions of the Finite 

Element Method. 

The chapter is structured as follows. Section 2 describes the variational form of the free 

vibration problems of bars and Euler-Bernoulli beams. The enriched methods proposed for 

free vibration analysis of bars and beams are discussed in Section 3. In Section 4 the main 
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features of the GFEM and the formulation of C0 and C1 elements are discussed. Section 5 

presents some applications of the proposed GFEM. Section 6 concludes the chapter. 

2. Structural free vibration problem 

Generally the structural free vibration problems are linear eigenvalue problems that can be 
described by: find a pair ( ),uλ  so that 

 Tu Quλ=  on Ω, with (1) 

 0Pu =  on ∂Ω (2) 

where T, Q and P are linear operators and ∂Ω corresponds to the boundary of domain Ω. 
The vibration of bars, stationary shafts and Euler-Bernoulli beams are mathematically 
modeled by elliptic boundary value problems, so T is a linear elliptic operator of order 2m 
and P is a consistent boundary operator of order m. Moreover, as the structural free 
vibration problems are derived from conservative laws, the operator T is formally assumed 
self-adjoint (Carey & Oden, 1983). 
According to Carey & Oden (1984), in order to obtain the variational form of a time 
dependent problem, one should consider the time t as a real parameter and develop a family 
of variational problems in t. This consists in selecting test functions w, independent of t, and 
applying the weighted-residual method.  

By this technique the structural free vibration problem becomes an eigenvalue problem with 
variational statement: find a pair ( ),uλ , with ( )u H Ω∈  and λ∈R , so that 

 ( , ) ( , )B u w F u wλ= , w H∀ ∈  (3) 

where :B H H× RU  and :F H H× RU  are bilinear forms. 
In numerical methods, finite dimensional subspaces of approximation ( )hH H Ω⊂  are 
chosen and the variational statement becomes: find hλ ∈R  and ( )h

hu H Ω∈  so that 

 ( , ) ( , )h h hB u w F u wλ= , hw H∀ ∈ . (4) 

Established an overview of the problem, in what follows the specific features of the free 
vibration problems of bars and beams are presented. 

2.1 Axial vibration of a straight bar 

The bar consists of a straight rod with axial strain (Fig. 1). The basic hypotheses concerning 
physical modeling of bar vibration are (Craig, 1981): (a) the cross sections which are straight 
and normal to the axis of the bar before deformation remain straight and normal after 
deformation; and (b) the material is elastic, linear and homogeneous.  
The momentum equation that governs this problem is the partial differential equation 

 ( )
2

2
( ) ( ) ,

u u
A x EA x p x t

x xt
ρ ∂ ∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂∂ ⎝ ⎠

 (5) 

where A(x) is the cross section area, E is the Young modulus, ρ is the specific mass, p is the 
externally applied axial force per unit length and t is the time. The problem of free vibration 
is stated as: find the axial displacement ( , )u u x t=  which satisfies Eq. (5) when ( , ) 0p x t = . 
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Fig. 1. Straight bar 

Assuming periodic solutions ( , ) ( )i tu x t e u xω= , where ω  is the natural frequency, the free 
vibration of a bar becomes an eigenvalue problem with variational statement: find a pair 

( ),uλ , with 1(0, )u H L∈  and λ∈R , which satisfies Eq. (3) when H space is 1(0, )H L , 
2λ ω= and L is the bar length. 

The bilinear forms B and F in Eq. (3) for Dirichlet and Neumann boundary conditions are 

 
0

( , )
L

du dw
B u w EA dx

dx dx
= ∫  (6) 

 
0

( , )
L

F u w Auwdxρ= ∫  (7) 

Similarly the bilinear forms for general natural boundary conditions are 

 
0

( , ) (0) (0) ( ) ( )
L

L R

du dw
B u w EA dx k u w k u L w L

dx dx
= + +∫  (8) 

 
0

( , ) (0) (0) ( ) ( )
L

L RF u w Auwdx m u w m u L w Lρ= + +∫  (9) 

where Lk  and Rk  are the spring stiffness at left and right bar ends, respectively, and Lm  
and Rm  are the masses at left and right bar ends, respectively. 
The torsional free vibration of a circular shaft is mathematically identical to the axial free 
vibration of a straight bar so the variational forms of these problems are the same. 

2.2 Transversal vibration of an Euler-Bernoulli beam 

Consider a straight beam with lateral displacements, as illustrated in Fig. 2. The basic 

hypotheses concerning physical modeling of Euler-Bernoulli beam vibration are: (a) there is 

a neutral axis undergoing no extension or contraction; (b) cross sections in the undeformed 

beam remain plane and perpendicular to the deformed neutral axis, that is, transverse shear 

deformation is neglected; (c) the material is linearly elastic and the beam is homogeneous at 

any cross section; (d) normal stresses σy and σz are negligible compared to the axial stress σx 

; and (e) the beam rotary inertia is neglected.  

