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1. Introduction  

Because of their high strength, high stiffness, and low density characteristics, composite 
materials are now used widely for the design of rotating mechanical components such as, 
for example, driveshafts for helicopters, cars and jet engines, or centrifugal separator 
cylindrical tubes. The interest of composites for rotordynamic applications has been 
demonstrated both numerically and experimentally. Accompanied by the development of 
many new advanced composite materials, various mathematical models of spinning 
composite shafts were also developed by researchers. 
Zinberg and Symonds (Zinberg & Symonds, 1970) investigated the critical speeds for 
rotating anisotropic shafts and their experiments affirmed the advantages of composite 
shafts over aluminum alloy shafts. Using Donell’s thin shell theory, Reis et al. (Dos Reis et 
al., 1987) applied finite element method to evaluate critical speeds of thin-walled laminated 
composite shafts. They concluded that the lay-up of a composite shaft strongly influences 
the dynamic behavior of this shaft. 
Kim and Bert (Kim & Bert, 1993) utilized Sanders’ best first approximation shell theory to 
determine critical speeds of a rotating shaft containing layers of arbitrarily laminated 
composite materials. Both the thin- and thick-shell models, including the Coriolis effect, 
were presented. Bert (Bert, 1992), as well as Bert and Kim (Bert & Kim, 1995a), examined 
critical speeds of composite shafts using Bernoulli-Euler beam theory and Bresse-
Timoshenko beam model, respectively. Conventional beam model approaches used to date 
are Equivalent Modules Beam Theory (EMBT). In another study, Bert and Kim (Bert & Kim, 
1995b) have analysed the dynamic instability of a composite drive shaft subjected to 
fluctuating torque and/or rotational speed by using various thin shell theories. The 
rotational effects include centrifugal and Coriolis forces. Dynamic instability regions for a 
long span simply supported shaft are presented. 
M- Y. Chang et al (Chang et al., 2004a) published the vibration behaviours of the rotating 
composite shafts. In the model the transverse shear deformation, rotary inertia and 
gyroscopic effects, as well as the coupling effect due to the lamination of composite layers 
have been incorporated. The model based on a first order shear deformable beam theory 
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(continuum- based Timoshenko beam theory). M- Y. Chang et al (Chang et al., 2004b) 
published the vibration analysis of rotating composite shafts containing randomly oriented 
reinforcements. The Mori-Tanaka mean-field theory is adopted here to account for the 
interaction at the finite concentrations of reinforcements in the composite material. 
Additional recent work on composite shafts dealing with both the theoretical and 
experimental aspects was reported by Singh (Singh, 1992), Gupta and Singh (Gupta & Singh, 
1996) and Singh and Gupta (Singh & Gupta, 1994a). Rotordynamic formulation based on 
equivalent modulus beam theory was developed for a composite rotor with a number of 
lumped masses, and supported on general eight coefficient bearings. A Layerwise Beam 
Theory (LBT) was derived by Singh and Gupta (Gupta & Singh, 1996) from an available 
shell theory, with a layerwise displacement field, and was then extended to solve a general 
composite rotordynamic problem. The conventional rotor dynamic parameters as well as 
critical speeds, natural frequencies, damping factors, unbalance response and threshold of 
stability were analyzed in detail and results from the formulations based on the two 
theories, namely, the equivalent modulus beam theory (EMBT) and layerwise beam theory 
(LBT) were compared (Singh & Gupta, 1994a). The experimental rotordynamic studies 
carried by Singh and Gupta (Singh & Gupta, 1995-1996) were conducted on two filament 
wound carbon/epoxy shafts with constant winding angles (±45° and ±60°). Progressive 
balancing had to be carried out to enable the shaft to traverse through the first critical speed. 
Inspire of the very different shaft configurations used, the authors’ have shown that 
bending-stretching coupling and shear-normal coupling effects change with stacking 
sequence, and alter the frequency values. Some practical aspects such as effect of shaft disk 
angular misalignment, interaction between shaft bow, which is common in composite shafts 
and rotor unbalance, and an unsuccessful operation of a composite rotor with an external 
damper were discussed and reported by Singh and Gupta (Singh & Gupta, 1995). The Bode 
and cascade plots were generated and orbital analysis at various operating speeds was 
performed. The experimental critical speeds showed good correlation with the theoretical 
prediction.  
Mastering vibratory behavior requires knowledge of the characteristics of the composite 
material spinning shafts, the prediction of this knowledge is fundamental in the design of 
the rotating machinery in order to provide a precise idea of the safe intervals in terms of 
spinning speeds. Within the framework of this idea, our work concerns to the study of the 
vibratory behavior of the spinning composite material shafts, and more precisely, their 
behavior in rotation by taking into account the effects of the transverse shear deformation, 
rotary inertia and gyroscopic effects, as well as the coupling effect due to the lamination of 
composite layers, the effect of the elastic bearings and external damping and the effect of 
disk. In the presented composite shaft model, the Timoshenko theory will be adopted.  An 
hp- version of the finite element method (combination between the conventional version of 
the finite element method (h- version) and the hierarchical finite element method (p- 
version) with trigonometric shape functions (Boukhalfa et al., 2008-2010) is used to model 
the structure. A hierarchical finite element of beam type with six degrees of freedom per 
node is developed. The assembly is made same manner as the standard version of the finite 
element method for several elements. The theoretical study allows the establishment of the 
kinetic energy and the strain energy of the system (shaft, disk and bearings) necessary to 
determine the motion equations. A program is elaborated to calculate the Eigen-frequencies 
and the critical speeds of the system. The results obtained are compared with those available 
in the literature and show the speed of convergence, the precision and the effectiveness of 
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the method used. Several examples are treated, and a discussion is established to determine 
the influence of the various parameters and boundary conditions. In the hp- version of the 
finite element method, the error in the solution is controlled by both the number of elements 
h and the polynomial order p ((Babuska & Guo, 1986); (Demkowicz et al., 1989)). The hp- 
version of the finite element method has been exploited in a few areas including plate 
vibrations (Bardell et al., 1995) and beam statics (Bardell, 1996) and has been shown to offer 
considerable savings in computational effort when compared with the standard h-version of 
the finite element method. 

