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1. Introduction

Fourier methods are commonplace in the Earth Sciences and have greatly enhanced our
understanding and forecast capabilities for cyclical phenomena that recur on interannual (e.g.
El Niño, Pacific Decadal Oscillation) to millennial scales (e.g. Milankovitch cycles). Nowadays
most low level programming languages (C, Fortran) have math libraries that include the fast
Fourier transform algorithm (FFT) and nearly all abstract programs (Python, Octave/Matlab,
IDL, R) provide an array of Fourier functions for scripting sophisticated signal processing
routines. Whether your interest as a practicing Earth scientist is in Fourier transformation
for efficient data manipulation, or for problems where the Fourier transform or its power
spectrum is needed for direct analysis, you have probably found no shortage of relevant
literature. Nonetheless, you may also have found some difficulty in making sense of which
Fourier methods to implement for your particular analysis idea, and how to appropriately
apply them. This chapter will serve you as a basic guide for unraveling some of the
complicated implementations of discrete-time power spectrum analysis using direct language
and supplementary Matlab/Octave routines using both observed and modeled data.
This chapter assumes that you have a certain task to accomplish, and therefore it is designed
to teach you how to set up an approach appropriate for Fourier analysis, and also to advise
you of potential pitfalls and limitations in Fourier analysis. The reader need not have prior
exposure to signal processing methodologies, but should have a solid base in mathematics,
probability theory and more importantly the issues related to your analysis data so that the
significances of cycles within your data can be rationally interpreted. If you find yourself
lost by the terminology I recommend you familiarize yourself with basic treatments of
discrete-time systems, for example Press et al. (1992) or Cadzow (1973).
The body of this chapter is split into three sections, Preprocessing data, Single Series
Spectrum Analysis, and Multiseries Spectral Analysis. Step-by-step examples are given on the
analysis of a variety of freely accessible earth science datasets covering atmospheric science,
biosphere-atmosphere carbon cycling, climate modeling, and paleodiversity as well as some
example implementations of Markov chain Monte Carlo routines for computing statistical
significances. Each section contains direct explanations with ready to deploy example code
that you are free to use for your own investigations. Supplementary code can be accessed
online from ftp://ftp.climatemodeling.org/pub/esg/.
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2. Preprocessing data: Identifying the pertinent information

An often overlooked aspect in the early stages of data analysis and exploration is the
preliminary processing of time series. No matter what your particular topic is it is often
desirable to filter measurements that confound your analysis or do not contribute useful
information. A thorough exploration of the many methods for reducing noise and removing
trends prior to computing the Fourier power spectrum may seem like a lot of work, but it
will be effort well-rewarded because it will increase confidence in your results. Even data
that has already been heavily processed, for example satellite products like leaf area index
(LAI), may still require treatment beyond, or in stead of, monthly averaging, seasonalizing, or
annualizing. This section discusses filtering, subsetting, and detrending topics and provides
example code for deploying this in your own data.
Within any dataset there are data that contribute useful information as well as data that do not,
or even confound your analysis. One example comes from the study of atmospheric tracers of
photosynthesis such as carbon dioxide or carbonyl sulfide. Atmospheric CO2 and OCS have
diurnal and annual cycles that are strongly driven by biotic processes, primarily reflecting the
uptake of atmospheric CO2 by plant photosynthesis and CO2 release through heterotrophic
and autotrophic respiration. Measurements of these tracers should show stronger annual
or diurnal cycles during years when precipitation is substantially influenced by El Niño.
But strong cycles may be difficult to observe unless the observations are preprocessed or
filtered. This is because a series of tower measurements of atmospheric trace gasses will
include both locally representative observations made when turbulent mixing is low and
winds are calm, and regionally representative observations made when the boundary layer
is well-mixed. If your goal were to observe smaller influences caused by interannual ENSO
cycles among much larger biotic influences you may have to detrend from a fitted polynomial
(section 2.1) filter the noise (section 2.2), or subset the data to remove locally representative
measurements (section 2.3), which would result in non-uniform series that can be analyzed
using Lomb-Scargle (section 3.2).

