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1. Introduction  

Graphene nanoribbons, quasi-one-dimensional structures of carbon, are fascinating 
materials. These structures can be constructed as strips of graphene sheet, the two 
dimentional honeycomb lattice of carbon with sp2 hybridization. Geometrically two main 
types of slice can be cut from a graphene sheet, with zigzag edge and armchair edge 
(Niimi05; Kobayashi05). The edge geometry is the key parameter which determines the 
electronic properties of the nanoribbons. Although the two-dimensional graphene is a zero 
band-gap semi-metal, electronic structure of nanoribbons depend on their edge geomtery 
(Saito92; Klein94; Fujita96; Son06a). A simple tight-binding model with one orbital per atom 
predicts that zigzag nanoribbons are metallic. But density functional calculations shows that 
all graphene nanoribbons are semiconductors at their ground state with band gaps which 
depend on their width and edge geometry, closing at infinite width, i. e. infinite graphene. 
Moreover, the electronic structure of graphene nanoribbons can be modified by chemical 
functionalization, such as functionalization by various atomic sepcies or by functional 
groups (Maruyama04a; Gunlycke07; Hod07; Gorjizadeh08). A large variety of electronic and 
magnetic properties, such as semiconducting with a wide range of band gap, metallic, 
ferromagnetic, antiferromagnetic, half-metallic, half-semiconducting, can be obtained by 
chamical modifications of the nanoribbons. Modification of the edge or using an adsorbate 
or substitution of carbons of the nanoribbon with an appropriate host are different options 
of functionalizations of these materials. These properties, along with the ballistic electronic 
transport, and the quantum Hall effect (Novoselov05a; Zhang05) and high carrier mobility 
(Novoselov05a) cause these quasi-1D materials to be promising candidates for 
nanoelectronics applications (Novoselov04b; Son06b; Obradovic06; Li08; Hod09; Zhu10). 
Various junctions can be constructed by connecting nanoribbons of different widths and 
types with perfect atomic interface, and electronic device can be integrated on them by 
selective chemical funtionalization on a single nanoribbon sheet (Huang07; Yan07; 
Gorjizadeh08). 
In order to achieve their potential for these applications it is essential to have a better 
understanding of the electronic structure of graphene nanoribbons and have ability to 
control them. From a practical point of view, when nanoribbons are fabricated 
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experimentally, they will have some structural defects. Vacancy and adatom–vacancy 
defects are among the most probable ones (Hashimoto04). These defects should be taken 
into account in practical aspects of the electronic transport in nanodevices based on 
graphene nanoribbons. In this chapter we will discuss the effects of defects in quantum 
conductance of grahene nanoribbons. In next section we will review the geometry of 
armchair and zigzag nanoribbons. Dependence of their electronic properties on the width 
and edge shape will be discussed.  Then, an overview of nonequilibrium Green’s function 
formalism (NEGF) for calculation of quantum conductance will be presented. After that the 
results of conductance calculation of armchair and zigzag nanoribbons with some structural 
defects such as vacancies and adatom-vacancies will be discussed using NEGF techniques 
combined with a four-orbitals-per-atom tight-binding method. We will then show 
dependence of the conductance on the width of nanoribbons and the position of the defects 
and their distance from the edge of the nanoribbons. 

