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1. Introduction  

Liquid multiphase systems such as polymer blends or emulsions are ubiquitous in many 
applications, including plastic production, food processing, pharmaceutical and cosmetic 
production. When the constituents of the multiphase system are incompatible the phases are 
immiscible, and, depending on their relative amount, the microstructure can consist of 
droplets in a matrix, elongated fibrils or a co-continuous structure (Utracki, 2003) as 
schematically shown in Figure 1. The morphology of the liquid multiphase system is 
important in the applications as it strongly affects processing properties, and the properties 
of the final products. With the term “morphology” we here indicate not only the overall 
form or shape of the physical structure of the system, but also the distribution and 
orientation of the phases, the interfacial area, and the volume of the interphase.  
Hence, a profound knowledge of the relation between processing parameters, material 
properties and morphology is essential to optimize the performances of the liquid 
multiphase systems.  
 

 

Fig. 1. Different morphologies of immiscible polymer blends (a) dilute droplet blends; (b) 
elongated fibrils; (c) co-continuous structure  

Substantial efforts were done in the last decades to set up experimental protocols aimed at 
evaluating the morphological properties of polymer blends and emulsions via rheological 
measurements. So far, the most reliable strategy for morphological characterization through 
rheological measurements is based on the dynamic small amplitude oscillatory shear 
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(SAOS) experiment: the samples are subjected to small amplitude shearing oscillations, and 
the measured shear stress response is used to gain information on the blend properties (e.g. 
Palierne, 1990).  
Here, we present an alternative technique we have recently proposed to characterize the 
liquid two-phase system morphology. This methodology is based on Large Amplitude 
Oscillatory Shear (LAOS) flows. This kind of analysis is often referred in the literature as 
Fourier Transform Rheology (FTR) (Wilhelm et al., 1998), since the stress response is usually 
analyzed in the Fourier domain. 
It will be shown that Fourier Transform Rheology possesses a high sensitivity in the 
characterization of the morphology, thus allowing evaluation of properties that might 
otherwise be hardly appreciated with traditional linear methodologies. 

2. Rheological oscillatory experiences 

2.1 Small Amplitude Oscillatory Shear 

A typical tool used for the characterization of complex liquids is based on oscillatory 
rheometry (Macosko, 1994). The basic working principle of an oscillatory rheological test is 
to impose a sinusoidal shear deformation, and measuring the resultant shear stress 
response. In a typical experiment, the sample is placed between two plates (or a cone and 
plate geometry) (Figure 2): while the bottom plate remains stationary, a rotation is imposed 
on the top plate, thereby allowing a time-dependent strain deformation on the sample: 

 ( ) 0 sint tγ = γ ω  (1) 

where ω is the oscillation frequency and γ0 is the strain amplitude. The oscillation period is 

thus T = 2π/ω. The resulting time-dependent shear stress, σ(t), is quantified by measuring 
the torque on the top plate. At low strain amplitudes, the stress response can be assumed to 
depend linearly on the strain deformation:  

 ( ) ( )0sin cos sint A t B t tσ = ω + ω = σ ω + δ  (2) 

 

 

ω

Fixed plate Pressure transducers

Torque

θ
0

 

Fig. 2. Cone and plate geometry 
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For this reason Small Amplitude Oscillatory Shear (SAOS) tests are usually referred as linear 

rheological measurements. If the material behaves as an ideal elastic solid, then the stress is 

in phase with the imposed deformation wave (i.e. proportional to sin(ωt)), and the 

proportionality constant is the shear modulus of the material. On the other hand, if the 

material is a purely viscous fluid, the stress is proportional to the rate of the strain 

deformation (i.e. proportional to cos(ωt)), and the proportionality constant is the viscosity of 

the fluid. The applied strain and the measured stress are in this case out of phase with phase 

angle δ = π/2. 