2. Equations of motion 

2.1 Kinetic and strain energy expressions of the shaft 

The shaft is modeled as a Timoshenko beam, that is, first-order shear deformation theory 
with rotary inertia and gyroscopic effect is used. The shaft rotates at constant speed about its 
longitudinal axis. Due to the presence of fibers oriented than axially or circumferentially, 
coupling is made between bending and twisting. The shaft has a uniform, circular cross 
section. 
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Fig. 1. The elastic displacements of a typical cross-section of the shaft  

The following displacement field of a spinning shaft (one beam element) is assumed by 
choosing the coordinate axis x to coincide with the shaft axis: 

 

0

0

0

( , , , ) ( , ) ( , ) ( , )

( , , , ) ( , ) ( , )

( , , , ) ( , ) ( , )

x yU x y z t U x t z x t y x t

V x y z t V x t z x t

W x y z t W x t y x t

β β

φ
φ

= + −⎧
⎪

= −⎨
⎪ = +⎩

 (1) 

Where U, V and W are the flexural displacements of any point on the cross-section of the 
shaft in the x, y and z directions respectively, the variables U0, V0 and W0 are the flexural 
displacements of the shaft’s axis, while xβ and yβ are the rotation angles of the cross-section, 
about the y and z axis respectively. The φ  is the angular displacement of the cross-section 
due to the torsion deformation of the shaft (see figure 1).  
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The strain components in the cylindrical coordinate system (As shown in figure 2-3) can be 
written in terms of the displacement variables defined earlier as 
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 (2) 

Let us consider a composite shaft consists of k layered (see figure 3) of fiber inclusion 
reinforced laminate. The constitutive relations for each layer are described by 
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 (3) 

Where Cij’ are the effective elastic constants, they are related to lamination angle η (as shown 
in figure 4-5) and the elastic constants of principal axes. 
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Fig. 2. The cylindrical coordinate System  

The stress-strain relations of the nth layer expressed in the cylindrical coordinate system (see 
figure 6) can be expressed as 

 
11 16

16 66

55

xx n xx s n x

x x s n xx s n x

xr rx s n xr

C k C

k C k C

k C

θ

θ θ θ

σ ε γ
τ τ ε γ

τ τ γ

⎧ ′ ′= +
⎪ ′ ′= = +⎨
⎪ ′= =⎩

 (4) 