2. Geometry and electronic structure of graphene nanoribbons 

There are two types of nanoribbons, based on their edge shapes, called zigzag and armchair 
edges (Saito92). The width of the nanoribbons is labled by an integer, N, which stands for 
the number of carbon dimers counted from one edge toward the other edge of armchair 
nanoribbons and the number of zigzag lines for zigzag nanoribbons. Figure 1 shows the two 
types of nanoribbons with their width indices. The dotted rectangle in this figure represents 
the unit cell of the nanoribbons. Nanoribbon is like an unrolled carbon nanotube (CNTs). 
The difference between carbon nanotubes and nanoribbons is the periodic boundary 
condition. Instead of a seamless tube, nanoribbon has two open boundaries. Therefore, the 
periodic boundary condition of nanotube in circumferential direction changes to open 
boundary condition (Möbius boundary condition) (Wakabayashi03). The electronic 
properties of nanoribbons are affected by these open boundaries. In carbon nanotubes, the 
circumferential periodic boundary condition imposes its electronic properties, making it 
metallic or semiconducting (Saito92). The electronic properties of nanoribbons, on the other 
hand, are affected by their open boundaries, as well as their edge geometry. Intrinsically 
there are dangling bonds at the edges, whose linear combinations form some of the 
eigenstates near the Fermi energy, and determine the properties of nanoribbons. 
 The earliest theoretical studies of graphene nanoribbons, using a simple tight-binding 
method with one π-orbital per atom, predicts that 1/3 of the armchair nanoribbons, whose 
width index N satisfies N=3M-1 (M is an integer), are metallic (Fujita96), and the other 2/3 
are semiconductor with band gaps depending on their width, while all zigzag nanoribbons 
are metallic. This behaviour is similar to characteristics of carbon nanotubes. A characteristic 
peak is also predicted in the density of states (DOS) of zigzag nanoribbons near Fermi 
energy (Niimi06; Sasaki06). This peak is a nano-size effect and decreases by increasing the 
width of nanoribbon. By considering a four-orbitals-per atom tight-binding model, and 
optimizing the structure of nanoribbons, or simply consider a larger hopping energy for the 
C-C bonds of the edge in the one-orbital per atom model, the 1/3 rule for armchair 
nanoribbons does not apply any more, and all the armchair nanoribbons show an energy 
gap around the Fermi energy. This gap changes with the width of the nanoribbon, which is 
the effect of the open boundary. 
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Fig. 1. Graphene nanoribbons with zigzag (a) and armchair (b) edges. The black circles 
denote sublattice A, while the white circles refer to sublattice B. The dotted rectangle 
represents the unit cell of the nanoribbon. The width of the nanoribbon is specified by N. 

First principle studies based on spin polarized density functional theory (DFT) predicts that 
all graphene nanoribbons are semiconductors at their ground state with band gaps which 
depend on their width and edge geometry, closing at infinite width, i. e. infinite graphene 
(Pisani07). Meanwhile zigzag nanoribbons have localized edge states which are 
ferromagnetically ordered, but with opposite spin orientation at the two edges which makes 
them antiferromagnetically coupled. The magnetism in zigzag nanoribbon, a pure carbon 
system, which arises from π-orbitals of carbon localized at the edge is specially notable 
(Wakabayashi99). 
There are two types of basic site in primitive cell of graphene and the atomic sites of 
graphene are divided into two sublattices, called A and B. In zigzag nanoribbons the edge 
atoms belong to the same sublattice, while the two edges carry atoms of two different 
sublattices. In these nanoribbons, the A-type and B-type atoms are placed alternatively from 
one edge toward the other one, as shown in Fig. 1(a). The spin in the same sublattice atoms 
of zigzag nanoribbon is localized in one direction, and in the opposite of the other sublattice. 
Hence, the total spin of the zigzag nanoribbons is zero, and the edges of the nanoribbons are 
antiferromagnetically ordered in the ground state. In case of armchair nanoribbons, the edge 
of the nanoribbon contains both A- and B-type atoms, as dimers, which sit along the edge, as 
depicted in Fig. 1(b). The black circles in this figure illustrate sublattice A and the white 
circles refer to sublattice B. 
Another important matter in the structure of nanoribbons is the C-C bond lengths with 
respect to their distance from the edge. There are two types of C-C bonds in a graphene 
nanoribbon, those which are parallel to the axis of nanoribbon, where we call them type 1, 
and those which make an 30º or 60 º angle with the axis, and we call them type 2. The 
change of C-C bond length with the number of atomic layers distant from edge are shown in 
Fig 2 for armchair nanoribbons N = 8, and N = 14. The 0th layer implies the edge, as shown 
in the inset. In nanoribbon N=8 all C-C bonds are affected by the edge and distort from 1.42 
Å, which is the optimized bond length of graphene. But, for N=14, the effect of edge can be 
seen only till second atomic layer distant from the edge. From the third layer, the bonds are 
1.42 Å, the same as graphene. The bond length of the edge, which is the triple bond, is 1.26 
Å or 1.27 Å depending on the width of nanoribbon. Patterns of other structures with N > 14 
are the same as N = 14, with edge bond length of 1.26 Å and the bonds of the bulk are equal 
to 1.42 Å. 
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Fig. 2. C-C bond length for different layers of carbon counted as their distance from edge of 
armchair nanoribbons N=8 (a) and N=14 (b). 