2.1 Detrending

Within geological time series, from ice cores to cyclostratigraphy, it is not uncommon to find
long term and systematic trends. If your objective is to understand something other than these
trends it will be necessary to detrend the data. An example of the importance of detrending
was observed by Cornette (2007) who showed that the prominence of a 62-million-year cycle
in extinctions recorded in the geologic rock record was strongly affected by detrending the
original diversity time series. This is because the most significant variability was caused
by a large non-linear biodiversification trend (Figure 1A) representing three major phases of
biodiversification. Extinction cycles were only apparent in the Fourier power spectrum after
detrending the time series. Likewise if a very long lived and significant harmonic or trend
exists in your data detrending should be considered. Pseudo-code showing how this fossil
diversity time series was detrended appears in Procedure 1 (and also in supplementary code
dftps.m).

2.2 Noise and smoothing filters

Noise adds considerable clutter that can confound Fourier power spectrum (PS) analysis and
reduce the strength of important cycles. Noise is given a broad definition here to refer to
variability in any series that cannot be resolved or directly tied to a predictable physical cause.
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Fig. 1. Detrending effects. Subplots A and B show diversity without detrending– C and D are
detrended. A) Time series of Sepkoski’s marine fossil diversity covering the past 542 million
years, as reproduced from Rohde & Muller (2005). B) The Fourier power spectrum (PS) of
that series. C) Time series of diversity residuals obtained from A by detrending by a cubic
polynomial (cf. Cornette, 2007). D) The PS of residual diversity showing significant cycles
corresponding to the 62 and 140 million year cycles. These show that in non-detrended fossil
diversity nearly all the power of the 62 and 140 million year cycles is subsumed by the larger
trend in A.

Procedure 1 General procedure for detrending a series by a polynomial curve of order N. The
diversity data in Figure 1A was detrended by a polynomial of N = 3 to produce Figure 1C.
Series x is comprised of nterms measured at increments of t.

input: data series, {(tk, xk)}
nterms
k=1

output: data series of residuals, {rk}
nterms
k=1

p = poly_fit(t,x,N)

pv = poly_val(p,t)

r = x - pv

It is also important to keep in mind that noise may simply reflect events that are not well
represented by the particular measurement system or point of observation being used. Noise
generally has a limited systematic effect and should be filtered if at all possible.
A consideration when filtering noise is to choose a filter appropriate to the type of noise within
your data (i.e. white, red, blue, gray). White noise can give the Fourier power spectrum plots
(like those in Figure 1B and 1D) broad spectrum noise, which appears as peaks (all of similar
magnitude) dispersed across a range of frequencies in the power spectrum. Least squares
filters including Savitzky-Golay are often used to reduce this kind of broad spectrum noise.
In Matlab/Octave such filtering is achieved by calling the sgolayfilt function. In IDL
calling savgol in conjunction with convol achieves the same purpose.
Confounding variability can also come from red noise, which is not uncommon in
paleoclimate datasets and some long term atmospheric and ecosystem records. Power
spectrum plots of series containing red noise have characteristic slopes that diminish with
increasing frequency (toward the right of the spectral plot), resulting in power spectrum
plots that appear cluttered on left near longer cycles (i.e. where red wavelengths of the
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visible spectrum would appear). Red noise can be caused by quasi-stationary processes, for
example a precipitation record with repeated and prolonged multi-year droughts that cause
precipitation to fall below the mean. Red noise can be smoothed by filters that use lower order
polynomials, for example in IDL using savgol with a degree of 2.
Blue noise causes clutter around shorter cycles toward the right of the power spectrum, and
can be filtered using higher order polynomials. Grey noise is identified by its bimodal noise
peaks at both the ‘red’ and the ‘blue’ end of the power spectrum. Several test cases are
provided in the supplementary Matlab/Octave code noise_filt.m, and you should use them
to test the effectiveness of the Savitzky-Golay filter using various filter configurations.
If however you find that it is not possible to effectively filter noise without reducing the
information content of your time series, you may instead evaluate the power spectrum of
the unfiltered data against a stringent statistical test such as a Markov chain Monte Carlo test
(see the random walk test for red noise in section 3.3).