The momentum equation governing this problem is the partial differential equation 
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2 2 2

2 2 2
( , )

v v
EI A p x t

x x t
ρ

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (10) 

where I(x) is the second moment of area, A(x) is the cross section area, E is the Young 
modulus, ρ  is the specific mass, p is the externally applied transversal force per unit length 
and t is the time. The free vibration problem consists in finding the lateral displacement 

( , )v v x t=  which satisfies Eq. (10) when ( , ) 0p x t = . 
Assuming periodic solutions ( , ) ( )i tv x t e v xω= , where ω  is the natural frequency, the free 
vibration of a beam becomes an eigenvalue problem with variational statement: find a pair 

( ),vλ , with 2(0, )v H L∈  and λ∈R , which satisfies Eq. (3) when H space is 2(0, )H L , 
2λ ω= , u v=  and L is the beam length. 

 

 

Fig. 2. Straight Euler-Bernoulli beam 

For Dirichlet and Neumann boundary conditions the bilinear forms B and F in Eq. (3) are 
obtained from 

 ( )
2 2

2 2
0

,
L

d v d w
B v w EI dx

dx dx
= ∫  (11) 

 ( )
0

,
L

F v w Avwdxρ= ∫ . (12) 

Similarly the bilinear forms for general natural boundary conditions are 

 

( )
2 2

2 2
0 00

, (0) (0) ( ) ( )
L

TL TR RL
x x

RR
x L x L

d v d w dv dw
B v w EI dx k v w k v L w L k

dx dxdx dx

dv dw
k

dx dx

= =

= =

= + + + +

+

∫
 (13) 

 

( )
0 00

, (0) (0) ( ) ( )
L

L R mL
x x

mR
x L x L

dv dw
F v w Avwdx m v w m v L w L I

dx dx

dv dw
I

dx dx

ρ
= =

= =

= + + + +

+

∫
 (14) 
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where TLk , RLk , Lm  and  mLI  are translational stiffness, rotational  stiffness, concentrated 
mass and moment of inertia of the attached mass at the left beam end, respectively, and TRk , 

RRk , Rm  and mRI  are translational stiffness, rotational  stiffness, concentrated mass and 
moment of inertia of the attached mass at the right beam end, respectively. 

3. Enriched methods 

Several methods found in the literature have as main feature the enrichment of the shape 

functions space of the classical FEM by adding other non polynomial functions. In this 

chapter such methods will be called enriched methods. Actually the Assumed Mode 

Method (AMM) of Ganesan & Engels (1992), the Composite Element Method (CEM) of Zeng 

(1998a, b and c) and the Fourier p-element of Leung & Chan (1998) are enriched methods. 

Their main features are: (a) the introduction of boundary conditions follows the standard 

finite element procedure; (b) hierarchical p refinements are easily implemented and (c) they 

present more accurate results than conventional h-version of FEM. 

The approximated solution of the enriched methods, in the element domain, is obtained by: 

 
e e e
h FEM ENRICHEDu u u= +

 (15) 
or in matrix shape 

 e T T
hu = +N q Ø q  (16) 

where e
FEMu  is the FEM displacement field based on nodal degrees of freedom, e

ENRICHEDu  is 
the enriched displacement field based on field degrees of freedom, q  is the conventional 
FEM degrees of freedom vector, the vector N contains the classical FEM shape functions and 
the vectors Ø  and q  contain the enrichment functions and the field degrees of freedom, 
respectively. The vectors Ø  and q  can be defined by: 

 ( ) [ ]1 2 r nF F F FξΤ =Ø … …  (17) 

 [ ]1 2
T

nc c c=q A  (18) 

 
e

x

L
ξ =  (19) 

where rF  are the enrichment functions, rc  are the field degrees of freedom and eL  is the 
element length. Different sets of enrichment functions produce different enriched methods. 
The enrichment functions spaces of the main enriched methods are described as follows. 

3.1 Enriched C
0
 elements 

C0 elements are used in free vibration analysis of bars and shafts. In this section the enriched 

C0 elements are described. In all these enriched methods the FEM displacement field 

corresponds to the classical FEM with two node elements and linear Lagrangian shape 

functions. Only the enrichment functions are different. 

In the AMM proposed by Engels (1992) the enrichment functions are the normalized 

analytical solutions of the free vibration problem of a fixed-fixed bar in the form 
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 ( )sinrF C rπξ= ,    1,2,r = …  (20) 

where C is the mass normalization constant given by 

 
2

e

C
ALρ

= . (21) 

The CEM enrichment functions proposed by Zeng (1998a) are trigonometric functions in the 
form 

 ( )sinrF rπξ= ,    1,2,r = …  (22) 

They differ from those of AMM just by the normalization.  
The enrichment functions used by Leung & Chan (1998) in the bar Fourier p-element and by 
Zeng (1998a) in the CEM are the same. 
It is noteworthy that all these functions vanish at element nodes. This feature allows the 
introduction of boundary conditions following the standard finite element procedure. 