Complex materials usually show a response that contains both in-phase and out-of-phase 

contributions. As a consequence, the total stress response at a given ω is characterized by 

both the sine and cosine components: 

 ( ) ( ) ( )0 0' sin " cost G t G tσ = ω γ ω + ω γ ω  (3) 

In equation 3, G’(ω) is the storage modulus which characterizes the solid-like behavior, 

whereas G”(ω) is the loss modulus that takes into account the fluid-like contributions. The 

complex modulus to the frequency can be thus defined: 

 ( ) ( ) ( )* ' "G G iGω = ω + ω  (4) 

where i is the imaginary unit. Using the relation between the complex modulus G*(ω) and 

the complex viscosity η*(ω), 

 ( )G* *ω =ωη  (5) 

and 

 ( )* ' "iη ω = η + η  (6) 

The absolute value of the complex viscosity is of course given by: 

 ( )
* 2 2

* ' "G G G+
η ω = =

ω ω
 (7) 

The frequency dependence of G’ and G” provides some important information about the 

microstructure of a material. For example, gels exhibit G’ that is larger than G” with both 

moduli independent of frequency. Polymer melts show G’ and G” at low frequencies that 

are dependent on ω2 and ω, respectively. For viscoelastic materials, the overlap frequency 

(the frequency at which G’ and G’ curves intersect) gives information about the relaxation 

time of the system. The plateau modulus, i.e. the value of G’ at high frequency, gives 

information about the strength of the structures formed in the material. 

For the case of dilute blends with Newtonian constituents, the dependence of G’ and G” can 

be described in terms of the Palierne model which may quantitatively associate the linear 

viscoelastic properties of polymer blends to its chemical-physical properties e.g. to the 

interfacial tension (Palierne, 1990: Graebling et al., 1993a; Graebling et al., 1993b; Lacroix et 

al., 1996). 
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and G*i(ω), G*m(ω) and G*(ω) are, respectively, the complex moduli of the dispersed phase, 

matrix and blend at frequency ω, α is the interfacial tension, φ is the volume fraction of the 

dispersed phase and VR  is the volume average drop radius of the included phase: 

 

( )

( )

4

0

3

0

V

R R dr

R

R R dr

∞

∞

ψ
=

ψ

∫

∫
 (10) 

where ψ(R) represents the drop size distribution. 
An example is reported in figure 3, where the elastic modulus for a blend composed by 
Poly-DiMethylSiloxane (PDMS) in Poly-IsoButylene (PIB) is reported with respect to the 
oscillation frequency, together with the elastic modulus of the neat constituents.  
 

Frequency [Hz]10-1 100 101

G
' 
[P

a
]

10-3

10-2

10-1

100

101

102

103

104

PIB

PDMS

PDMS/PIB blend (φ = 0.1)

 

Fig. 3. Elastic modulus as a function of frequency for the pure components (PIB: square 
points; PDMS: triangles) and the polymer blend (full circles). The temperature is 30°C. The 
strain amplitude is 50% 
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The Palierne model is widely used to extract morphological or dynamical properties from 

oscillatory data, for example the average drop radius can be estimated (e.g. Das et al., 

2005) or alternatively the surface tension (e.g. Huitric et al., 1998; Vincze-Minya and 

Schausberger, 2007). As already remarked in the literature (Graebling et al. 1993a), 

however, it is difficult to achieve a more detailed description of the morphology of the 

included phase . Indeed, a complete description of the drop size distribution cannot be 

reliably obtained with this technique. To our knowledge, the size distribution inference 

for a polymer blend based on the Palierne method has been carried out only by Friedrich 

et al. (1995). The methodology there proposed is based on a Tikhonv regularization, and 

gave satisfactory results only for very dilute blends with unimodal drop radius 

distributions. 

2.2 Large Amplitude Oscillations 

The above mentioned limits of the traditional linear oscillatory experiences motivated the 

study of alternative experimental techniques that might be more sensitive to the material 

morphology. In this regard, Large Amplitude Oscillatory Shear flows (LAOS) proved to be a 

possible candidate for the morphological characterization. The capabilities of this technique 

to pinpoint nonlinear material characteristics have been already analyzed in other contexts 

(Neidhofer et al., 2004; Schlatter et al., 2005), proving to be quite effective. 