2.3 Subsetting and subsetting filters

Where noise filtering is not tenable or where it is desirable to search for the sources of cycles
you should consider partitioning your time series based on the relative contributions of
various groups (subsetting) or applying a subsetting filter to reject entire observations. Here
I use the term subsetting to indicate partitioning of each value, as opposed to subset filtering,
which I use to indicate rejecting entire observations that exceed some cutoff. Subset filtering
would be relevant for analyses such as in atmospheric observation where it is not appropriate
to smooth a biased measurement because ties to the actual observations are required.
A common issue with observational data is that not all measurements communicate useful
information about the processes you are interested in, therefore it may be necessary to
partition the complete set of observations in some way and to compare the significances of
cycles between subsets. One example subsetting strategy is to partition each value in the
series based on the relative contributions from different groups. Given that you also possessed
meta-data, i.e. the annotations describing each specimen, you could begin to address some
very interesting questions about the nature of cycle. As it happens, the diversity values used
to construct Figure 1A can be partitioned by groups such as deep water fossils vs. shallow
water fossils, or hard-shelled fossils vs. all others. Now we might ask, ‘Is any one group of
organisms responsible for the cycles in fossil diversity seen in Figure 1D?’
Figure 2 uses a similar but more comprehensive dataset of fossil diversity downloaded
from the Paleobiology Database (PD, 2008) to subset the total diversity into multiple curves
representing the contributions from each phylogenetic group, such as mammals, birds, and
reptiles. Figure 2A compares the diversity curve of several dominant shelled fossil animals
(gastropods, bivalves, and articulate brachiopods or GBA) against all other phyla. Figure 2B
shows the Fourier power spectra of those same subsets and suggests that the 62 million year
cycle in this dataset is largely driven by the GBA group.
On the other hand meta-data annotating each observation may not be available to you, and
you may have to create a subsetting filter. Here you would make a decision, for example using
a statistical basis to reject observations from a subset. For example, given a dataset of wind
speed measurements from a meteorological station we might use a subset filter to reject all
measurements of wind speeds less than 4 meters per second, leaving us with a new subset
of unevenly spaced measurements. Non-uniformly sampled data cannot be analyzed using
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Fig. 2. Using metadata to subset by groups. A) shows two time series of fossil abundances
derived from the Paleobiology Database (paleodb.org) and ranging from 542 million years
ago to present. The first subset in green is comprised of gastropod, bivalve, and articulate
brachiopod fossils (GBA). Their complement (non-members of that group) appear in black.
B) shows the Fourier power spectrum of those same curves when detrended. Notice that a
rather significant peak appears in the GBA group near the 62-million-year cycle frequency,
which is not present in the non-GBA group. This shows that by using the annotations of your
data it is possible to investigate the sources of cycles.

standard Fourier decomposition, but can be processed using the Lomb-Scargle method, which
will be addressed later in Section 3.2).
Subsetting filters utilize a priori knowledge to reject outliers, which means you decide based on
your analysis of the dataset what an acceptable cutoff should be. One way to avoid criticisms
on the subjectivity of your cutoff would be to process your data using a series of cutoffs that
range from very inclusive to very specific, and to do spectral analysis on each differently
filtered subset, and compare.

2.4 Normalizing

A final but critical note on preprocessing is about the importance of normalizing your time
series to a standard deviation of 1 prior to Fourier decomposition. Whether you apply filters
to your data or not it is always necessary to normalize the variance of your original time series
to make it comparable to other series. This is simple to do. Divide each observation by the
standard deviation of the time series. See lines 21–22 in supplementary code dftps.m.

3. Single series spectrum analysis

Once your series of uniformly sampled values has been normalized (perhaps even filtered
or subset) Discrete-time Fourier transform power spectrum analysis (DFTPS) can be used as
a powerful tool for determining the relative strength of cycles within your time (or spatial)
series. You should be aware that Fourier transformation works by decomposing a series
into its complex conjugate of real (ℜ) and imaginary (ℑ) signal parts. The spectral power is
computed as the square of the signal power from ℜ, which produces a series of amplitudes
across a range of frequencies that describe the strength of cycles. ℑ is used to determine the
phase of the cycles, which can tell you when in your time series the peaks of cycles of different
frequencies should occur. These methods can be applied to any series of uniformly sampled

485Earth Scientist’s Guide to Discrete-Time Power Spectrum Analysis

www.intechopen.com



data. If your interest lies in the theory behind spectral analysis of discrete time systems a good
place to start is Cadzow (1973) or Bloomfield (1976). More sophisticated implementations
of signal processing designed for specific purposes (e.g. Brooks, 2009) are often useful when
computational power is limited. But if you have access to a high performance machine or
cluster then you will probably be able to solve big data problems easier using distributed
memory parallelism.

