
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322393656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Camelia Chisăliţă-Creţu
Babeş-Bolyai University

Romania

1. Introduction

Software systems continually change as they evolve to reflect new requirements, but their
internal structure tends to decay. Refactoring is a commonly accepted technique to improve
the structure of object oriented software. Its aim is to reverse the decaying process in
software quality by applying a series of small and behaviour-preserving transformations, each
improving a certain aspect of the system (Fowler, 1999). The Multi-Objective Refactoring Set
Selection Problem (MORSSP) is the identification problem of the set of refactorings that may
be applied to the software entities, such that some specified constraints are kept and several
objectives optimized.
This work is organized as follows: The motivation and a possible working scenario for
the proposed refactoring selection problem is presented by Section 2. Section 3 reminds
the existing work related to the studied domain. The General Multi-Objective Refactoring
Selection Problem is formally stated by Section 4. Section 5 defines the Multi-Objective
Refactoring Set Selection Problem as a two conflicting objective problem. The case study used
within the research is shortly reminded by Section 6. The evolutionary approach with a
proposed weighted objective genetic algorithm and the different solution representations
studied are addressed by Section 7. A proposed refactoring strategy together with the input
data for the advanced genetic algorithms are presented by Section 8. The results of the
pratical experiments for the entity based and refactoring based solution representations for the
multi-objective approach are summarized and analyzed by Section 9. Section 10 lists the
conclusions and future research direction of the presented work.

2. Background

2.1 Motivation

Software systems continually change as they evolve to reflect new requirements, but their
internal structure tends to decay. Refactoring is a commonly accepted technique to improve
the structure of object oriented software (Fowler, 1999; Mens & Tourwe, 2004). Its aim
is to reverse the decaying process in software quality by applying a series of small and
behaviour-preserving transformations, each improving a certain aspect of the system (Fowler,
1999). While some useful refactorings can be easily identified, it is difficult to determine those
refactorings that really improve the internal structure of the program. It is a fact that many

The Multi-Objective Refactoring Set Selection
Problem - A Solution Representation Analysis

23

www.intechopen.com

useful refactorings, whilst improving one aspect of the software, make undesirable another
one.
Refactorings application is available for almost all object-oriented languages and
programming environments. Though, there are still a number of problems to address in order
to raise the refactoring automation level.

2.2 Working scenario

Assuming a tool that detects opportunities for refactoring is used (Mens & Tourwe, 2003), it
will identify badly structured source code based on code smells (van Emden & Moonen, 2002;
Fowler, 1999), metrics (Marinescu, 1998; Simon et al., 2001) or other techniques. The gathered
information is used to propose a set of refactorings that can be applied in order to improve
the software internal structure. The developer chooses which refactorings he would consider
more appropriate to apply, and use a refactoring tool to apply them.
There are several problems that rise up within the considered context. The first one that hits
the developer is the large number of refactorings proposed to him, thus the most useful ones
to be applied have to be identified.
Another aspect is represented by the possible types of dependencies that may exist between
the selected refactorings. It means that applying any of the suggested refactorings may cancel
the application of other refactorings that have been already proposed by the developer, but
not selected and applied yet.
In (Mens et al., 2007) are presented three kinds of such dependencies: mutual exclusion,
sequential dependency, asymmetric conflict. Therefore, the goal is to explore the possibility
of identifying the refactorings that optimize some objectives, like costs or impact on software
entities. Thus, the developer is helped to decide which refactorings are more appropriate
and in which order the transformations must be applied, because of different types of
dependencies existing between them.