In the following we will briefly review some basic issues on LAOS  (see Wilhelm et al. 1999 

for details).When dealing with LAOS flows, the nonlinear dependences of the viscosity on 

the applied shear rate ( )η γ$  can be expected to be important, and equation 3 is no longer 

valid.  

Due to the symmetry properties, the viscosity is independent of the shear direction and 

therefore it can only depend on the absolute shear rate (Wilhelm et al., 1999): 

 ( ) ( ) ( )η γ = η −γ = η γ$ $ $  (11) 

The Taylor expansion for the viscosity at small shear rates is given in equation (12): 

 ( ) 2

0 1 2 ...η γ = η + η γ + η γ +$ $ $  (12) 

If the applied shear deformation is a harmonic oscillation with a given frequency ω1, strain 

and strain rate are: 

 0 1 1 0 1sin cost tγ = γ ω ⇒ γ = ω γ ω$  (13) 

Therefore, the absolute value of the shear rate signal γ$  can be represented in terms of a 

proper Fourier series (Ramirez, 1985): 

 1 1
1 0

2 4 cos2 cos 4
...

1 3 3 5

t t⎛ ⎞ω ω⎛ ⎞γ = ω γ + − +⎜ ⎟⎜ ⎟π π ⋅ ⋅⎝ ⎠⎝ ⎠
$  (14) 

 1 1' 'cos2 'cos 4 ...a b t c tγ = + ω + ω +$  (15) 
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By substituting Equation 15 into Newton’s equation for the viscosity leads to equation 16 
(Wilhelm et al., 1999) 

 ( ) ( )2

0 1 2 1... cos tσ = η γ γ = η + η γ + η γ + ω$ $ $ $  (16) 

 ( )
( )

( )
0 1 1

12

2 1

' 'cos2 ...
cos

' 'cos2 ... ...

a b t
t

a b t

⎛ ⎞η + η + ω + +
⎜ ⎟σ = η γ γ = ω
⎜ ⎟η + ω + +⎝ ⎠

$ $  (17) 

The terms in brackets in Equation 17 can be thus simplified and written as a sum of even 

harmonics: 

 ( )1 1 1" "cos2 "cos 4 ... cosa b t c t tσ = + ω + ω + ω  (18) 

By multiplying the terms in the brackets by cosω1t one ends up with the shear stress 

expression depending only on odd harmonics: 

 1 1 1cos cos3 cos5 ...A t B t C tσ = ω + ω + ω +  (19) 

where A, B, C are complex numbers. In a last step the non-linear torque signal is analyzed 
towards frequency components by Fourier transformation. Eventually, the signal can be 
described in terms of an odd function of the sinusoidal deformation 

 

( )

( )

1 1
1

1
1

cos sin

cos

odd k

odd k

Rk Ik
k

Ak k
k

t I j t I j t

I k t

∞

=

∞

=

σ = ω + ω =

ω + φ

∑

∑
 (20) 

In equation (20) IRk, IIk and IAk are real coefficients. Straightforwardly, one can easily express 

the measured shear stress signal in the Fourier domain as: 

 ( ) ( ) ( ) ( )1

odd k

kFT
i t

k
k

t t e I k
+∞ =∞

− ω

=−∞−∞

σ ⇔ σ ω = σ = δ ω − ω∑∫#  (21) 

In equation 21, δ(ω-kω1) is the Dirac delta located at ω = k ω1 (k ∈ Z), i is the imaginary unit, 

and Ik is the (complex) coefficient of the k-th harmonic. As the stress time series σ(t) is real 

valued, the condition Ik= I*-k (with * denoting the complex conjugate) holds. As a 

consequence of the assumption made in equation 19, only odd terms of the Fourier series 

could be in principle accounted for in equation 21 (Wilhelm et al., 1998). It is easy to show 

that the following relationship among the coefficients holds:  

 2 2
Aj k Rk IkI I I I= = +  (22) 

When dealing with SAOS flows only the first term of the summation in equation 21 is 

significant. Incidentally, one can notice that, as γ0 tends to zero, the linear behaviour is 

recovered, thus II1 = G’γ0 and IR1 = G”γ0, and IRk ≈ IIk ≈ 0 for any k >1. The appearance of 
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significant values for Ik (k > 1) marks the onset of nonlinearities in the stress response. As a 

further remark, it has been shown that, at vanishing amplitudes the following scaling for 

intensity of nth harmonic with strain has been observed for the constitutive equations so far 

investigated (Nam et al. 2008; Yu et al. 2008): 