3. Tight-binding and NEGF 

We use the nonequilibrium Green’s function (NEGF) technique to calculate quantum 
conductance of nanoribbons (Datta95). The electronic structure and forces are obtained 
through a four-orbitals-per-atom tight-binding model based on semiempirical parameters 
developed by Xu et al. for carbon (Xu92). This parameterization has been used in tight 
binding studies of carbon systems, such as fullerenes and nanotubes (Esfarjani98; Ozaki00; 
Farajian01). We divide the system under study to three parts, as sketched in Fig 3: left lead, 
conductor, and right lead. According to Landauer formula (Landauer70), the conductance 
through the conductor region is: 

 
22e

C T
h

= , (1) 

where the coefficient 2e2/h is the conductance quantum in ballistic conductor, and T is the 
transmission function, and can be expressed in NEGF formalism as follows 
(Pastawski91,Tian98): 

 ( )r a
L RT Tr G G= Γ Γ . (2)              

Here, Tr indicates the transmission per energy channel between the leads, ΓL and ΓR are the 
coupling functions to the left and right leads, and Gr and Ga are the retarded and advanced 
Green's functions of the conductor (Torelli00), respectively, given by: 

 1( )r rG EI H −= − − Σ , (3)                 

 
†

[ ]a rG G= . (4) 

The advanced Green's function is the Hermitian conjugate of the retarded Green's function. 
The Green's function describes the dynamics of the electron inside the system. Here, H is the  

(a) (b)
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Fig. 3. (a) Schematic picture of a conductor (C) sandwiched between left (L) and right (R) 
contacts. (b) An armchair nanoribbon N=11 including a vacancy defect as an example of the 
L-C-R system. 

Hamiltonian of conductor part, E is the (complex) energy of conducting electron (E= ε+i η), 
with η arbitrarily small, and I is the identity matrix. Σr is the retarded self-energy which 
contains the self-energy of the Left and Right leads, Σr=ΣrL+ ΣrR , where ΣrL and ΣrR are 
obtained from surface Green's functions of the leads as follows  (Munoz87): 

 
† 0r

L LC L LCH G HΣ =  (5)      

 
†0r

R CR R CRH G HΣ =  (6)      

where G0L and G0R are the surface Green's functions of the semi-infinite Left and Right leads, 
respectively; and HLC and HCR represent the coupling matrices to the leads. In fact, the semi-
infinite leads are mapped into complex self-energies. The imaginary part of the self-energy 
implies that the eigenstates are not confined leak from the boundaries. The surface Green’s 
function, which includes the effect of the semi-infinite lead projected at its surface layer, is 
calculated by López Sancho algorithm (Lopez Sancho84). 
The Hamiltonian of the whole system can be written in tight-binding block matrix as 
follows: 

 
†

†

0

0

L LC

LC C CR

R
CR

H H

H H H H

HH

⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎠⎝

. (7)  

where HC is the Hamiltonian of the conductor part, which is used in the Green’ function in 
eq. 3. The coupling functions of the leads, ΓL and ΓR, are identified by 

 ( ) ( ) ( )[ ]r a
L R L R L RiΓ = Σ − Σ , (8)                  

where Σa is the Hermitian conjugate of Σr. 