3. Related work

A closely related previous work is the Next Release Problem (NRP) studied by several authors
(Bagnall et al., 2001; Greer & Ruhe, 2004; Zhang et al., 2007), where the goal was to find the
most appropriate set of requirements that equilibrate resource constraints to the customer
requests, in this way the problem was defined as a constrained optimization problem.
The corresponding refactoring selection problem is an example of a Feature Subset Selection
(FSS) search problem. Other FSS problems in previous work on SBSE include the problem of
determining good quality predictors in software project cost estimation, studied by Kirsopp
et al. (Kirsopp et al., 2002), choosing components to include in different releases of a system,
studied by Harman et al. (Harman et al., 2005) and Vescan et al. (Vescan & Pop, 2008).
Previous work on search-based refactoring problems (Bowman et al., 2007; Harman & Tratt,
2007; O’Keefe & O’Cinneide, 2006; Zhang et al., 2007) in SBSE has been concerned with single
objective formulations of the problem only. Much of the other existing work on SBSE has
tended to consider software engineering problems as single objective optimization problems
too. But recent trends show that multi-objective approach has been tackled lately, which
appears to be the natural extension of the initial work on SBSE.
Other existing SBSE work that does consider multi-objective formulations of software
engineering problems, uses the weighted approach to combine fitness functions for each
objective into a single objective function using weighting coefficients to denote the relative
importance of each individual fitness function. In the search based refactoring field, Seng

442 Advances in Computer Science and Engineering

www.intechopen.com

et al. (Seng et al., 2006) and O’Keeffe and O’Cinneide (O’Keefe & O’Cinneide, 2006)
apply a weighted multi-objective search, in which several metrics that assess the quality
of refactorings are combined into a single objective function. Our approach is similar to
those presented in (O’Keefe & O’Cinneide, 2006; Seng et al., 2006) but the difference is the
heterogeneity of the weighted fitness functions that are combined together. Thus, we gather
up the cost aspect of a refactoring application, the weight of the refactored software entity in
the overall system and the effect or impact of the applied transformation upon affected entities
as well.

4. General refactoring selection problem

4.1 GMORSP statement

In order to state the General Multi-Objective Refactoring Selection Problem (GMORSP) some
notion and characteristics have to be defined. Let SE = {e1, . . . , em} be a set of software
entities, e.g., a class, an attribute from a class, a method from a class, a formal parameter
from a method or a local variable declared in a method implementation. They are considered
to be low level components bounded through dependency relations.
A software system SS consists of a software entity set SE together with different types of
dependencies between the contained items. A dependency mapping ed is defined as:
SED = {usesAttribute, callsMethod, superClass, associatedwithClass, noDependency},
ed : SE× SE → SED,

ed(ei, ej) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

uA, if the method ei uses the attribute ej
cM, if the method ei calls the method ej
sC, if the class ei is a direct superclass for the class ej
aC, if the class ei is associated with the class ej
nD, otherwise

, (1)

where 1 ≤ i, j ≤ m.
If a class ei, 1 ≤ i ≤ m, is an indirect superclass, for the class ej, 1 ≤ j ≤ m then ed(ei, ej) = sC∗
and ∃ class ek, 1 ≤ k ≤ m such that ed(ei, ek) = sC, where 1 ≤ i ≤ m, 1 ≤ j ≤ m. The
association relationship between two classes may be expressed as: aggregation, composition
or dependency. If a class ei, 1 ≤ i ≤ m, has an aggregation relationship with a class ej, 1 ≤
j ≤ m, the association multiplicity is nested within the simple class association notation, i.e.,
ed(ei, ej) = aC∗n1 .

A set of possible relevant chosen refactorings (Fowler, 1999) that may be applied to different
types of software entities of SE is gathered up through SR = {r1, . . . , rt}. Specific refactorings
may be applied to particular types of software entities, i.e., the RenameMethod refactoring may
be applied to a method entity only, while the ExtractClass refactoring has applicability just for
classes. Therefore a mapping that sets the applicability for the chosen set of refactorings SR
to the set of software entities SE, is defined as:
ra : SR× SE → {True, False},

ra(rl , ei) =

{

T, if rl may be applied to ei
F, otherwise

, (2)

where 1 ≤ l ≤ t, 1 ≤ i ≤ m.