3.1 Computing the power spectrum

As opposed to continuous analog signals, discrete time series are segmented and require a
special step in treatment before transformation by the fast Fourier transform algorithm (FFT).
You must pad your series of normalized values with zeros so that the transformed signal
of your discretely sampled values is sufficiently long to allow for measurement of its peaks
across a range of frequencies (see lines 18-19 of dftps.m).
Zero padding is particularly important when examining cycles with longer periods. Consider
that you have 100 years of monthly means from a model and you want to know how
well the model is able to reproduce interannual variability, caused for example by El
Niño–Southern Oscillation (ENSO, 2-7 yr. period) or the Pacific Decadal Oscillation (PDO,
20-30 yr. period). Despite having cycle lengths that are roughly 20 years apart (ENSO:
∼5 years, PDO:∼25 years), these cycles will show up very near each other in frequency on the
power spectrum plot. Since frequency is the inverse of time fENSO = 1

12 (months) ×5 (years)

= 0.0167, which is near fPDO = 1
12 × 25 = 0.0033. In order to resolve such small frequency

differences between longer cycles it is necessary to pad the signal with zeros. To better
understand this you might try commenting-out line 18 of dftps.m and substituting it with:
lps=2(̂8); (you will also have to adjust the y-axis range). The subsequent plot will be very
coarsely sampled on the left toward longer frequencies because you reduced the padding.
Zero padding will not change the amplitude of your peaks but it will help you better resolve
the frequency and timing of cycles. Fortunately Matlab, Octave, and Python provide handy
methods for padding the series and computing the Fourier transform in one step using the
fft function (Procedure 2). The computation of uniform increments of f to plot your power
spectrum peaks against is also straight-forward (see line 35 of dftps.m).

Procedure 2 General FFT procedure for Matlab, Octave, Python. Given the series x of discrete
values xk the function fft is used to compute its complex conjugate meanwhile ‘stretching’
the signal to length ne, provided that ne > nterms.

input: time series, {xk}
nterms
k=1

output: x_ft (complex conjugate with ℜ & ℑ parts), sp (spectral power), f (frequency), p
(period)

x_n = x/std_dev(x) # Normalize to variance of 1

x_ft = fft(x_n,ne) # Transform and pad to length ne

sp = x_ft .* conj(x_ft) # Compute spectral density curve. sp is

# complex and contains real and imag parts

f = flt_intgen(ne)/ne # Generate sampling frequencies for sp

p = 1/f # Cycle periods in original units
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Remember that the FFT algorithm will give you complex output: a real part (ℜ), which you
will use to make your power spectrum plot, and an imaginary part (ℑ), which you might use
to determine the phase-synchronization. The imaginary part is not to be overlooked. In order
to determine causality relationships for example, the phase data (ℑ) of the independent and
dependent cycles should coincide in a logical way. Computation of the phase is discussed in
Section 3.4 and Procedure 3.

3.2 Non-uniformly sampled data

The FFT algorithm requires uniform time steps, and cannot be used to analyze non-uniform
series such as in Figure 3A. Fortunately there are alternative ways for dealing with
unevenly sampled data including the Lomb-Scargle (LS) method. The LS approach is a
common implementation, but you should be aware that estimating the period of cycles from
non-uniformly sampled data is not a trivial issue, and precision can vary depending on the
frequency estimators used. An in-depth treatment of spectral analysis for unevenly sampled
data appears in Press et al. (1992), which should be referred to for a detailed explanation.
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Fig. 3. Series that are not uniformly sampled can be transformed using Lomb-Scargle. A)
Non-uniformly sampled time series of CO2 exchange between the atmosphere and biosphere
(Net Ecosystem Exchange) measured at the Park Falls, Wisconsin tall for June, 2008-Oct.,
2009 (UW-Madison, 2010). B) The spectral power of that data when the LS method is used.