In eq. 3, the Hamiltonian, the Green's function, and the self-energies are all represented by 
matrices, using the tight-binding basis. In the tight-binding expression for carbon used in 
this work, there are four orbitals representing the 2s and 2p orbitals of carbon. Hence, for a 
system with N carbon atoms, the basis set contains 4N elements, and the matrices are 4N× 
4N. In this formalism DOS is equal to to –Im[Tr(G)]/π, where Im inducates the maginary part. 
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Fig. 4. (a) Conductance and (b) DOS of a zigzag nanoribbon N=6. (c) Conductance and (d) 
DOS of an armchair nanoribbon N=8. The Fermi energy is set to zero. The sharp peak 
specified by an arrow in (a) refers to edge state of the zigzag nanoribbons. 

In order to calculate the conductance, the first step is to optimize the geometry of the 
structure, using the tight-binding description parameterized by Xu et al. (Xu92), to obtain 
the Hamiltonian description of the system. Then, we calculate the Green’s function of the 
conductor, which includes the effect of the leads through their self-energies. The 
conductance is then obtained through eq. 1, 2. We do not consider the spin of electrons in 
the calculations of this chapter, and take part the charge of the carriers in the transport 
properties. The edges in all structures are pure carbon and are not hydrogen saturated. 
Figure 4 illustrates the conductance and DOS of a zigzag N=6 and an armchair nanoribbon 
N=8, versus the energy of carrier. The Fermi energy of the structures is set to zero. Zigzag 
nanoribbons with width N=6 has metallic behaviour within tight-binding approximation. 
The sharp peak at the energy 0.18 eV in the DOS, specified by an arrow in Fig. 4(b), refers to 
localized edge states of zigzag nanoribbons. These edge states correspond to the non-
bonding π orbitals. The existence of these edge states has been confirmed by experimental 
observations also (Niimi06). The edge states are the characteristics of zigzag nanoribbons 
and do not appear in the armchair edges. The conductance and DOS of the armchair 
nanoribbons shows an energy gap around Fermi energy. This energy gap depends on the 
width of the nanoribbons and decreases by increasing the width. In graphene, the in-plane 
bonds are the σ bonds with sp2 hybridization, which does not contribute in conduction. 

(a) (b)

(c) (d)
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These are the π bonds, perpendicular to nanoribbon surface, which are responsible for the 
conduction. The change in bond length results in a change in overlap of Pz orbitals, i.e. the π 
bonds, and leads to changing the conduction property. For those nanoribbons whose π 
pattern is distorted more from the graphene sheet, the energy gap is larger. Regardless of 
appropriate boundary condition, it seems that the typical bond length of 1.42Å is the most 
suitable for π orbitals to contribute in conduction. It is worth mentioning that saturation of 
the edge by hydrogen reduces the gap, but does not remove it. The energy gap of armchair 
nanoribbons N=8, for instance, decreases from 0.45 eV to 0.27 eV by hydrogen saturation of 
the edge. 

4. Quantum conductance of nanoribbons with structural defects 

For calculating the conductance of nanoribbons with defects we consider five unit cells of 
the nanoribbon as the conductor part, which is sandwiched between two semi-infinite 
contacts, as sketched in Fig 3(b). The contacts are defectless graphene nanoribbons with the 
same width and edge geometry of the middle junction. 
 

 

Fig. 5. Zigzag nanoribbons N=8 with vacancies of type B (top) and type A (bottom) at 
different positions toward the edge.  