 0
n

AnI ∝ γ  (23) 

This allows the definition of new scalars, based on the ratios of intensities of higher 

harmonics and first harmonic of the stress response. For example, coefficient Q is defined as 

(Hyun & Wilhelm, 2009) 

 3
2

1 0

1A

A

I
Q

I
=

γ
 (24) 

This coefficient has been claimed to be helpful in distinguishing molecular architecture of 

polymers based on LAOS (Hyun & Wilhelm, 2009). 

From a practical point of view, the measurement of the stress, through the torque sensor of 

the rheometer, is usually performed discretely at finite sample intervals (Δt). Based on the 

sampling frequency, (r =1/Δt, number of data points collected per second), we obtain a time 

series σ(n) of discrete measurements collected at NP instants. 

Discrete Fourier transform of this time domain series will be a series of NST complex 

numbers evaluated through well consolidated FT techniques (Bracewell, 1986): 

 ( ) ( )
( )( )2 1 1

1

, 1
i k n

N

n

k n e k N
π − −∞ −

=
Σ = σ ≤ ≤∑  (25) 

The maximum frequency in the Fourier domain will correspond to the Nyquist frequency = 

2 π/Δt. With the property of the Fourier transform leading to meaningful N/2 (symmetric) 

terms, the resolution in the frequency domain is 2π/T. Therefore, sampling interval 

determines maximum frequency to which information can be obtained, while the duration 

of measurements determines the resolution of frequency. Larger T values also lead to higher 

signal to noise ratio. It should be remarked that some techniques are introduced in the 

literature in order to improve the sensitivity to the signal of the measurement (Wilhelm et 

al., 1999). 

3. FTR on polymer blends  

3.1 Theory 

In this section, we will focus on the theoretical aspects concerning the characterization 

through FTR of immiscible blends with low fraction of the dispersed phase. In this case the 

morphology of the included phase is globular: the basic element of such a dilute blend is 

thus a single drop dispersed in a matrix. Therefore, the study of single droplet behaviour is 

regarded as a reasonable starting point to model the complex behaviour of immiscible 

polymer blends. The overall rheological response, in fact, could be determined just on such a 

basis.  

The dynamic behaviour of dilute polymer blends subjected to LAOS flows can be modeled 
as recently proposed in the literature by considering the single droplet  dynamics together 
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with a proper stress expression (Rallison, 1984; Stone, 1994; Almusallam et al., 2000; Yu et 
al., 2002; Jackson and Tucker, 2003; Yu and Bousmina, 2003). For what matters the dynamics 
of the drop, a handy though effective phenomenological model has been proposed by 
Maffettone and Minale (1998) and applies to generic flow fields. The model is formulated in 
terms of at most six first-order, ordinary, differential equations, and is capable of describing 
drop deformation up to the nonlinear range. This model is known to be quite accurate for 
small-to-medium droplet deformation, but loses some quantitative accuracy as droplet 
deformation becomes large. We use here this model for its simplicity, even though 
significant distortion of drop shape is expected under LAOS. Still, the Maffettone and 
Minale model provides a useful basis for analyzing and interpreting the experimental 
results also when significant strain deformations occur (Guido et al. 2004). The drop is 
described as an ellipsoid by a second rank symmetric, positive definite, and time dependent 
tensor. The shape dynamics can be thus described by the evolution of tensor S which 
follows the equation: 

 ( ) ( )1
2

2

3fd
f

dt I

⎛ ⎞
− ⋅ − ⋅ = − − + ⋅ + ⋅⎜ ⎟

τ ⎝ ⎠

S Ω S S Ω S I S D D S  (26) 

In Equation 26, τ is the emulsion time (τ=ηR/Γ)  where η is the matrix viscosity, R the 
undistorted drop radius and Γ is the interfacial tension; I is the second rank unit tensor, D 
and Ω are the deformation rate and the vorticity tensors respectively, and I2 is the second 
scalar invariant of tensor S. The shear flows here considered give the following forms for the 
deformation and vorticity tensors: 