3.2 Enriched C
1
 elements 

C1 elements are used in free vibration analysis of Euler-Bernoulli beams. In this section the 
enriched C1 elements are described. The FEM displacement field in these enriched methods 
corresponds to the classical FEM with two node elements and cubic Hermitian shape 
functions. The enrichment functions are described below. 
In the AMM three different enrichment functions are proposed. Engels (1992) uses analytical 
free vibration normal modes of a clamped-clamped beam in the classical form 

 ( ) ( ) ( ) ( ){ }sinh sin cosh cos  r r r r r r rF C λ ξ λ ξ α λ ξ λ ξ⎡ ⎤= − − −⎣ ⎦  (23) 

 
2

1
r

e r

C
ALρ α

=  (24) 

 
( ) ( )
( ) ( )

sinh sin

cosh cos
r r

r
r r

λ λ
α

λ λ
−

=
−

 (25) 

where Cr is the mass normalization constant for the rth mode and rλ  are the eigenvalues 
associated to the analytical solution obtained by the following characteristic equation 

 ( ) ( )cos cosh 1 0r rλ λ − =  (26) 

Alternatively, Ganesan & Engels (1992) propose enrichment functions based on the same 
analytical solution but in the form presented by Gartner & Olgac (1982) given by 

 ( ) ( )
( )

( ) ( ) ( )

( )

1
1 1 11

cos sin
1 1 1 1

rr r

r r

r r

r r rr r
e

e e e
F

AL e e

λ ξλ λ ξ

λ λ
λ ξ λ ξ

ρ

− −− −

− −

⎡ ⎤+ − − −
⎢ ⎥= − −
⎢ ⎥− − − −⎣ ⎦

 (27) 

where rλ  are the eigenvalues obtained by solving the equation 
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 ( ) 2

2
cos 0

1

r

r
r

e

e

λ

λλ
−

−− =
+

 (28) 

Ganesan & Engels (1992) also propose trigonometric enrichment functions in the following 
form: 

 ( ) ( )cos 1 cos 1rF r rπξ πξ= ⎡ − ⎤ − ⎡ + ⎤⎣ ⎦ ⎣ ⎦  (29) 

The Composite Element Method (CEM), proposed by Zeng (1998b), uses enrichment 
functions given by: 

 ( ) ( ) ( ) ( )sin sinh
sin sinh cos cosh

cos cosh
r r

r r r r r
r r

F
λ λλ ξ λ ξ λ ξ λ ξ
λ λ

−
⎡ ⎤= − − −⎣ ⎦−

 (30) 

corresponding to the clamped-clamped beam free vibration solution where rλ  are the 
eigenvalues obtained by the solution of Eq. (26). 
Leung & Chan (1998) propose two types of enrichment functions based on the Fourier 
series: the cosine version  

 ( )1 cosrF rπξ= −  (31) 

and the sine version  

 ( ) ( )1 sinrF rξ ξ πξ= − . (32) 

The cosine version is the simplest but is not recommended when modeling a free of shear 
forces structure with only one element. Leung & Chan (1998) also note that the cosine 
version fails to predict the clamped-hinged and clamped-clamped modes of beams. 
It is noteworthy that all these functions and their first derivatives vanish at element nodes. 
Again this feature allows the introduction of boundary conditions following the standard 
finite element procedure.  

4. Generalized finite element method 

The Generalized Finite Element Method (GFEM) is a Galerkin method whose main goal is 
the construction of a finite dimensional subspace of approximating functions using local 
knowledge about the solution that ensures accurate local and global results. The GFEM local 
enrichment in the approximation subspace is incorporated by the partition of unity 
approach. 

4.1 Partition on unity 

The Partition of Unity Method is defined as follows. 

Let ( )1u Η Ω∈  be the function to be approximated and { }iΩ  be an open cover of domain 
Ω  (Fig. 3) satisfying an overlap condition: 

 SM∃ ∈Ν   so that  x Ω∀ ∈    { } i Scard i x MΩ∈ ≤ . (33) 

A partition of unity subordinate to the cover { }iΩ  is the set of functions { }iη  satisfying the 
conditions: 
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 ( ) { } [ ]supp  ( ) 0i i ix xη Ω η Ω= ∈ ≠ ⊂ ,   i∀  (34) 

 
i

1  on  iη Ω≡∑  (35) 

where ( )supp iη  denotes the support of definition of the function iη  and [ ]iΩ   is the 
closure of the patch iΩ .  
 

 

Fig. 3. Open cover { }iΩ  of domain Ω (Duarte et al., 2000) 

 

 

Fig. 4. Patchs and partition of unity set for one-dimensional GFEM finite element mesh 

The partition of unity set { }iη  allows to obtain an enriched set of approximating functions. 
Let ( )1

i iS Η Ω Ω⊂ ∩  be a set of functions that locally well represents u:  

 { }
1

mj
i i

j
S s

=
=  (36) 

Then the enriched set is formed by multiplying each partition of unity function iη  by the 
corresponding j

is , i.e.,  

 ( )1: j j
i i i ii i

i i

S S s s S Hη η Ω
⎧ ⎫⎪ ⎪= = ∈ ⊂⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (37) 

Accordingly, the function u can be approximated by the enriched set as: 

 ( ) ( )
j

ii

j
h i iji

i s S

u x s x aη
∈

=∑ ∑  (38) 
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where ija  are the degrees of freedom. 
The proposed C0 and C1 generalized elements for free vibration analysis of framed 
structures are described below. The h, p and adaptive refinements of these elements are 
discussed.  