In order to obtain the Hamiltonian of the middle junction, i.e conductor, the nanoribbon is 
sandwiched between five unit cells of nanoribbons with the same width from left and right 
and the structure is optimized, such that the maximum force on each atom is less than 0.01 
eV/Å (Gorjizadeh09). After the optimization, the five extra unit cells on each of the two 
sides of the nanoribbons are eliminated, and the five unit cells of the nanoribbon left in the 

(a) (b) (c) (d)

(e) (f) (g) (h)
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middle are used as the junction part for calculations of conductance. Using this method, the 
extra unit cells which were eliminated, omit the effects of open boundary along the axis, 
such that the junction part represents a portion of an infinite nanoribbon. The geometries of 
the semi-infinite left and right contacts are also extracted from the relaxed structures, 
obtained the same way as the junction part. This way, we are able to simulate the effect of a 
single defect in the junction part, without having periodic boundary condition.  
The vacancy defect can appear in the site of an atom of type A or type B in the nanoribbon. 
The position and type of vacancy, A or B, versus the edge of the nanoribbon is the matter of 
considering in the calculations.  

4.1 Defects in zigzag nanoribbons 
We consider a zigzag nanorirbbon N=8 with five unit cells in the middle and calculate the 
conductance when there is a vacancy of type A and B at different positions versus edge, as 
illustrated in Fig. 5. First we consider the structure of Fig. 5(a), a vacancy of type B in the 
middle of the nanoribbon. Figure 6 depicts the calculated conductance of nanoribbon with 
this defect, compared with the conductance of a perfect (defectless) nanoribbon. It can be 
noticed from this figure that number of conducting channels decreases in the defected 
nanoribbon. By moving the position of this vacancy from center toward the edge which has 
the same type of atom, according to Fig. 5(a-d), the conductance near the Fermi energy is 
changed (Fig. 6(b)). The behaviour of the conductance clearly depends on the place of the 
vacancy versus the edge. When the vacancy is in the middle of the nanoribbon, the 
conductance at Fermi energy decreases to zero. By moving the vacancy from the center 
toward the edge, the conductance near the Fermi energy increases until it reaches the 
conductance of a perfect nanoribbon, when the vacancy is at the edge. The energy for which 
the decrease of conductance is the strongest is slightly below the Fermi energy, around -0.18 
eV. On the other hand, the vacancy of type A in the center of the nanoribbon, as in Fig. 5(e), 
even opens a gap around the energy -0.18 eV (Fig. 6(c)).  Moving the place of this vacancy 
toward the same edge, according to Fig. 5(e-g), will result in the same trend as vacancy B, as 
depicted in Fig. 6(d). As mentioned in section 2, all zigzag nanoribbons have a typical peak 
in their DOS near and slightly below the Fermi energy which is due the edge states. Our 
results show that a vacancy defect inside the nanoribbon affects the edge states of the 
nanoribbon. By removing one atom from the lattice of the nanoribbon, three sp2 bonds are 
broken, creating three dangling bonds in the neighboring carbon atoms. These dangling 
bonds tend to spread toward the neighboring carbon atoms of the nanoribbon in order to 
overlap with electronic orbitals of their neighbors and lower their energy. Hence, the 
electronic wave functions near the vacancy are affected. In other words, some localized 
states appear in the vicinity of the vacancy and affect the π bonds of the nanoribbon. 
Therefore, the effect of the vacancy on the π bands (from -1to 1 eV in Fig. 6(b)), which are 
responsible for conduction near the Fermi energy, is significant. If the localized vacancy 
states are in the middle of the nanoribbon, their effect on the whole electronic wave function 
will be maximum. As the width of the nanoribbon is small, on the order of a few Å, the 
effect of the localized states of the vacancy are spread until both nanoribbon edges. Once the 
vacancy is moved toward one edge, the effect of the localized vacancy states at and near the 
other edge will decrease, due to increase of the distance between the vacancy and the other 
edge of the nanoribbon. Therefore, the number of less affected conducting channels of the 
nanoribbon increases compared to when the vacancy is in the middle of nanoribbon. 
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Fig. 6. Conductance of a zigzag nanoribbon N=8 with (a) vacancy defect of Fig. 5(a) 
compared with the defectless nanoribbon sketched in gray, (b) vacancy defects of type B at 
different positions from the edge. The solid line is defect of Fig. 5(a), dashed line is defect of 
Fig. 5(b), dashed-dotted line is defect of Fig. 5(c), and dotted line is defect of Fig. 5(d). 
Conductance of the same zigzag nanoribbon N=8 with (c) vacancy defect of Fig. 5(e) 
compared with the defectless nanoribbon sketched in gray. (d) Vacancy defects of type A at 
different positions from the edge. The solid line is defect of Fig. 5(e), dashed line is defect of 
Fig. 5(f), dashed-dotted line is defect of Fig. 5(g), and dotted line is defect of Fig. 5(h). 