443The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

There are various dependencies between refactorings when they are applied to the same
software entity, a mapping emphasizing them being defined by:
SRD = {Be f ore, A f ter, AlwaysBe f ore, AlwaysA f ter, Never, Whenever},
rd : SR× SR× SE → SRD,

rd(rh , rl , ei) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

B, if rh may be applied to ei only before rl , rh < rl
A, if rh may be applied to ei only after rl , rh > rl
AB, if rh and rl are both applied to ei and rh < rl
AA, if rh and rl are both applied to ei and rh > rl
N, if rh and rl cannot be both applied to ei
W, otherwise, i.e., rh and rl may be both applied to ei

, (3)

where ra(rh, ei) = T, ra(rl , ei) = T, 1 ≤ h, l ≤ t, 1 ≤ i ≤ m.

Let DS = (SEm, SRt) be the decision domain for te GMORSP and
→
x= (e1, e2, . . . , em,

r1, r2, . . . , rt),
→
x∈ DS a decision variable. The GMORSP is defined by the followings:

• f1, f2,. . . , fM – M objective functions, where fi : DS → Rm+t, i = 1, M and F(
→
x) = { f1(

→
x

), . . . , fM(
→
x)},

→
x∈ DS;

• g1, . . . , gJ – J inequality constraints, where gj(
→
x) ≥ 0, j = 1, J;

• h1, . . . , hK – K equality constraints, where gk(
→
x) = 0, k = 1,K.

The GMORSP is the problem of finding a decision vector
→
x= (x1, . . . , xm+t) such that:

optimize{F(
→
x)} = optimize{ f1(

→
x), . . . , fM(

→
x)},

where fi : DS → Rm+t,
→
x∈ DS, gj(

→
x) ≥ 0, j = 1, J, hk(

→
x) = 0, k = 1,K, i = 1, M.

Multi-objective optimization often means optimizing conflicting goals. For the GMORSP
formulation there may be the possibility to blend different types of objectives, like: some of
them to be maximized and some of them to be minimized.
For those cases where the conflicting objectives exist, they must be converted to meet the
optimization problem requirements. Therefore, for an objective fi, 0 ≤ i ≤ M, that needs
to be converted, where MAX is the highest value from the objective space of the objective
mapping fi, 0 ≤ i ≤ M, MAX ∈ Rm+t, there are two ways to switch to the optimal objective,
as:

• MAX− fi(
→
x), when MAX can be computed;

• − fi(
→
x), when MAX cannot be computed.

4.2 Specific multi-objective refactoring selection problems

In the context of appropriate refactoring selection research domain there are many
problems that may be defined as multi-objective optimization problems. Section 5 states the
Multi-Objective Refactoring Set Selection Problem as a particular refactoring selection problem.
A more restraint problem definition for the case when a single refactoring is searched is
discussed too, as Multi-Objective Single Refactoring Selection Problem in (Chisăliţă-Creţu &
Vescan, 2009), (Chisăliţă-Creţu & Vescan, 2009).
Specific conflicting objectives are studied in order to identify the optimal set of refactorings.
Therefore, the refactoring cost has to be minimized, while the refactoring impact on the affected
software entities needs to be maximized.

444 Advances in Computer Science and Engineering

www.intechopen.com

5. The multi-objective refactoring set selection problem

The Multi-Objective Refactoring Set Selection Problem (MORSSP) is a special case of refactoring
selection problem. Its definition in Chisăliţă-Creţu (2009) follows the General Multi-Objective
Refactoring Selection Problem (see Section 4). The two compound and conflicting objective
functions are defined as the refactoring cost and the refactoring impact on software entities.
In order to state the Multi-Objective Refactoring Set Selection Problem (MORSSP) some notions
and characteristics have to be defined.

Input data
Let

SE = {e1, . . . , em}
be a set of software entities, e.g., a class, an attribute from a class, a method from a class,
a formal parameter from a method or a local variable declared in the implementation of a
method.
The weight associated with each software entity ei, 1 ≤ i ≤ m is kept by the set

Weight = {w1, . . . ,wm},

where wi ∈ [0, 1] and ∑
m
i=1 wi = 1.