In the proposed GFEM, the cover { }iΩ corresponds to the finite element mesh and each 
patch iΩ corresponds to the sub domain of Ω  formed by the union of elements that contain 
the node xi (Fig. 4). 

4.2 Generalized C
0
 elements 

The generalized C0 elements use the classical linear FEM shape functions as the partition of 
unity, i.e.: 

 

( )

( )

1
1

1
1

1 f ,

1 f ,

i
i i

i i
i

i
i i

i i

x x
i x x x

x x

x x
i x x x

x x

η
−

−

+
+

−⎧ + ∈⎪ −⎪= ⎨ −⎪ − ∈
⎪ −⎩

 (39) 

in the patch ( )1 1,i i ix xΩ − +=  . 

The proposed local approximation space in the patch ( )1 1,i i ix xΩ − +=  takes the form: 

 { }1 2 1 21i j j j jS span γ γ φ φ= … , 1,2, , lj n= …  (40) 

 
( )

( ) ( )
1

1
1

0 ,

sin ,

i i

j
Rj i i i

if x x x

x x if x x x
γ

β
−

+

⎧ ∈⎪= ⎨ ⎡ ⎤− ∈⎪ ⎣ ⎦⎩
 (41) 

 
( ) ( )

( )
1

2

1

sin ,

0 ,

Lj i i i
j

i i

x x if x x x

if x x x

β
γ −

+

⎧ ⎡ ⎤− ∈⎪ ⎣ ⎦= ⎨
∈⎪⎩

 (42) 

 
( )

( ) ( )
1

1
1

0 ,

cos 1 ,

i i

j
Rj i i i

if x x x

x x if x x x
φ

β
−

+

⎧ ∈⎪= ⎨ ⎡ ⎤− − ∈⎪ ⎣ ⎦⎩
 (43) 

 
( ) ( )

( )
1

2

1

cos 1 ,

0 ,

Lj i i i
j

i i

x x if x x x

if x x x

β
φ −

+

⎧ ⎡ ⎤− − ∈⎪ ⎣ ⎦= ⎨
∈⎪⎩

 (44) 

 R
Rj j

RE

ρβ μ=  (45) 

 L
Lj j

LE

ρβ μ=  (46) 

where  ER and ρR  are the Young modulus and specific mass on sub domain ( )1,i ix x + , EL and 

ρL are the Young modulus and specific mass on sub domain ( )1 ,i ix x− , and jμ  is a frequency 

related to the enrichment level j.  
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The enriched functions, so proposed, vanish at element nodes, which allows the imposition 
of boundary conditions in the same fashion of the finite element procedure. 

This C0 element can be applied to the free vibration analysis of shafts, bars and trusses. 

Different frequencies jμ produce different enriched elements. The increase in the number of 

elements in the mesh with only one level of enrichment (j = 1) and a fixed parameter 

1 1 1R Lβ β β= = , 1β π=  for example, produces an h refinement. Otherwise the increase in the 

number of levels of enrichment, with a different parameter j Rj Ljβ β β= = each, j jβ π=  for 

example, produces a hierarchical p refinement. Another possible refinement in the proposed 

GFEM is the adaptive one, which is presented below.  
The adaptive GFEM is an iterative approach presented first by Arndt et al. (2010) whose 
main goal is to increase the accuracy of the frequency (eigenvalue) related to a chosen 
vibration mode with order denoted by “target order”. The flowchart with blocks A to H 
presented in Fig. 5 represents the adaptive process.  
 

(A)   Choice of the target vibration 

mode 

target = chosen mode order 

(B)   Solution by FEM (GFEM nl = 0 ) 

mesh ndof  >=  target 

Obtain ωtarget,FEM 

C)              i  = 1 

ωtarget,i =  ωtarget,FEM 

D)            i = i + 1 

j =  1

E)   Solution by GFEM 

nl = j and µj = ωtarget,i-1 

Obtain ωtarget,GFEM 

F)   ωtarget,i =  ωtarget,GFEM 

G)       Convergence test 

|ωtarget,i -  ωtarget,i-1|  < tolerance  

H)               End 

Show results

NO

YES

 

Fig. 5. Flowchart of the adaptive GFEM  
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In this flowchart, ωtarget corresponds to the frequency related to the target mode. The first 

step of the adaptive GFEM process (blocks A to C) consists in obtaining an approximation of 

the target frequency by the standard FEM (GFEM with nl = 0) with a coarse mesh. The finite 

element mesh used in the analysis has to be as coarse as necessary to capture a first 

approximation of the target frequency. The subsequent steps (blocks D to G) consist in 

applying the GFEM with only one enrichment level (nl = 1) to the same finite element mesh 

assuming the frequency μj (j = 1, blocks D and E) of the enrichment functions (Eqs. 41-46) as 

the target frequency obtained in the last step. Thus, no mesh refinement is necessary along 

the iterative process. 