The same situation happens for zigzag nanoribbons with other widths, such as N=6 and 
N=4. However, the gap opening around the energy -0.18 eV when the vacancy is in the 
middle of the nanoribbon, is larger when the width of the nanoribbon is smaller. This gap is 
equal to 1.0 eV for the nanoribbon N=4, while it is 0.35 eV for the nanoribbon N=8. 
Therefore, by increasing the width of nanoribbon, this effect will diminish.  
Next, we place an adatom at a nearest neighbor position of vacancy. An adatom-vacancy 
defect of this kind is more stable than one adatom and one vacancy defect (Hashimoto04). A 
carbon adatom is not stable on graphene. It will diffuse on graphene with a diffusion barrier 
of 0.14 eV (Lehtinen03; Hashimoto04) It appears mostly in the vicinity of the vacancies, 
because this combination of vacancy and neighboring adatom has been predicted to be 
metastable and long lived (Hashimoto04; Krasheninnikov01; Lu04).  
An adatom can be attached on top of an A-type or a B-type site. Figure 7(a-b) shows 
schematic of the adatom-vacancy defect, when adatom is in site A or B at a nearest 
neighboring site of a vacancy type A in zigzag nanoribbon N=6. The C-C bond between the  
  

(a) (b)

(c) (d)

www.intechopen.com



 Physics and Applications of Graphene - Theory 

 

426 

 
Fig. 7. Schematic of a zigzag nanoribbon N=6 with adatom-vacancy defect, when adatom is in 
(a) site A or, (b) site B, in vicinity of a vacancy type A. (c) Conductance of the zigzag 
nanoribbon with vacancy type A. (d) Compariosn of the conductance of plot (c) with adatom-
vacancy defects of (a) and (b). The solid line is the conductance of vacancy type A, dahsed line 
is that of adatom-vacancy type A-A (Fig. 5(a)), and dotted line is that of adatom-vacancy type 
B-A. Two peaks appear near and at the two sides of the original peak of the nanoribbon, in 
case of adatom-vacancy type B-A, indicating that localized states appear at these energies. 

adatom and the carbon atom of the nanoribbon is 2.04 Åwhich indicates that the adatom is 
physisorbed on the nanoribbon. Conductance of the zigzag nanoribbon N=6 with the 
vacancy is sketched in Fig. 7.c, while the conductance of adatom-vacancy defects of type A-
A and B-A are shown in Fig. 7.d. The results of DOS in Fig. 7. e-f show that two peaks 
appear near and at the two sides of the original peak of the nanoribbon, in case of adatom-
vacancy type B-A, indicating that localized states appear at these energies which are located 

(a) (b) 

(c) (d) 

(e) (f) 
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at energy intervals -0.18 eV and +0.21 eV away from the original peak. These two energies 
show a drastic drop, instead of the drop at the energy of the original peak at -0.18 eV. 
However, the DOS and conductance of adatom of type A near vacancy of type A does not 
change compared to that of vacancy A defect. Therefore, the adatom does not change the 
transport property of the zigzag nanoribbon when it is attached to a site of the same type as 
vacancy, while it splits the original peak of the DOS at -0.18 eV and decreases the 
conductance when it is attached to a site of different type site compared to the vacancy. The 
same results were obtained for zigzag nanoribbons of other widths, i. e. N=4 and 8.  