 

0 1 0 0 1 0
1 1

1 0 0 , 1 0 0
2 2

0 0 0 0 0 0

Ca D Ca

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

D  (27) 

In equation 27 the Capillary number is introduced: 

 
viscous stress

interfacial stress
Ca

R

ηγ
= =

Γ

$
 (28) 

This gives the ratio between the two competing forces affecting the drop shape in shear flow 
experiences: the driving force of deformation (i.e. the shear stress), and the resistance force 
supporting the shape of the drop, that is the interfacial tension. The dependence of the 
capillary number on time is understood. The functions f1 and f2 appearing in Eq. 26 are given 
by (Maffettone & Minale, 1998): 

 

( ) ( )
( )( )

( )

1

2

2 2

40 1

2 3 19 16

5 3

2 3 2 6

f

Ca
f

Ca

λ +
λ =

λ + λ +

λ = +
λ + +

 (29) 

In equation 29 the ratio λ = ηd/ηm is defined, where ηd is the viscosity of the dispersed 

phase and ηm is the matrix viscosity. At rest the drop is spherical (S=I). Notice finally that 

within this description drop break-up is absent under shear flow for λ ≥ 3. 
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Once the state of the drop deformation is known, one can calculate the stress  of a dilute 
polymer blend according to Batchelor (1970): 

 

( )

( )

isotropic Newtonian
term contribution

viscous term elastic term

1

3

T
m

SS

p

dAdA
VV

−= + η ∇ + ∇

Γη ⎛ ⎞− + −+ ∫∫ ⎜ ⎟
⎝ ⎠

Iσ v v

nn Inu un

 (30) 

In Eq. 30, p is the pressure, ∇v is the velocity gradient tensor and ∇vT its transpose, η is 
the viscosity of the continuous phase, V is the total volume of the system, n is the unit 
vector normal to the ellipsoid surface, representing the interface between the two phases, 
u is the velocity at the interface, dA is the area of an interfacial element, and the integrals 
are calculated over the whole interface of the system, S. Equation 26 can be used to predict 
the stresses if n and u are known. Predictions are obtained by integrating equations (26) 
and (29) for the drop morphology. The elastic interfacial term in equation (30) is 
calculated as suggested by Almusallam et al. (2004). The viscous term in the interface 
stress is neglected. 
Equation 30 is the sum of two conceptually different terms: the first one is due to the 
Newtonian matrix contribution and depends linearly on the velocity gradient, whereas the 
second term (the viscous and the elastic term) corresponds to the sum of interfacial 
contributions related to the entire drop population. The first part depends linearly on the 
applied shear rate, whereas the interfacial contribution is the only nonlinear term appearing 
in Equation 29. Under LAOS, the first term will not contribute to higher harmonics in the 
shear stress for its linear nature. Conversely, the interface contribution will give rise to 

higher harmonics in the power spectrum of σ(t) (Grosso and Maffettone, 2007). 
Consequently, the contribution to the higher harmonics in the Fourier spectrum of each 
drop with radius R is directly related to the interfacial contribution. In the frequency domain 
this can be written as: 

 

( ) ( )

( )

1

1

2

2 1

3

ik t
k

T

ik t

T A A

I R t e dt
T

dA dA e dt
T V V

− ω

− ω

π
= σ

⎛ ⎞π η η ⎛ ⎞= − + + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫

∫ ∫ ∫nu un nn I

 (31) 

with k odd and > 1.  
Simulations are performed by mimicking realistic conditions for PDMS in PIB samples with 
the relevant parameters reported in the Table 1. These parameter values are consistent with 
experiments carried out at a temperature T = 35 °C. The volume fraction is always assumed 

to be φ = 0.1.  