Both the standard FEM and the adaptive GFEM allow as many frequencies as the total 

number of degrees of freedom to be obtained. However, in the latter, only the precision of 

the target frequency is effectively improved by the iterative process. The other frequencies 

present errors similar to those obtained by the standard FEM with the same mesh. In order 

to improve the precision of another frequency, it is necessary to perform a new adaptive 

GFEM analysis, taking this new one as the target frequency. 

4.3 Generalized C
1
 elements 

The generalized C1 elements also use the classical linear FEM form functions as partition of 

unity (Eq. (39)). The proposed local approximation space in the patch ( )1 1,i i ix xΩ − +=  takes 

the form: 

 { }1 2 1 2 i j jS span ϕ ϕ γ γ= … ,  1,2, , lj n= …  (47) 

 

( )

( )

2

1 1
1

1 1
1 2

1
1 1

3 2 ,

1 2 ,

i i
i i

i i i i

i i
i i

i i i i

x x x x
if x x x

x x x x

x x x x
if x x x

x x x x

ϕ

− −
−

− −

+
+ +
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 (48) 
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 (51) 

where jλ  are the eigenvalues obtained by the solution of Eq. (28). 
Such partition of unity functions and local approximation space produce the cubic FEM 

approximation space enriched by functions that represent the local behavior of the 

differential equation solution. The enriched functions and their first derivatives vanish at 

element nodes. Hence, the imposition of boundary conditions follows the finite element 

procedure. This C1 element is suited to apply to the free vibration analysis of Euler-Bernoulli 

beams.  

Again the increase in the number of elements in the mesh with only one level of enrichment 

(j = 1) and a fixed eigenvalue 1λ  produces the h refinement of GFEM. Otherwise the 

increase in the number of levels of enrichment, each of one with a different frequency jλ , 

produces a hierarchical p refinement. An adaptive GFEM refinement for free vibration 

analysis of Euler-Bernoulli beams is straight forward, as can be easily seen. However it will 

not be discussed here. 

5. Applications 

Numerical solutions for two bars, a beam and a truss are given below to illustrate the 

application of the GFEM. To check the efficiency of this method the results are compared to 

those obtained by the h and p-versions of FEM and the c-version of CEM. 

The number of degrees of freedom (ndof) considered in each analysis is the total number of 

effective degrees of freedom after introduction of boundary conditions. As an intrinsic 

imposition of the adaptive method, each target frequency is obtained by a new iterative 

analysis. The mesh used in each adaptive analysis is the coarser one, that is, just as coarse as 

necessary to capture a first approximation of the target frequency. 

5.1 Uniform fixed-free bar 

The axial free vibration of a fixed-free bar (Fig. 6) with length L, elasticity modulus E, mass 

density ρ and uniform cross section area A, has exact natural frequencies ( rω ) given by 

(Craig, 1981):   

 
( )2 1

2
r

r E

L

π
ω

ρ
−

=     , 1,2,r = … . (52) 

In order to compare the exact solution with the approximated ones, in this example it is 

used a non-dimensional eigenvalue rχ  given by: 

 
2 2

r
r

L

E

ρ ωχ = . (53) 
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Fig. 6. Uniform fixed-free bar 

a) h refinement 

First the proposed problem is analyzed by a series of h refinements of FEM (linear and 
cubic), CEM and GFEM (C0 element). A uniform mesh is used in all methods. Only one 
enrichment function is used in each element of the h-version of CEM. One level of 
enrichment (nl = 1) with 1β π= is used in the h-version of GFEM. The evolution of relative 
error of the h refinements for the six earliest eigenvalues in logarithmic scale is presented in 
Figs. 7-9. 
The results show that the h-version of GFEM exhibits greater convergence rates than the h 
refinements of FEM and CEM for all analyzed eigenvalues. 
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Fig. 7. Relative error (%) for the 1st and 2nd fixed-free bar eigenvalues – h refinements 
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Fig. 8. Relative error (%) for the 3rd and 4th fixed-free bar eigenvalues - h refinements 
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Fig. 9. Relative error (%) for the 5th and 6th fixed-free bar eigenvalues - h refinements 

b) p refinement 

The p refinement of GFEM is now compared to the hierarchical p-version of FEM and the c-

version of CEM. The p-version of GFEM consists in a progressive increase of levels of 

enrichment with parameter j jβ π= .  
The evolution of relative error of the p refinements for the six earliest eigenvalues in 
logarithmic scale is presented in Figs. 10-12.  
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Fig. 10. Relative error (%) for the 1st and 2nd fixed-free bar eigenvalues - p refinements 

The fixed-free bar results show that the p-version of GFEM presents greater convergence rates 
than the h refinements of FEM and the c-version of CEM. The hierarchical p refinement of 
FEM only overcomes the results obtained by p-version of GFEM for the first eigenvalue. For 
the other eigenvalues the GFEM presents more precise results and greater convergence rates. 