The set of possible relevant chosen refactorings Fowler (1999) that may be applied to different
types of software entities of SE is

SR = {r1, . . . , rt}.

Dependencies between such transformations when they are applied to the same software
entity are expressed by the formula 3 (see Section 4).
The effort involved by each transformation is converted to cost, described by the following
function:
rc : SR× SE → Z,

rc(rl , ei) =

{

> 0, if ra(rl , ei) = T
= 0, otherwise

,

where the ra mapping is defined by the formula 2 (see Section 4), 1 ≤ l ≤ t, 1 ≤ i ≤ m.
Changes made to each software entity ei, i = 1, m, by applying the refactoring rl , 1 ≤ l ≤ t,
are stated and a mapping is defined:
e f f ect : SR× SE → Z,

e f f ect(rl, ei) =

⎧

⎨

⎩

> 0, if ra(rl , ei) = T and has the requested effect on ei
< 0, if ra(rl , ei) = T; has not the requested effect on ei
= 0, otherwise

,

where the ra mapping is defined by the formula 2 (see Section 4), 1 ≤ l ≤ t, 1 ≤ i ≤ m.
The overall effect of applying a refactoring rl , 1 ≤ l ≤ t, to each software entity ei, i = 1,m, is
defined as it follows:
res : SR → Z,

res(rl) =
m

∑
i=1

wi · e f f ect(rl, ei),

where 1 ≤ l ≤ t.

445The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

Additional notations
Each refactoring rl , l = 1, t may be applied to a subset of software entities, defined as a
function:
re : SR → P(SE),

re(rl) =
{

el1 , . . . , elq | if ra(rl , elu) = T, 1 ≤ u ≤ q, 1 ≤ q ≤ m
}

,

where the ra mapping is defined by the formula 2 (see Section 4), re(rl) = SErl , SErl ∈
P(SE)− ∅, 1 ≤ l ≤ t.

Output data
The MORSSP is the problem of finding a subset of entities named ESetl, ESetl ∈ P(SE) − ∅

for each refactoring rl ∈ SR, l = 1, t such that:

• the following objectives have to be optimized:
– the overall refactoring cost is minimized;
– the overall refactoring impact on software entities is maximized;

• refactoring dependencies constraints defined by the mapping 3 are satisfied.

The solution S = (ESet1, . . . , ESett) consists of the ESetl elements for a specific refactorings
rl , 1 ≤ l ≤ t, where ESetl ∈ P(SE)− ∅, 1 ≤ l ≤ t.

5.1 Multi-objective optimization problem formulation

The MORSSP optimizes the required cost minimize required cost for the applied refactorings
and to maximize the refactoring impact on software entities. Therefore, the multi-objective

function F(
→
r) = { f1(

→
r), f2(

→
r)}, where

→
r = (r1, . . . , rt) is to be optimized, as described

below. Current MORSSP treats cost as an objective instead of a constraint, like the refactoring
dependencies described by the mapping 3 (see Section 4).
The first objective function minimizes the total cost for the applied refactorings:

minimize{ f1(
→
r)} = minimize

{

t

∑
l=1

m

∑
i=1

rc(rl , ei)

}

,

where
→
r = (r1, . . . , rt).

The second objective function maximizes the total effect of the refactorings applied to
software entities, considering the weight of the software entities in the overall system, like:

maximize
{

f2(
→
r)

}

= maximize

{

t

∑
l=1

res(rl)

}

= maximize

{

t

∑
l=1

m

∑
i=1

wi · e f f ect(rl, ei)
}

, (4)

where
→
r = (r1, . . . , rt).