LS implementations (such as the example in supplementary code lsps.m) work by computing
the spectral power across an increasing set of frequencies (usually controlled by a variable
called ofac), up to a frequency limit (hifac). The resulting power spectrum represents an
oversampling of the data (suitable results can be obtained by oversampling rates where ofac
≥ 4). hifac, which is related to the Nyquist frequency, sets the limit of frequencies to be
explored. If, for example, you are not interested in frequencies larger than f = 0.05, then you
should conserve computational time by setting hifac = 0.1.
Some considerations should be kept in mind when specifying your ofac resampling rate. If
you are investigating two narrowly spaced cycles and your series has relatively few broad
gaps, then you would probably be justified in using higher values for ofac that will allow
you to resolve closely spaced cycles. On the other hand if your series is subject to substantial
gaps, large values for ofac are probably not a good idea.
Figure 3B is a power spectrum plot, the same as in Figures 1B, 1D and 2B, except that this
one was computed using the LS method. Figure 3B illustrates an important issue common to
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all power spectra: the dispersion of peaks reflecting a cycle with a period that slightly varies
throughout the time series. Minor variations in shorter frequencies, such as those to the right
( f > 0.03) in Figure 3B, can result in either a broader peak or multiple peaks near the frequency
of interest. The primary diurnal cycle should occur at f = 0.0416 in Figure 3B. Instead there
are actually three peaks of nearly equal amplitude, which indicates that the timing of the
diurnal NEE cycle pictured in Figure 3A varies throughout the time series, probably due to
changes in daylight length throughout the year as well as synoptic frontal passages and other
variability that can affect the exchange of carbon (NEE). For example, small shifts in timing of
peak NEE by 1 hour in either direction (e.g. 23-hour/25-hour spacing) would result in large
spreads in frequency ( f = 0.04 to 0.045).
In spectral plots longer cycles have fewer opportunities to occur in a limited dataset and
therefore the certainty about their significance is generally less than a shorter cycle of similar
amplitude. The next section will discuss a method for dealing with uncertainty in the
significance of longer-term cycles using Monte Carlo methods.

3.3 Estimating uncertainty using Markov chain Monte Carlo trials

By this point in the chapter you already know how to identify whether or not a cyclical
pattern exists within your series. If you have already used a script to produce a power
spectrum plot (e.g. dftps.m, lsps.m), you probably asked yourself: ‘How do I know if these
cycles are significant?’ There are a variety of ways to estimate the statistical significance
of cycles within your data and many of them involve Monte Carlo trials. Markov chain
Monte Carlo methods (MCMC) are a widely used class of algorithms that iteratively and
randomly resample (permute) time series, and can be used to test the significances of cycles by
comparing them to randomly derived cycles. MCMC tests allow you to compare the original
time series to many randomized versions of that same data, and to examine whether or not
cycles of equal or greater magnitude exist in the randomized versions. It is important to
understand, however, that Monte Carlo significances do not rule-out bias in your sampling
protocol. Significance tests of this kind can only inform you about how likely a cycle is to
occur given a particular collection of values.
As a starting point for understanding Markov chain Monte Carlo methods I present an
example called random walk trials, sometimes referred to as random step or drunkard’s walk.
Random walk trials can be used to determine statistical significances and are particularly
useful for evaluating low frequency cycles. Many random walk implementations exist,
and here we will keep things simple by using just one implementation, which appears in
supplementary code dftps_mcmc.m.
If you have experimented with the dftps_mcmc.m routine you may have wondered how it
computes significances. The significance calculation used in dftps_mcmc.m is described as
follows: For a given peak of height h at a frequency f , the significance of a peak can be
computed as the fraction, p, of N randomly generated sequences of the original series, from
which the spectrum at f exceeds h. Here you might report the significance of a cycle as the
fraction of trials in which the height of the peak in the original series exceeded the height from
the randomly generated series. Since random walk trials work by randomly permuting the
original series before Fourier decomposition, 10,000 MCMC trials would represent the null
hypothesis that cycles within your data are merely coincidental and can be reproduced given
sufficient randomization.
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Uncertainty can be represented not only as a percentage but also in your power spectrum
plot by a line, for example representing the mean spectral power of the MCMC iterations.
Supplementary code dftps_mcmc.m outputs both the significance estimates and a power
spectrum plot with the MCMC random walk significance curve. Note that all peaks that
occur at or below the random walk significance curve should be interpreted as insignificant,
whereas peaks with amplitudes greater than the curve are significant to the degree indicated
by the statistics of the random walk trials.

3.4 Phase synchronization and phase shifted cycles

Two cycles (from different time series) with exactly the same period might seem to be
related. However, their phases could indicate that their peaks in the original time series
are asynchronous, which could indicate a lag in the cause-and-effect relationship, or they
may not be related at all. Let’s say that you have two time series of daily means, one for air
temperature and another for the temperature of a nearby lake. Both records will have strong
annual cycles, near f = 1