c) adaptive refinement 

Four different adaptive GFEM analyses are performed in order to obtain the first four 
frequencies. The behavior of the relative error in each analysis is presented in Fig. 13.  
In order to capture an initial approximation of the target vibration frequency, for the first 
frequency, the finite element mesh must have at least one bar element (one effective degree 
of freedom), for the second frequency, it must have at least two bar elements (two effective 
degrees of freedom), and so on. 
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Fig. 11. Relative error (%) for the 3rd and 4th fixed-free bar eigenvalues - p refinements 
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Fig. 12. Relative error (%) for the 5th and 6th fixed-free bar eigenvalues - p refinements 
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Fig. 13. Error in the adaptive GFEM analyses of fixed-free uniform bar 
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Table 1 presents the relative errors obtained by the numerical methods. The linear FEM 
solution is obtained with 100 elements, that is, 100 effective degrees of freedom (dof). The 
cubic FEM solution is obtained with 20 elements, that is, 60 effective degrees of freedom. 
The CEM solution is obtained with one element and 15 enrichment functions corresponding 
to one nodal degree of freedom and 15 field degrees of freedom resulting in 16 effective 
degrees of freedom. The hierarchical p FEM solution is obtained with a 17-node element 
corresponding to 16 effective degrees of freedom. The analyses by the adaptive GFEM have 
no more than 20 degrees of freedom in each iteration. For example, the fourth frequency is 
obtained taking 4 degrees of freedom in the first iteration and 20 degrees of freedom in the 
two subsequent ones.  
 

linear h FEM
(100e) 

ndof  = 100 

cubic h FEM
(20e) 

ndof = 60 

p FEM 
(1e 17n)

ndof = 16

c CEM 
(1e 15c) 

ndof =16

Adaptive GFEM 
(after 3 iterations) 

 
 

Eigenvalue 
error (%) error (%) error (%) error (%) error (%) ndof in iterations 

1 2,056 e-3 8,564 e-10 3,780 e-13 8,936 e-4 3,780 e-13 1x 1 dof + 2x 5 dof 

2 1,851 e-2 1,694 e-7 2,560 e-13 8,188 e-3 2,560 e-13
1x 2 dof + 2x 10 

dof 

3 5,141 e-2 3,619 e-6 1,382 e-13 2,299 e-2 2,304 e-14
1x 3 dof + 2x 15 

dof 

4 1,008 e-1 2,711 e-5 1,602 e-11 4,579 e-2 5,289 e-13
1x 4 dof + 2x 20 

dof 

Table 1. Results to free vibration of uniform fixed-free bar 

The adaptive process converges rapidly, requiring three iterations in order to achieve each 
target frequency with precision of the 10-13 order. For the uniform fixed-free bar, one notes 
that the adaptive GFEM reaches greater precision than the h versions of FEM and the c-
version of CEM. The p-version of FEM is as precise as the adaptive GFEM only for the first 
two eigenvalues. After this, the precision of the adaptive GFEM prevails among the others. 
For the sake of comparison, the standard FEM software Ansys© employing 410 truss 
elements (LINK8) reaches the same precision for the first four frequencies. 

5.2 Fixed-fixed bar with sinusoidal variation of cross section area 

In order to analyze the efficiency of the adaptive GFEM for non-uniform bars, the 
longitudinal free vibration of a fixed-fixed bar with sinusoidal variation of cross section 
area, length L, elasticity modulus E and mass density ρ is analyzed. The boundary 
conditions are (0, ) 0u t =  and ( , ) 0u L t = , and the cross section area varies as 

 2
0( ) sin 1

x
A x A

L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (54) 

where A0 is a reference cross section area. 
Kumar & Sujith (1997) presented exact analytical solutions for longitudinal free vibration of 
bars with sinusoidal and polynomial area variations.  
This problem is analyzed by the h and p versions of FEM and the adaptive GFEM. Six 
adaptive analyses are performed in order to obtain each of the first six frequencies. The 
behavior of the relative error of the target frequency in each analysis is presented in Fig. 14.  
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Fig. 14. Error in the adaptive GFEM analyses of fixed-fixed non-uniform bar 

Table 2 shows the first six non-dimensional eigenvalues ( r rL Eβ ω ρ= ) and their relative 

errors obtained by these methods. The linear h FEM solution is obtained with 100 elements, 

that is, 99 effective degrees of freedom after introduction of boundary conditions. The cubic 

h FEM solution is obtained with 12 cubic elements, that is, 35 effective degrees of freedom. 

The p FEM solution is obtained with one hierarchical 33-node element, that is, 31 effective 

degrees of freedom. The analyses by the adaptive GFEM have maximum number of degrees 

of freedom in each iteration ranging from 9 to 34. 
 