The goal is to identify those solutions that compromise the refactorings costs and the overall
impact on transformed entities. The objective that does not follow the maximizing approach
needs to be converted in a suitable way.
In order to convert the first objective function to a maximization problem in the MORSSP, the
total cost is subtracted from MAX, the biggest possible total cost, as it is shown below:

maximize
{

f1(
→
r)

}

= maximize

{

MAX−
t

∑
l=1

m

∑
i=1

rc(rl , ei)

}

, (5)

446 Advances in Computer Science and Engineering

www.intechopen.com

where
→
r = (r1, . . . , rt). The overall objective function for MORSSP is defined by:

maximize
{

F(
→
r)

}

= maximize
{

f1(
→
r), f2(

→
r)

}

=

= maximize
{

MAX− ∑
t
l=1 ∑

m
i=1 rc(rl , ei), ∑

t
l=1 ∑

m
i=1 wi · e f f ect(rl , ei)

}

,
(6)

where
→
r = (r1, . . . , rt).

6. Case study: LAN simulation

The proposed algorithm was applied on a simplified version of the Local Area Network (LAN)
simulation source code, that was presented in (Demeyer et al., 2005). Figure 1 shows the class
diagram of the studied source code. It contains 5 classes with 5 attributes and 13 methods,
constructors included.

Fig. 1. Class diagram for the LAN Simulation source code

The LAN Simulation source code has been successfully used in several introductory
programming courses to illustrate and teach good object-oriented design. Moreover, a large
number of refactoring domain research papers have used it to present the effect of different
refactoring applications.
The LAN Simulation Problem is sufficiently simple for illustrative purposes, by covering most
of the interesting constructs of the object-oriented programming paradigm, like: inheritance,
late binding, super calls, method overriding. While it has been implemented in several
object-oriented programming languages, within our research a Java implementation is used.
The LAN Simulation source code has proved its relevance within the research since it follows
an incremental development style and it suggests several typical refactorings. Therefore, it is
accepted as a suitable example that serves as a basis for different refactoring feasibility studies.
The source code version used within our experiments consists of 5 classes: Packet, Node
and its three subclasses Workstation, PrintServer, and FileServer. The Node objects
are linked together in a token ring network, using the nextNode attribute; they can send or
accept a Packet object. The PrintServer,FileServer, and Workstation classes refine

447The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

the behaviour of the accept method (and perform a super call) to achieve specific behaviour
for printing or saving the Packet and avoiding its endless cycling. A Packet object can
only originate (sender attribute) from an Workstation object and sequentially visits every
Node object in the network until it reaches its receiver (receiver attribute) that accepts the
Packet, or until it returns to its sender workstation, indicating that the Packet cannot be
delivered. The corresponding initial class diagram is depicted by Figure 1.

Dif�culties. This LAN Simulation version has several aspects denoting lack of data hiding
and flexibility. The instance variables are visible from outside causing possible unauthorized
accesses or changes. Intuitively, shielding the attribute from direct references reduces data
coupling. This allows the attribute to change its value without affecting clients using the
attribute value. Another issue is related to the small capability of code reuse within the class
hierarchy. Generally speaking, generalization may increase code reuse and reduce the impact
of changes. Thus, any change is done within a single place and all possible clients remain
unchanged.

Solutions. The EncapsulateField refactoring can be performed in order to guard the attribute
nextMachine of the class Node from direct access. It results in the introduction of two
methods in Node class, as: the getNextNodemethod which accesses the attribute and returns
its value to the caller and the setNextNodemethod which takes the new value of the attribute
as a parameter and updates the attribute. Then, the attribute itself is made private.
Generalization degree may be raised by applying the RenameMethod refactoring to the print
method from the PrintServer class and to the save method from the FileServer class
to an unique name process, while its signature remains unchanged. Then each call of the
former methods will be replaced by a call to the corresponding process method from the
PrintServer or FileServer classes. The generalization process may go thoroughly. The
PullUpMethod refactoring may be applied to the process methods from the PrintServer
and FileServer classes. This requires the introduction of a new empty body method in the
Node superclass. By pulling up a method to a base class, its specific behaviour is generalized,
making possible for subclasses to reuse and specialize the inherited behaviour.