Where ks is the transverse shear correction factor. 
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Fig. 3. k –layers of composite shaft 
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Fig. 4. A typical composite lamina and its principal axes 
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Fig. 5. The definitions of the principal coordinate axes on an arbitrary layer of the composite 

The formula of the strain energy is 

 
1

( 2 2 )
2

d xx xx xr xr x xV
E dVθ θσ ε τ ε τ ε= + +∫  (5) 

The various components of strain energy of the shaft are presented as follow (one beam 
element) 
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 (6) 

where Aij and Bij  are given in Appendix. 
The kinetic energy of the spinning composite shaft (one beam element) (Boukhalfa et al., 
2008), including the effects of translatory and rotary inertia, can be written as 

 
( ) ( )

( )

2 2 2 2 2
0 0 0

0

2 2 2 2 2

1

2

                2 2

L

ca m d x y

p x y p p p d x y

E I U V W I

I I I I I dx

β β

Ω β β Ω φ φ Ω Ω β β

⎡= + + + +⎣

⎤− + + + + + ⎦
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� � �
 (7) 

where Ω is the rotating speed of the shaft which is assumed constant, L is the length of the 

shaft, the 2 p x yIΩ β β�  term accounts for the gyroscopic effect, and ( )2 2
d x yI β β+� �  represent the 

rotary inertia effect. The mass moments of inertia Im, the diametrical mass moments of 

inertia Id and polar mass moment of inertia Ip of spinning shaft per unit length are defined in 

the appendix. As the ( )2 2 2
d x yIΩ β β+  term is far smaller than 2

pIΩ , it will be neglected in 

further analysis. 
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Fig. 6. The stress components; a) in the coordinate axes (x, y, z) - b) in the coordinate axes 

( ), ,x r θ  

2.2 Kinetic energy of the disk 

The disk fixed to the composite shaft (see figure 7) is assumed rigid and made of isotropic 
material. According to Equation (7) the kinetic energy of the disk can be expressed as 
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where Im, Id  and Ip are the mass, the diametrical mass moment of inertia and the polar mass 

moment of inertia of the disk. As the ( )2 2 2D
p x yIΩ β β+  term is far smaller than 2 D

pIΩ , it will 

be neglected in further analysis. 
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Fig. 7. Various positions of the disk on the spinning shaft (one element). 

2.3 Virtual work of the bearings 

The bearings are characterized by values of stiffness and viscous damping following the y 
and z directions and the cross terms (see Figures 8 and 9). The stiffness and damping effects 
of the bearings are modeled using springs and viscous dampers. 
  

Rotating shaft

W0 Kyy 

Kzz

Kyz 
Kzy 

Cyy 

Czz 

Czy Cyz 
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V0

 

Fig. 8. Model of bearings 

The virtual work Aδ done by these external forces can be written as 

 
0 0 0 0V V W WA F Fδ δ δ= +  (9) 
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where 
0VF and 

0wF are the generalized forces expressed by 
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Fig. 9. Spinning shaft (one element) supported by two bearings 

2.4 Hierarchical Beam element formulation 

The spinning flexible beam is descretised by hierarchical beam elements. Each element with 
two nodes 1 and 2 is shown in figure 10. In the case of a staged shaft, several elements can 
be used (see figure 11). The element’s nodal d.o.f. at each node are 0 0 0, , , ,x yU V W β β and φ . 
The local and non-dimensional co-ordinates are related by 

 x Lξ =      With (0 ≤ Ǐ  ≤ 1) (11) 

 

 

L 

Lx=ξ

1 2 ξ,x  

1=ξ0=ξ

 

Fig. 10. 3D Beam element with two nodes 

 

 
11 2 22 3

+ = 

11 2 2 3

 

Fig. 11. Assembly between two p- elements 

The vector displacement formed by the variables 0 0 0, , , ,x yU V W β β and φ  can be 
written as 
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where [N] is the matrix of the shape functions, given by 

 , , , , , 1 2 , , , , ,x y U V W x y
U V W p p p p p pN f f f

β β φβ β φ
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

……  (13) 

where , , , ,
x yU V Wp p p p pβ β  and pφ  are the numbers of hierarchical terms of 

displacements (are the numbers of shape functions of displacements). In this work, 

x yU V Wp p p p p p pβ β φ= = = = = =  
The vector of generalized coordinates given by 
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The group of the shape functions used in this study is given by 