Figure 4 shows the tangential stress σ of two simulated polymer blends both in the time and 
in the Fourier domains. The imposed deformation amplitude and oscillation frequency are 

set respectively equal to γ0 = 800% and ω = 0.1 s-1. The two blends differ for drop radius. 
Figure (4.a) and (4.b) show the time evolution and the Fourier transform (namely the 
absolute values of power spectrum rescaled with respect the fundamental harmonic, thus 

I(ω1)=1) of a polymer blend consisting of equal drops with radius R1 = 1 μm, respectively, 
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whereas figure (4.c) and (4.d) refer to a blend with drop radius R2=5 μm. It is apparent that 
no significant difference can be appreciated in the time domain, the signals looking very 
close to a sinusoidal waveform in both cases. This result is not unexpected since, as already 
mentioned, the linear Newtonian matrix contribution dominates the response when 
observed in the time domain. 
On the contrary, the nonlinear features appear more evidently in the Fourier domain. The 

principal harmonic (corresponding to the forcing frequency ω = 0.1 s-1) is not reported 
entirely in order to magnify the harmonics appearing at higher frequencies. It is evident that 
Fourier analysis allows a clear detection of the nonlinearities that are otherwise not 
appreciable in the time domain.  By comparing Fig. (4.b) with Fig. (4.d), it can also be noted 
the significant dependence of higher harmonics of the shear stress on drop size.  
 

Polymer Formula 
Molecular

Weight 
[Da] 

Density
[Kg/m3]

Viscosity 

[Pa⋅s] 

Interfacial tension 
[mN/m] 

PDMS [ –Si(CH3)2O– ]n 200000 971 175 

PIB [ –CH2C(CH3)2– ]n 1300 894 57 
3 

Table 1. Main physical properties of PDMS/PIB system 
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Fig. 4. Tangential stress of a simulated polymer blend in a LAOS experience in the time 
domain (Figures 4.a and 4.b) and in the Fourier domain (Figures 4.c and 4.d) for two 

different drop radii: R1 = 1 μm (Figures 4.a and 4.c) and R2 = 5 μm (Figures 4.b and 4.d). The 

deformation amplitude is γ0=800% and ω1 = 0.1·2π s-1. The physical parameters are in Tab. 1 
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Figure 5 reports the absolute values I3A/γ03 and I5A/γ05 for a fixed value of the radius R=10 

μm versus the strain amplitude γ0. As the strain deformation tends to zero, both quantities 

approach a constant value thus confirming the asymptotic behaviour previously observed 

for other constitutive models (Nam et al. 2008; Ewoldt et al. 2008). It should be remarked 

that the limiting values depend on the blend properties (i.e. the phase viscosities, the surface 

tension and the drop radii).  
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Fig. 5. Scalars I3/γ03 and I5/γ05 vs the strain deformation γ0 for a simulated monodisperse 

polymer blend with radius R = 10 μm 

3.2 Experiments 

In this section we will show some experimental results that demonstrate the sensitivity of 

the FTR methodology when analyzing blend or emulsion morphology. The details of the 

experimental part can be found elsewhere (Carotenuto et al. 2008). 

The polymer blend is prepared with PDMS and PIB that are immiscible at room 

temperature. PIB/PDMS emulsion is a widely used model system largely studied in the 

literature by means of both rheological and optical techniques (Jansseune et al., 2000; Guido 

et al. 2004; Wannaborworn et al. 2002). All the experiments were performed at constant 

temperature T = 30°C. The main physical properties of the polymers are reported in Table 1. 

The value of the interfacial tension for the very same polymers is found in the literature 

(Sigillo et al., 1997).  PIB is the continuous phase and PDMS is the dispersed phase. All the 

experiments were carried out with a volumetric fraction, φ, of the dispersed phase fixed to 

0.1 thus leading to a globular morphology. This value is small enough to consider 

coalescence negligible. The viscosity ratio is equal to 3, and it is large enough to avoid 
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significant break-up phenomena under pure shear flow. Thus, the blend can be assumed to 

be stable, and its microstructure should not significantly vary in time during the 

experiments (negligible breakup and negligible coalescence). The blend morphology, i. e., 

the drop size distribution ψ(R), is then assumed to remain unchanged during LAOS 

experiments. 