Analytical 
solution 

(Kumar & 
Sujith, 1997)

linear h 
FEM 

(100e) 
ndof = 99

cubic h 
FEM 
(12e) 

ndof = 35 

hierarchical p 
FEM 

(1e 33n) 
ndof  = 31 

Adaptive GFEM 
 

(after 3 iterations) r 

χr error (%) error (%) error (%) error (%) ndof in iterations 

1 2,978189 4,737 e-3 2,577 e-5 2,998 e-5 2,997 e-5 1x 1 dof + 2x 9 dof 

2 6,203097 1,699 e-2 1,901 e-4 6,774 e-6 6,871 e-6 1x 2 dof + 2x 14 dof 

3 9,371576 3,753 e-2 3,065 e-4 1,643 e-6 1,731 e-6 1x 3 dof + 2x 19 dof 

4 12,526519 6,632 e-2 7,312 e-4 2,498 e-6 2,441 e-6 1x 4 dof + 2x 24 dof 

5 15,676100 1,033 e-1 2,332 e-3 2,407 e-7 2,044 e-7 1x 5 dof + 2x 29 dof 

6 18,823011 1,486 e-1 6,787 e-3 2,163 e-6 2,187 e-6 1x 6 dof + 2x 34 dof 

Table 2. Results to free vibration of non-uniform fixed-fixed bar 

The adaptive GFEM exhibits more accuracy than the h-versions of FEM with even less 

degrees of freedom. The precision reached for all calculated frequencies by the adaptive 

process is similar to the p-version of FEM with 31 degrees of freedom. The errors are greater 

than those from the uniform bars because the analytical vibration modes of non-uniform 

bars cannot be exactly represented by the trigonometric functions used as enrichment 

functions; however, the precision is acceptable for engineering applications. Each analysis 

by the adaptive GFEM is able to refine the target frequency until the exhaustion of the 

approximation capacity of the enriched subspace.  
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5.3 Uniform clamped-free beam 

The free vibration of an uniform clamped-free beam (Fig. 15) in lateral motion, with length 
L, second moment of area I, elasticity modulus E, mass density ρ  and cross section area A, is 
analyzed in order to demonstrate the application of the proposed method. The analytical 
natural frequencies ( rω ) are the roots of the equation: 

 ( ) ( )cos cosh 1 0r rL Lκ κ + = , 1,2,r = …  (55) 

 
2

4 r
r

A

EI

ω ρ
κ =  (56) 

To check the efficiency of the proposed generalized C1 element the results are compared to 
those obtained by the h and p versions of FEM and by the c refinement of CEM. The 
eigenvalue .r r Lχ κ=  is used to compare the analytical solution with the approximated ones. 
 

 

Fig. 15. Uniform clamped-free beam 

a) h refinement 

First this problem is analyzed by the h refinement of FEM, CEM and GFEM.  A uniform 
mesh is used in all methods. Only one enrichment function is used in each element of the h-
version of CEM. One level of enrichment (nl = 1) is used in the h-version of GFEM. 
The evolution of the relative error of the h refinements for the four earliest eigenvalues in 
logarithmic scale is presented in Figs. 16 and 17. 
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Fig. 16. Relative error (%) for the 1st and 2nd clamped-free beam eigenvalues – h refinements 

The results show that the h-version of GFEM presents greater convergence rates than the h 
refinement of FEM. The results of h-version of CEM for the first two eigenvalues resemble 
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those obtained by the h-version of GFEM. However the results of h-version of GFEM for 
higher eigenvalues are more accurate. 
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Fig. 17. Relative error (%) for the 3rd and 4th clamped-free beam eigenvalues – h refinements 

b) p refinement 
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Fig. 18. Relative error (%) for the 1st and 2nd clamped-free beam eigenvalues – p refinements 
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Fig. 19. Relative error (%) for the 3rd and 4th clamped-free beam eigenvalues – p refinements 
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The p refinement of GFEM is now compared to the hierarchical p-version of FEM and the c-
version of CEM. The p-version of GFEM consists in a progressive increase of levels of 
enrichment. The relative error evolution of the p refinements for the first eight eigenvalues 
in logarithmic scale is presented in Figs. 18-21. 
The results of the p-version of GFEM converge more rapidly than those obtained by the h-
version of FEM and the c-version of CEM. The hierarchical p-version of FEM overcomes the 
precision and convergence rates obtained by the p-version of GFEM for the first six 
eigenvalues. However the p-version of GFEM is more precise for higher eigenvalues. 
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Fig. 20. Relative error (%) for the 5th and 6th clamped-free beam eigenvalues – p refinements 
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Fig. 21. Relative error (%) for the 7th and 8th clamped-free beam eigenvalues – p refinements 

5.4 Seven bar truss 

The free axial vibration of a truss formed by seven straight bars is analyzed to illustrate the 

application of the adaptive GFEM in structures formed by bars. This problem is proposed by 

Zeng (1998a) in order to check the CEM. The geometry of the truss is presented in Fig. 22. 

All bars in the truss have cross section area A = 0,001 m2, mass density ρ = 8000 kg m-3 and 

elasticity modulus E = 2,1 1011 N m-2. 

www.intechopen.com



 Advances in Vibration Analysis Research 

 

208 

All analyses use seven element mesh, the minimum number of C0 type elements necessary 
to represent the truss geometry. The linear FEM, the c-version of CEM and the h-version of 
GFEM with nl = 1 and 1β π= are applied. Six analyses by the adaptive GFEM are performed 
in order to improve the accuracy of each of the first six natural frequencies. The frequencies 
obtained by each analysis are presented in Table 3.  
 