 ( ) ( ) ( )( ) }{ 1 2 21 sin , ; 1 , 2 , 3 , ...r r rf f f r rξ ξ δ ξ δ π+= − = = = =  (16) 

The functions (f1, f2) are those of the finite element method necessary to describe the nodal 
displacements of the element; whereas the trigonometric functions fr+2 contribute only to the 
internal field of displacement and do not affect nodal displacements. The most attractive 
particularity of the trigonometric functions is that they offer great numerical stability. The 
shaft is modeled by elements called hierarchical finite elements with p shape functions for 
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each element. The assembly of these elements is done by the h- version of the finite element 
method. 
After modelling the spinning composite shaft using the hp- version of the finite element 

method and applying the Euler-Lagrange equations, the motion’s equations of free vibration 

of spinning flexible shaft can be obtained. 

 [ ]{ } [ ] { } [ ]{ } { }0pM q G C q K q⎡ ⎤⎡ ⎤+ + + =⎣ ⎦⎣ ⎦�� �  (17) 

[M] and [K] are the mass and stiffness matrix respectively, [G] is the gyroscopic matrix and 

[Cp] is the damping matrix of the bearing (the different matrices of the equation (17) are 

given in the appendix). 

3. Results  

A program based on the formulation proposed to resolve the resolution of the equation (17).    

3.1 Convergence 

First, the mechanical properties of boron-epoxy are listed in table 1, and the geometric 

parameters are L =2.47 m, D =12.69 cm, e =1.321 mm, 10 layers of equal thickness (90°, 45°,-

45°,0°6, 90°). The shear correction factor ks =0.503 and the rotating speed Ω =0. In this 

example, the boron -epoxy spinning shaft is modeled by one element of length L, then by 

two elements of equal length L/2. 

 

 Graphite-epoxy Boron-epoxy 

E11 (GPa) 
E22 (GPa) 
G12 (GPa) 
G23 (GPa) 
ǎ12 

 ρ (kg/m3) 

139.0 
11.0 
6.05 
3.78 
0.313 
1578.0 

211.0 
24.1 
6.9 
6.9 
0.36 
1967.0 

Table 1. Properties of composite materials (Bert & Kim, 1995a) 

The results of the five bending modes for various boundary conditions of the composite 

shaft as a function of the number of hierarchical terms p are shown in figure 12. Figure 

clearly shows that rapid convergence from above to the exact values occurs when the 

number of hierarchical terms increased. The bending modes are the same for a number of 

hierarchical finite elements, equal 1 then 2. This shows the exactitude of the method even 

with one element and a reduced number of the shape functions. It is noticeable in the case of 

low frequencies, a very small p is needed (p=4 sufficient), whereas in the case of the high 

frequencies, and in order to have a good convergence, p should be increased. 

3.2 Validation 

In the following example, the critical speeds of composite shaft are analyzed and compared 

with those available in the literature to verify the present model. In this example, the 

composite hollow shafts made of boron-epoxy laminae, which are considered by Bert and 
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Kim (Bert & Kim, 1995a), are investigated. The properties of material are listed in table1. The 

shaft has a total length of 2.47 m. The mean diameter D and the wall thickness of the shaft 

are 12.69 cm and 1.321 mm respectively. The lay-up is [90°/45°/-45°/0°6/90°] starting from 

the inside surface of the hollow shaft. A shear correction factor of 0.503 is also used. The 

shaft is modeled by one element. The shaft is simply-supported at the ends. In this 

validation, p =10. 
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Fig. 12. Convergence of the frequency ω for the 5 bending modes of the composite shaft for 

different boundary conditions (S: simply-supported; C: clamped) as a function of the 

number of hierarchical terms p 

The result obtained using the present model is shown in table 2 together with those of 

referenced papers. As can be seen from the table our results are close to those predicted by 

other beam theories. Since in the studied example the wall of the shaft is relatively thin, 

models based on shell theories (Kim & Bert, 1993) are expected to yield more accurate 

results. In the present example, the critical speed measured from the experiment however is 

still underestimated by using the Sander shell theory while overestimated by the Donnell 

shallow shell theory. In this case, the result from the present model is compatible to that of 

the Continuum based Timoshenko beam theory of M-Y. Chang et al (Chang et al., 2004a). In 

this reference the supports are flexible but in our application the supports are rigid. 