The experiments were conducted on three different blend samples, which hereafter will be 

indicated with a capital letter A, B and C. The morphologies of the samples are supposed to 

have a similar (but not equal) morphology since their preparation followed the same 

protocol. 

Oscillatory shear measurements (both SAOS and LAOS) were performed in a conventional 

strain controlled rheometer (ARES, TA Instruments). Linear viscoelastic measurements were 

analyzed using the software provided by the rheometer manufacturer. LAOS experiments 

required a modification and improvement of the traditional rheometer data acquisition 

system. The raw data coming from both motor and transducer were acquired and digitized 

with a 16-bit analog-to-digital converter (National Instrument, PCI_6251). The motor signal 

was correlated to the imposed strain deformation, γ, while the transducer signal was 

associated with the measured torque. In order to maximize S/N, the rheometer was 

equipped with a very sensitive torque transducer (2KFRTN1) that could detect a torque 

ranging from 0.002 to 200 mN·m.   

Before starting the acquisition, two main parameters were set: the scan rate, r [=] pts/s, and 

the number of data points, Np. They were the same for both the channels (motor signal and 

transducer signal). The ratio between Np and r gives the time required for the entire 

acquisition, tacq = Np/r. The oscillation cycles collected during tacq depend on the imposed 

deformation frequency (ω1). Typical values of r and Np are 1000 pts/s and 80000 pts, 

respectively, thus tacq = 80 s. Thus, for an imposed deformation frequency ω1=0.1 Hz, 8 

complete cycles were acquired. It should be noted that the higher values of r and Np, the 

higher the S/N ratio (Wilhelm et al., 1999). It was however checked that acquisitions with 

larger amount of data (r = 5,000 pts/s and Np = 400,000 pts) did not show any significant 

increase in the quality of our data. 

Raw data coming from transducer were collected and subsequently transformed into the 

corresponding Fourier spectra. Odd multiples of the fundamental harmonic appear in the 

nonlinear regime (LAOS). For the polymer blend under investigation, the 3rd and the 5th 

overtones could be clearly detected in the shear stress Fourier spectrum for deformation 

amplitudes γ0 > 100%. The electric signal measured by the torque transducer is supplied in 

terms of potential difference units.  

LAOS data were analyzed according to the FTR protocols. The imposed sinusoidal 

deformation is γ(t)= γ0 sin(ω1 t), where ω1 = 2πΩ1=2π/T is the characteristic angular frequency 

with T the oscillation period.  

Linear viscoelastic measurements were carried out for a preliminary characterization of the 

microstructure of the samples. Oscillatory measurements were performed with frequency 

ranging from 0.1 to 10 Hz. Strain amplitudes up to 50% gave shear stress responses well 

within the linear region. It was found that traditional SAOS measurements did not give a 

clear discrimination between different blends, and the G’ curves for the three emulsions are 

almost overlapping, thus indicating that SAOS suggest that the three blends have similar 

morphologies.  
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Blend VR  [μm] 

A 5.6 

B 6.7 

C 8.0 

Table 2. Average drop radii for the three blends estimated with the Palierne method 

From SAOS measurements one can obtain an estimation of the average dimension of the 

dispersed phase, namely the volume-average drop radius, VR . According to Palierne (1990), 

one can estimate the volume average drop radius for the emulsions. Table 2 contains the 

values of the estimated average drop radii for the blends A, B, C. As expected, the volume 

averaged drop radius, VR , for the three samples is very similar. A more detailed description 

of blend morphology cannot be attained with the linear rheological measurements. 

LAOS measurements were performed with γ0 ≥ 200%, where nonlinearities in the response 

become clearly appreciable. A typical experimental result is shown in Fig. 6, where the 

tangential stress response is reported both in the time (Fig. 6.a) and in the frequency 

domain (Fig. 6.b) for γ0 = 800% and Ω1 = 0.1 Hz (or, equivalently, ω1=2π 0.1 rad/sec). 