365 = 0.0027, but because of the specific heat capacity of water, the
peaks in lake temperature will lag behind air temperature. If you examined the imaginary
part (ℑ) of the Fourier transform at f = 0.0027 you would see the phase shift of the cycle in
the range −π : π radians. (For example find the index number of the element in f on line 29 of
dftps.m that is closest to the frequency 0.0027 and then find the corresponding element by its
index in the imaginary part of xn_fft on line 19 of dftps.m) A good way of visualizing this
is to plot the original series along with a sine wave corresponding to the cycle of interest with
the appropriate phase shift as determined from the imaginary part of the Fourier transform.
This is readily done in Matlab/Octave using angle, and Python using phase, and IDL using
atan, which compute the phase angle shift in radians ([−π : π]). Pseudocode describing the
construction of the phase shifted sine wave appears in Procedure 3. Note also that this can be
used to extrapolate the continuation of a cycle beyond the observational data, which might be
useful when predicting future cycle peaks.
An example that should give us no trouble comes from modeled temperature data from the
Parallel Climate Model (Washington et al., 2000). Because the complex transform corresponds
perfectly to the magnitude and phase, we need only to convert the real and imaginary parts
back into physical coordinates according to Procedure 3 in order to produce Figure 4.

Procedure 3 General procedure for determining the phase shift and computing the sine wave
corresponding to the period and phase of the cycle of interest. This procedure uses the
imaginary data at index k to compute the phase shift (ps) for constructing the sine wave.

input: {x_ f t}nterms
i=1 (complex conjugate); p (period); t (time increments in physical units); a

(sine wave amplitude in physical units)
output: ps_k, p_k

ps = atan(x_ft[k])

sw = a * sin(2 * (pi/p) * t + ps) # the phase shifted sine wave

4. Multiseries spectrum analysis

Cause and effect relationships are common, but sometimes difficult to verify. One way
to test whether cycles with the same period from two different time series are related is
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Fig. 4. Power spectrum plot (A) and time series with phase shifted wave (B). The phase shift
of the annual cycle in A is applied to the green sine wave in B, which shows where the peaks
and troughs of the annual cycle should occur according to their average occurrence over 100
years of model data.

through multiseries spectrum analysis. Cross-spectrum analysis is a common implementation
used to compare how well cycles from two different series covary in period and phase
synchronization. Think of cross-spectrum analysis as being the Fourier transform equivalent
of cross correlation. For example, you would expect that net radiation measured at a
meteorological station would correlate well with air temperature. Cross-spectrum analysis
should reveal diurnal and annual cycles that are strong and nearly synchronized.
As opposed to the results of single series spectrum analysis the cross-spectrum density
represents the covariance between two series. Cross-spectrum functions in abstract languages
like Matlab typically compute spectrum density using the Fourier method or Welch’s method,
and their power spectra can be interpreted in the same way, except that the phase data takes
on a heightened importance. Figure 5 was produced using supplementary code csps.m again
using model data for years 2000-2099 from the Parallel Climate Model (Washington et al.,
2000). Figure 5A shows the cross-spectrum density of soil moisture and precipitation for one
arctic land surface grid cell, which signals a very strong correlation in both series of the annual
cycle. Figure 5B represents the phase shift across all frequencies. The frequency of the annual
cycle is located by the vertical gray band, which indicates that the two annual cycles are nearly
π radians (180◦) out of phase, meaning that precipitation is high when soil moisture is low.
This seems surprising at first, but remember that in the arctic a majority of the precipitation
comes as snow, which has a delayed release into soils or the soils may be frozen (permafrost)
for most of the year.

5. Summary

There are many worthwhile uses for discrete-time Fourier power spectrum analysis methods,
as shown in this chapter including: 1) correlating the amplitude and phase of similar
cycles from different time series, 2) estimating the statistical significance of cycles, and 3)
investigating the sources of cycles using subsets of the complete set of data. However,
by now you have probably also realized a few of the limitations of power spectrum
analysis such as: 1) very long cycles are difficult to detect given time series of limited
length, 2) inappropriately preprocessing/filtering your data prior to Fourier decomposition
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Fig. 5. Cospectrum and phase synchronization. A) shows the total power of the cospectrum
representing a strong cycle in both soil moisture and precipitation. The gray band locates the
annual cycle. B) shows that the phases of the annual cycles are nearly 180◦ (π radians) out of
phase, which underscores the importance of considering the phase data in cross-spectrum
analysis.

can lead to erroneous conclusions, 3) choosing a noise filter is subjective and can lead to
different results, and 4) failing to specify the correct null hypothesis to test against possible
cause-and-effect relationships between cycles (i.e. type iii error) can lead to false conclusions.
Understanding the strengths and weaknesses of Fourier power spectrum analysis as you have
been introduced to here will help you to place the correct emphasis on signal processing
results in your study. If you do find room for such analysis in your work feel free to implement
the supplementary code presented here without reservation and in any way you like.
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