In our work, the shaft is modeled by one element with two nodes, but in the model of the 

reference (Chang et al., 2004a) the shaft is modeled by 20 finite elements of equal length (h- 

version).  The rapid convergence while taking one element and a reduced number of shape 

functions shows the advantage of the method used. One should stress here that the present 

model is not only applicable to the thin-walled composite shafts as studied above, but also 

to the thick-walled shafts as well as to the solid ones. 
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L=2.47 m, D =12.69 cm, e =1.321 mm, 10 layers of equal thickness  (90°, 45°,-45°,0°6,90°) 

 Theory or Method Ωcr1 (rpm) 

Zinberg & Symonds, 1970
 
 

Dos Reis et al., 1987 
 
 

Kim & Bert, 1993 
 
 

Bert, 1992 
 

Bert & Kim, 1995a 
 

Singh & Gupta, 1996 
 
 

Chang et al., 2004a 
 

Present 

Measured experimentally 
EMBT 
 

Bernoulli–Euler beam theory with stiffness 
determined by shell finite elements 
 

Sanders shell theory 
Donnell shallow shell theory 
 

Bernoulli–Euler beam theory 
 

Bresse–Timoshenko beam theory 
 

EMBT 
LBT 
 

Continuum based Timoshenko beam theory 
 

Timoshenko beam theory  by the hp- version 
of the FEM. 

6000 
5780 
 

4942 
 
 

5872 
6399 
 

5919 
 

5788 
 

5747 
5620 
 

5762 
 

5760 

Table 2. The first critical speed of the boron-epoxy composite shaft 

The first eigen-frequency of the boron-epoxy spinning shaft calculated by our program in 

the stationary case is 96.0594 Hz on rigid supports and 96.0575 Hz on two elastic supports of 

stiffness 1740 GN/m.  In the reference (Chatelet et al., 2002), they used the shell’s theory for 

the same shaft studied in our case and on rigid supports; the frequency is 96 Hz.  In this 

example, is not noticeable the difference between shaft bi-supported on rigid supports or 

elastic supports because the stiffness of the supports are very large. 

3.3 Results and interpretations  

In this study, the results obtained for various applications are presented.  Convergence 

towards the exact solutions is studied by increasing the numbers of hierarchical shape 

functions for two elements.  The influence of the mechanical and geometrical parameters 

and the boundary conditions on the eigen-frequencies and the critical speeds of the 

embarked spinning composite shafts are studied. In this study, p = 10. 

3.3.1 Influence of the gyroscopic effect on the eigen-frequencies 

In the following example, the frequencies of a graphite- epoxy spinning shaft are analyzed.  
The mechanical properties of shaft are shown in table 1, with ks = 0.503.  The ply angles in 
the various layers and the geometrical properties are the same as those in the first example. 
Figure 13 shows the variation of the bending fundamental frequency ω as a function of 

rotating speed Ω for different boundary conditions. The gyroscopic effect inherent to 

rotating structures induces a precession motion. When the rotating speed increase, the 

forward modes (1F) increase, whereas the backward modes (1B) decrease. The gyroscopic 

effect causes a coupling of orthogonal displacements to the axis of rotation, and by 

consequence separate the frequencies in two branches: backward precession mode and 

forward precession mode. In all cases, the forward modes increase with increasing rotating 

speed however the backward modes decrease.  
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Fig. 13. The first backward (1B) and forward (1F) bending mode of a graphite- epoxy shaft 
for different boundary conditions and different rotating speeds (S: simply-supported;  
C: clamped; F: free) 
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Fig. 14. The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft for 
different boundary conditions and different rotating speeds. L =2.47 m, D =12.69 cm, e =1.321 
mm, 10 layers of equal thickness (90°, 45°,-45°,0°6, 90°) 
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3.3.2 Influence of the boundary conditions on the eigen-frequencies 

In the following example, the boron-epoxy shaft is modeled by two elements of equal length 
L/2. The frequencies of the spinning shaft are analyzed.  The mechanical properties of shaft 
are shown in table 1, with ks = 0.503. The ply angles in the various layers and the geometrical 
properties are the same as those in the preceding example.  
Figure 14 shows the variation of the bending fundamental frequency ω according to the 
rotating speeds Ω for various boundary conditions. According to these found results, it is 
noticed that, the boundary conditions have a very significant influence on the eigen-
frequencies of a spinning composite shaft. For example, by adding a support to the mid-
span of the spinning shaft, the rigidity of the shaft increases which implies the increase in 
the eigen-frequencies. 