Fourier spectra report the absolute value of the overtones, normalized with the first 

harmonic (Ik/I1 or equivalently Ik1) as commonly done in the FTR literature (e.g. Wilhelm 

et al., 1998). The nonlinear shear stress response cannot be easily detected in the time 

domain, but the corresponding power spectrum clearly shows the occurrence of a third 

and a fifth peak.  
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Fig. 6. Transducer signals in the time domain (a) and the corresponding Fourier spectra (b) 
for a polymer blend, at 30°C 

In figure 6.b a peak I(2ω1) at an even multiple of the fundamental harmonic is also 

observable. It should be reminded that this occurrence is unexpected since the stress signal 

is demonstrated to be an odd function of the time. Several explanations for the presence of 

even overtones in the spectra have been proposed in literature. Quite often, the occurrence 
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of even harmonics is attributed to some artefact in the experiments as e.g. wall-slip 

phenomena (Hatzikiriakos & Dealy, 1991). In the case here reported, the second harmonic 

seems to be material-independent, and it can be attributed to an imperfect alignment of the 

upper and lower plates of the rheometer (Carotenuto et al., 2008): it reasonably comes from 

the instrument itself and results unrelated to the measured sample, for this reason it is 

simply neglected.  

Figure 7 shows the Q coefficient defined in equation 24 as a function of the strain amplitude 

for the blend C. The third harmonic is clearly detected for the polymer blend under 

investigation. The value of I31 is small but reproducible with an experimental error lower 

than 3%. For the sake of comparison, data of the neat PIB and PDMS are also reported in Fig. 

7. The pure component I31 is weighted by the corresponding amount in the blend (i.e., 0.1 for 

the PDMS and 0.9 for the PIB). It is apparent that the I31 values of the pure components are 

extremely low, according to their quasi-Newtonian behavior, and negligible when 

compared with the I31 values of the blend. This experimental evidence unequivocally 

suggests that the observed nonlinear response of the blend does not derive from simple 

superposition of the nonlinear contribution of the neat polymers, but it seems essentially 

due to the interface stress contribution. Such behaviour confirms the validity of the 

assumptions made in Equation 29.  
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Fig. 7. The Q coefficient as a function of the imposed strain deformation for the pure 
components (PIB: dashed line with square; PDMS: dashed-dotted line with triangles) and 
for the blend C (solid line with circles). The temperature is 30°C. The oscillation frequency is 
0.1 Hz 

Figure 8.a shows the coefficients Q = I31/γ02 and P = I51/γ04 for the three blends A, B and C as 

a function of the strain amplitude. It is shown that, as the strain deformation decreases, the 

curves seem to tend to an asymptotic plateau value Q0 and P0, accordingly with the 

theoretical predictions.  
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The curves do not superimpose, thus suggesting that LAOS experiences could discriminate 

between different morphologies. Indeed, as reported from Palierne results, the upper curve 

refers to the blend A ( VR = 5.6 μm), the medium to the blend B ( VR = 6.7 μm), and the lower 

to the blend C ( VR =8 μm). Hence, the Q0 coefficient of the blend seems to decrease with the 

mean size of the inclusions. In Figure 8.b, the ratio P =I51/γ04 for the blends A, B and C are 

also reported. Since the fifth overtones are significantly smaller than the third ones, they are 

more affected by experimental noise. Analogously to Q behaviour, the fifth peaks are larger 

for blend with smaller volume averaged drop radius.  
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Fig. 8. The Q and P coefficients as a function of strain amplitude for the blend A (solid line 
with circles), B (dashed line with triangles) and C (dashed-dotted line with squares). The 
oscillation frequency is 0.1 Hz 

4. Conclusion  

Fourier Transform Rheology is a valuable tool to characterize the microstructure of dilute 

immiscible polymer blend as it was shown both theoretically and experimentally. We 

analyze the case of a blend with Newtonian constituents, and in such a case the nonlinearity 

of the response under LAOS comes exclusively from the presence of a polymer-polymer 
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interface. Indeed, distinct odd multiples of the fundamental harmonic are clearly evident in 

the power spectrum of the emulsion, while are only barely distinguishable in the spectra of 

the pure components (PIB and PDMS). FTR greatly enhances the sensitivity of the 

experiments to the blend morphology, thus allowing the evaluation of details that are 

otherwise difficult to be appreciated with time domain analysis.  
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