4.2 Defects in armchair nanoribbons 
We consider the same defects of the vacancy and adatom-vacancy in the structures of 
armchair nanoribbons N=8, 12, and 16, and compare the conductance characteristics with 
those of perfect structures. Armchair nanoribbons are semiconducting. Figure 8(a-b) 
shows the conductance of an armchair nanoribbon N=8 with a vacancy type B in the 
middle of the nanoribbon, and its comparison with those of structures with one and two 
atom vacancy at the edge. Similar to the zigzag nanoribbons, in armchair nanoribbons 
also localized states appear when there is vacancy in their structures, and the conductance 
decreases due to defects compared with the perfect nanoribbon. But the energy gap is not 
affected by the defects. This could be expected as the gap arises owing to the lack of 
conducting channels (bands), for that particular energy interval, within the two semi-
infinite defectless contacts.The vacancy states are localized near the vacancy within the 
junction part, which attaches the two semi-infinite graphene contacts. These localized 
states cannot generate extra bands within the contacts, and therefore the gap remains 
upon introducing the vacancy. 
Figure 8(c-d) depicts the conductance and DOS of adatom-vacancy defects. The conductance 
of adatom-vacancy is the same as that of vacancy defect, indicating that adatom does not 
affect the transport properties of the armchair nanoribbon, both for the adatom and vacancy 
of the same type and different types. The same results are obtained for the nanoribbons 

N=12 and 16. This effect is attributed to the lack of edge state in armchair nanoribbon. The 
edge state in zigzag nanoribbon produces a peak in DOS at -0.18 eV. This peak is split into 
two by different sites of adatom-vacancy defects, as is shown in Fig. 7(f). With the absence of 
edge-state peak in armchair nanoribbons, the split does not occur and the conductance of 
adatom-vacancy defect is similar to that of vacancy. 

5. Conclusion 

We study the effect of defects such as vacancy and adatom-vacancy on the conductance of 
graphene nanoribbons. Our results show that localized states appear when there is vacancy 
inside the nanoribbon, which affects its conductance. The drop of conductance depends on the 
place of the vacancy. When the vacancy is at the middle of the nanoribbon, its effect on 
conductance at energies near Fermi energy is maximum. For zigzag nanoribbons, there is a 
drastic drop of conductance at the energy -0.18 eV which is the energy of the original peak in 
the density of states (DOS) of the nanoribbon. A gap opens around this energy, whose width 
depends on the width of the nanoribbon: The thinner the nanoribbon, the wider the gap. By 
moving the vacancy from the middle of the nanoribbon toward the edge, the decrease of  
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Fig. 8. (a) Conductance of an armchair nanoribbon N=8 with the vacancy type B. (b) 
Comparison of the conductance of plot (a) with those of the nanoribbon with one and two 
atom vacancy at the edge (structures of (e)).  (c) Compariosn of the conductance of plot (a) 
with those of adatom-vacancy defects of type A-A and B-B (structures of (f)). 

conductance is lowered, and it reaches zero when the vacancy is at the edge, i. e. the 
conductance is the same as that of a perfect nanoribbon. Binding of a carbon adatom with a 
carbon atom near vacancy results in two extra peaks in the DOS near the Fermi energy of 
zigzag nanoribbons. This binding makes localized states at energies of the new peaks and 
results in the decrease of conductance at these energies. These effects are very sensitive to 
the adatom and vacancy types and their relative distances. The peak splitting in the DOS of 
zigzag nanoribbons occurs when adatom and vacancy are of different types. In the case of 
thin armchair nanoribbons, which are semiconducting, the presence of vacancy and adatom-
vacancy defects decreases the number of conducting channels, but the gap does not change 
due to these defects. The vacancy and adatom-vacancy defects have the same effect on 

(a) (b)

(c) (d)

(e) (f)
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conductance owing to the absence of edge state near the Fermi energy of armchair 
nanoribbons. We neglected the spin of electrons in all the calculations in this chapter, and 
considered the electronic conductance through tight-binding formalism. 
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