3.3.3 Influence of the lamination angle on the eigen-frequencies  
By considering the same preceding example, the lamination angles have been varied in 
order to see their influences on the eigen-frequencies of the spinning composite shaft.  
Figure 15 shows the variation of the bending fundamental frequency ω according to the 
rotating speeds Ω (Campbell diagram) for various ply angles. According to these results, the 
bending frequencies of the composite shaft decrease when the ply angle increases and vice 
versa.   
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Fig. 15. The first backward (1B) and forward (1F) bending mode of a boron- epoxy shaft  
(S-S) for different lamination angles and different rotating speeds. L =2.47 m, D =12.69 cm,  
e =1.321 mm, 10 layers of equal thickness 

3.3.4 Influence of the ratios L/D, e/D and η on the critical speeds and rigidity  

The intersection point of the line (Ω = ω) with the bending frequency curves (diagram of 
Campbell) indicate the speed at which the shaft will vibrate violently (i.e., the critical 
speed Ωcr). 
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In figure 16, the first critical speeds of the graphite-epoxy composite shaft (the properties are 

listed in table 1, with ks =0.503) are plotted according to the lamination angle for various 

ratios L/D and various boundary conditions (S-S, C-C). From figure 16, the first critical speed 

of shaft bi-simply supported (S-S) has the maximum value at η = 0° for a ratio L/D = 10, 15 

and 20, and at η = 15° for a ratio L/D = 5.  For the case of a shaft bi-clamped (C-C), the 

maximum critical speed is at η = 0° for a ratio L/D = 20 and at η = 15° for a ratio L/D = 10 and 

15, and at η = 30° for a ratio L/D = 5.   

Above results can be explained as follows. The bending rigidity reaches maximum at η = 0° 

and reduces when the lamination angle increases; in addition, the shear rigidity reaches 

maximum at η = 30° and minimum with η = 0° and η = 90°.  A situation in which the 

bending rigidity effect predominates causes the maximum to be η = 0°.  However, as 

described by Singh ad Gupta (Singh & Gupta, 1994b), the maximum value shifts toward a 

higher lamination angle when the shear rigidity effect increases. Therefore, while comparing 

the phenomena of figure 16, the constraint from boundary conditions would raise the 

rigidity effect. A similar is observed for short shafts. 
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Fig. 16. The first critical speed Ω1cr of spinning composite shaft according to the lamination 
angle η for various ratios L/D and various boundary conditions (S-S, C-C) 

In figures 17 and 18, the first critical speeds according to ratio L/D of the same graphite-

epoxy shaft bi-simply supported (S-S) and the same graphite-epoxy shaft bi- clamped (C-C) 

for various lamination angles. It is noticeable, if ratio L/D increases, the critical speed 

decreases and vice versa. 
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Fig. 17. The first critical speed Ω1cr of spinning composite shaft bi- simply supported (S-S) 
according to ratio L/D for various lamination angles η 
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Fig. 18. The first critical speed Ω1cr of spinning composite shaft bi- clamped (C-C) according 
to ratio L/D for various lamination angles η 
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Fig. 19. The first critical speed Ω1cr of spinning composite shaft according to the lamination 
angle η for various ratios e/D and various boundary conditions (S-S, C-C); (L/D = 20) 

Figure 19 plots the variation of first critical speeds of the same graphite-epoxy composite 
shaft with ratio L/D = 20 according to the lamination angle for various e/D ratios and various 
boundary conditions. It is noticed the influence of the e/D ratio on the critical speed is almost 
negligible; the curves are almost identical for the various e/D ratios of each boundary 
condition. This is due to the deformation of the cross section is negligible, and thus the 
critical speed of the thin-walled shaft would approximately independent of thickness ratio 
e/D. According to above results, while predicting which stacking sequence of the spinning 
composite shaft having the maximum critical speed, we should consider L/D ratio and the 
type of the boundary conditions. I.e., the maximum critical speed of a spinning composite 
shaft is not forever at ply angle equalizes zero degree, but it depends on the L/D ratio and 
the type the boundary conditions.   