 

Fig. 22. Seven bar truss 

 

 
FEM (7e) 

 
ndof = 6 

CEM (7e 1c)
 

ndof = 13 

CEM (7e 2c)
 

ndof = 20 

CEM (7e  5c)
 

ndof = 41 

h GFEM (7e)

nl = 1, β1 = π 
ndof = 34 

Adaptive GFEM 

(7e 3i) 
1x 6 dof + 
2x 34 dof 

i iω  
(rad/s) iω  

(rad/s) iω  
(rad/s) iω  (rad/s) iω  (rad/s) iω  (rad/s) 

1 1683,521413 1648,516148 1648,258910 1647,811939 1647,785439 1647,784428 

2 1776,278483 1741,661466 1741,319206 1740,868779 1740,840343 1740,839797 

3 3341,375203 3119,123132 3113,835167 3111,525066 3111,326191 3111,322715 

4 5174,353866 4600,595156 4567,688849 4562,562379 4561,819768 4561,817307 

5 5678,184561 4870,575795 4829,702095 4824,125665 4823,253509 4823,248678 

6 8315,400602 7380,832845 7379,960217 7379,515018 7379,482416 7379,482322 

Table 3. Results to free vibration of seven bar truss 

The FEM solution is obtained with seven linear elements, that is, six effective degrees of 

freedom after introduction of boundary conditions. The c-version of the CEM solution is 

obtained with seven elements and one, two and five enrichment functions corresponding to 

six nodal degrees of freedom and seven, 14 and 35 field degrees of freedom respectively. All 

analyses by the adaptive GFEM have six degrees of freedom in the first iteration and 34 

degrees of freedom in the following two. 

This special case is not well suited to the h-version of FEM since it demands the adoption of 

restraints at each internal bar node in order to avoid modeling instability. The FEM analysis 

of this truss can be improved by applying bar elements of higher order (p-version) or beam 

elements. The results show that both the c-version of CEM and the adaptive GFEM 

converges to the same frequencies. 
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6. Conclusion 

The main contribution of the present study consists in formulating and investigating the 

performance of the Generalized Finite Element Method (GFEM) for vibration analysis of 

framed structures. The proposed generalized C0 and C1 elements allow to apply boundary 

conditions as in the standard finite element procedure. In some of the recently proposed 

methods such as the modified CEM (Lu & Law, 2007), it is necessary to change the set of 

shape functions depending on the boundary conditions of the problem. In others, like the 

Partition of Unity used by De Bel et al. (2005) and Hazard & Bouillard (2007), the boundary 

conditions are applied under a penalty approach. In addition the GFEM enrichment 

functions require less effort to be obtained than the FEM shape functions in a hierarchical p 

refinement.  

The GFEM results were compared with those obtained by the h and p versions of FEM and 

the c-version of CEM. The h-version of GFEM for C0 elements exhibits more accuracy than h 

refinements of FEM and CEM. The C1 h-version of GFEM presents more accurate results 

than h-version of FEM for all beam eigenvalues. The results of h-version of CEM for the first 

beam eigenvalues are alike those obtained by the h-version of GFEM. However the higher 

beam eigenvalues obtained by the h-version of GFEM are more precise. 

The p-version of GFEM is quite accurate and its convergence rates are higher than those 

obtained by the h-versions of FEM and the c-version of CEM in free vibration analysis of 

bars and beams. It is observed however that the last eigenvalues obtained in each analysis of 

p-version of GFEM did not show good accuracy, but this deficiency is also found in the 

other enriched methods, such as the CEM. Although the p refinement of GFEM has 

produced excellent results and convergence rates, the adaptive GFEM exhibits special skills 

to reach accurately a specific frequency. 

In most of the free vibration analysis it is virtually impossible to get all the natural 

frequencies. However, in practical analysis it is sufficient to work with a set of frequencies in 

a range (or band), or with those which have more significant participation in the analysis. 

The adaptive GFEM allows to find a specific natural frequency with accuracy and 

computational efficiency. It may be used in repeated analyses in order to find all the 

frequency in the range of interest. 

In the C0 adaptive GFEM, trigonometric enrichment functions depending on geometric and 

mechanical properties of the elements are added to the linear FEM shape functions by the 

partition of unity approach. This technique allows an accurate adaptive process that 

converges very fast and is able to refine the frequency related to a specific vibration mode.  

The adaptive GFEM shows fast convergence and remains stable after the third iteration with 

quite precise results for the target frequency.  

The results have shown that the adaptive GFEM is more accurate than the h refinement of 

FEM and the c refinement of CEM, both employing a larger number of degrees of freedom. 

The adaptive GFEM in free vibration analysis of bars has exhibited similar accuracy, in some 

cases even better, to those obtained by the p refinement of FEM. 

Thus the adaptive GFEM has shown to be efficient in the analysis of longitudinal vibration 

of bars, so that it can be applied, even for a coarse discretization scheme, in complex 

practical problems. Future research will extend this adaptive method to other structural 

elements like beams, plates and shells.  
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