3.3.5 Influence of the stacking sequence on the eigen-frequencies   
In order to show the effects of the stacking sequence on the eigen-frequencies, a spinning 
carbon- epoxy shaft is mounted on two rigid supports; the mechanical and geometrical 
properties of this shaft are (Singh & Gupta, 1996): 
E11 = 130 GPa, E22 = 10 GPa, G12 = G23 = 7 GPa, ǎ12 = 0.25,  ρ = 1500 Kg/m3 
L =1.0 m, D = 0.1 m, e = 4 mm, 4 layers of equal thickness, ks = 0.503 
A four-layered scheme was considered with two layers of 0° and two of 90° fibre angle. The 
flexural frequencies have been obtained for different combinations (both symmetric and 
unsymmetric) of 0° and 90° orientations (see figure 20). This figure plots the Campbell 
diagram of the first eigen-frequency of a spinning shaft for various stacking sequences. It 
can be observed from this figure that, for symmetric configurations, the frequency values of 
the spinning composite shaft are very close, and do have a slight dependence on the relative 
positioning of the 0° and 90° layers. 
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Fig. 20. First bending eigen-frequency of the spinning carbon- epoxy shaft bi- simply 
supported (S-S) for various stacking sequences according to the rotating speed 

3.3.6 Influence of the disk’s position according to the spinning shaft on on the eigen-
frequencies   

By considering another example, the eigen-frequencies of a graphite-epoxy shaft system are 

analyzed. The material properties are those listed in table 1. The lamination scheme remains 

the same as example 1, while its geometric properties, the properties of a uniform rigid disk 

are listed in table 3.  The disk is placed at the mid-span of the shaft. The shaft system is 

shown in figure 21. For the finite element analysis, the shaft is modeled into two elements of 

equal lengths. The first element is simply-supported - free (S-F) and the second element is 

free- simply-supported (F-S). The disk is placed at the free boundary (F). 

 

Disk

Rotating shaft

x

L 

 

Fig. 21. System; embarked hollow spinning shaft.  
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The Campbell diagram containing the frequencies of the second pairs of bending whirling 
modes of the above composite system is shown in figure 22. Denote the ratio of the whirling 
bending frequency and the rotation speed of shaft as γ. The intersection point of the line 
(γ=1) with the whirling frequency curves indicate the speed at which the shaft will vibrate 
violently (i.e., the critical speed). In figure 22 the second pair of the forward and backward 
whirling frequencies falls more wide apart in contrast to other pairs of whirling modes. This 
might be due to the coupling of the pitching motion of the disk with the transverse vibration 
of shaft. Note that the disk is located at the mid-span of the shaft, while the second whirling 
forward and backward bending modes are skew-symmetric with respect to the mid-span of 
the shaft. Figure 23  shows the Campbell diagram of the first two bending frequencies of the 
embarked graphite- epoxy shaft for various disk’s positions (x) according to the shaft (see 
figure 21). It is noted that when the disk approaches the support, the first bending frequency 
decreases and the second bending frequency increases and vice versa. 
 

Properties Shaft Disk 

L (m) 
Interior ray (m) 
external ray (m) 
ks 

Im  (kg) 
Id  (kg m2) 
Ip (kg m2) 

0.72 
0.028 
0.048 
0.56 
 

 
 
 
 
2.4364 
0.1901 
0.3778 

Table 3. Properties of the system (shaft + disk) 
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Fig. 22. Campbell diagram of the first two bending frequencies of the embarked graphite-
epoxy shaft   
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Fig. 23. Campbell diagram of the first two bending frequencies of the graphite-epoxy shaft 
for various disk’s positions (x) according to the shaft  

4. Conclusion 

The analysis of the free vibrations of the spinning composite shafts using the hp-version of the 
finite element method (hierarchical finite element method (p-version) with trigonometric shape 
functions combined with the standard finite element method (h-version)), is presented in this 
work. The results obtained agree with those available in the literature. Several examples were 
treated to determine the influence of the various geometrical and physical parameters of the 
embarked spinning shafts. This work enabled us to arrive at the following conclusions:  
a. Monotonous and uniform convergence is checked by increasing the number of the 

shape functions p, and the number of the hierarchical finite elements h. The 
convergence of the solutions is ensured by the element beam with two nodes. The 
results agree with the solutions found in the literature.   

b. The gyroscopic effect causes a coupling of orthogonal displacements to the axis of 
rotation, and by consequence separates the frequencies in two branches, backward and 
forward precession modes. In all cases the forward modes increase with increasing 
rotating speed however the backward modes decrease. This effect has a significant 
influence on the behaviours of the spinning shafts. 

c. The dynamic characteristics and in particular  the eigen-frequencies, the critical speeds 
and the bending and shear rigidity of the spinning composite shafts are influenced 
appreciably by changing the ply angle, the stacking sequence, the length, the mean 
diameter, the materials, the rotating speed and the boundary conditions.   

d. The critical speed of the thin-walled spinning composite shaft is approximately 
independent of the thickness ratio and mean diameter of the spinning shaft. 

e. The dynamic characteristics of the system (shaft + disk + support) are influenced 
appreciably by changing disk’s positions according to the shaft. 
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Prospects for future studies can be undertaken following this work: a study which takes into 
account damping interns in the case of a functionally graded material rotor with flexible 
disks, supported by supports with oil and subjected to disturbing forces like the air pockets 
or seisms, etc.   

5. Nomenclature  

U(x, y, z) Displacement in x direction. 
V(x, y, z) Displacement in y direction. 
W(x, y, z) Displacement in z direction. 

xβ  Rotation angles of the cross-section about the y axis. 

yβ  Rotation angles of the cross-section, about the z axis. 

φ  Angular displacement of the cross-section due to the torsion 
deformation of the shaft. 

E Young modulus. 
G  Shear modulus. 
(1, 2, 3) Principal axes of a layer of laminate 
(x, y, z) Cartesian coordinates.   
(x, r, ǉ) Cylindrical coordinates.   
Gc Centre of the cross-section.  
(O, x, y, z) Inertial reference frame. 
(Gc, x1,  y1, z1) Local reference frame is located in the centre of the cross-section.   
Cij’ Elastic constants. 
ks Shear correction factor. 
ǎ Poisson coefficient. 
ρ Masse density. 
L Length of the shaft. 
D   Mean radius of the shaft. 
e Wall thickness of the shaft. 
Rn  The nth layer inner radius of the composite shaft. 
Rn+1 The nth layer outer radius of the composite shaft. 
k Number of the layer of the composite shaft. 
ǈ Lamination (ply) angle. 
ǉ Circumferential coordinate. 
Ǐ Local and non-dimensional co-ordinates. 
ω Frequency, eigen-value. 
Ω  Rotating speed. 
[N] Matrix of the shape functions. 
f (Ǐ) Shape functions. 
p Number of the shape functions or number of hierarchical terms. 
t Time. 
Ec Kinetic energy. 
Ed  Strain energy. 
{qi} Generalized coordinates, with (i = U, V, W, xβ , yβ , φ ) 
[M] Masse matrix. 
[K] Stiffness matrix. 
[G] Gyroscopic matrix. 
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[Cp] Damping matrix. 

0 0 0 0, , ,yy yz zy zzK K K K  Bearing stiffness coefficients in x = 0. 

, , ,yyL yzL zyL zzLK K K K  Bearing stiffness coefficients in x = L. 

0 0 0 0, , ,yy yz zy zzC C C C  Bearing damping coefficients in x = 0. 

, , ,yyL yzL zyL zzLC C C C  Bearing damping coefficients in x = L. 

6. Appendix 

The terms Aij, Bij of the equation (6) and Im, Id, Ip of the equation (7) are given as follows: 
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where k is the number of the layer, Rn-1 is the nth layer inner radius of the composite shaft 
and Rn it is the nth layer outer of the composite shaft. L is the length of the composite shaft 
and nρ  is the density of the nth layer of the composite shaft.   
The indices used in the matrix forms are as follows: 
a: shaft; D: disk; e: element; P: bearing (support) 
The various matrices of the equation (13) which assemble the elementary matrices of the 
system as follows   
- Shaft 
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The elementary matrices of the system are 
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The various matrices (globally matrices) which assemble the elementary matrices, according 
to the boundary conditions as follows   
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The terms of the matrices are a function of the integrals: ( ) ( )
1

0

mn m nJ f f dα β α βξ ξ ξ= ∫ ; 

(m, n) indicate the number of the shape functions used, and ( ),α β  is the order of derivation. 
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