7. Proposed approach description

The MORSSP is approached here by exploring the various existing refactoring dependencies.
Two conflicting objectives are studied, i.e., minimizing the refactoring cost and maximizing
the refactoring impact, together with some constraints to be kept, as the refactoring
dependencies.
There are several ways to handle a multi-objective optimization problem. The weighted sum
method (Kim & deWeck, 2005) was adopted to solve the MORSSP. The overall objective

function to be maximized F(
→
r), defined by the formula 6 (see Section 4), is shaped to the

weighted sum principle with two objectives to optimize.

Therefore, maximize
{

F(
→
r)

}

= maximize
{

f1(
→
r), f2(

→
r)

}

, is mathematically rewritten to:

maximize
{

F(
→
r)

}

= α · f1(r) + (1 − α) · f2(r),

where 0 ≤ α ≤ 1 and
→
r is the decision variable.

448 Advances in Computer Science and Engineering

www.intechopen.com

A steady–state evolutionary model is advanced by the proposed evolutionary computation
technique (Chisăliţă-Creţu, 2010). Algorithm 1 is the adapted genetic algorithm to the context
of the investigated MORSSP, proposed in (Chisăliţă-Creţu, 2009; 2010).

Algorithm 1 the adapted evolutionary algorithm for the MORSSP Chisăliţă-Creţu (2009)

Input:
• SR – the set of refactorings;
• SE – the set of entities;
• rd – the mapping of refactoring dependencies;
•Weight – the set of entity weights;
• rc – the mapping of refactoring costs;
• e f f ect – the mapping of refactoring impact on entities;
• NumberO f Generations – the number of generations to compute;
• NumberO f Individuals – the number of individuals within a population;
• CrossProbability – the crossover probability;
• MutProbability – the mutation probability.

Output:
• the solution.

Begin
@ Randomly create the initial population P(0);
for t := 1 to NumberO f Generations do

for k := 1 to NumberO f Individuals/2 do
@Select two individuals p1 and p2 from the current population;
@OnePointCutCrossover for the parents p1 and p2, obtaining the two offsprings o1

and o2;
@Mutate the offsprings o1 and o2;
if (Fitness(o1) < Fitness(o2)) then

if (Fitness(o1) < the fitness of the worst individual) then
@Replace the worst individual with o1 in P(t);

else
if (Fitness(o2) < the fitness of the worst individual) then

@ Replace the worst individual with o2 in P(t);
end if

end if
end if

end for
end for
@Select the best individual from P(NumberO f Generations);
End.

In a steady-state evolutionary algorithm a single individual from the population is changed
at a time. The best chromosome (or a few best chromosomes) is copied to the population in
the next generation. Elitism can very rapidly increase performance of GA, because it prevents
to lose the best found solution to date.
The proposed genetic algorithm approaches two solution representations for the studied
problem. The genetic algorithm that uses a refactoring-based solution representation for the

449The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

MORSSP is denoted by RSSGARef, while the corresponding entity-based genetic algorithm is
denoted by RSSGAEnt.

7.1 Refactoring-based solution representation

For the RSSGARef algorithm the solution representation is presented in (Chisăliţă-Creţu,

2009), with the decision vector
→
S= (S1, . . . , St), where Sl ∈ P(SE), 1 ≤ l ≤ t, determines

the entities that may be transformed using the proposed refactoring set SR. The item Sl on
the l-th position of the solution vector represents a set of entities that may be refactored by
applying the l-th refactoring from SR, where for each elu , elu ∈ SErl , elu ∈ Sl , Sl ∈ P(SE), 1 ≤
u ≤ q, 1 ≤ q ≤ m, 1 ≤ l ≤ t. This means it is possible to apply more than once different
refactorings to the same software entity, i.e., distinct gene values from the chromosome may
contain the same software entity.

7.1.1 Genetic operators

Crossover and mutation operators are used by this approach, being described in the following.
Crossover operator
A simple one point crossover scheme is used. A crossover point is randomly chosen. All data
beyond that point in either parent string is swapped between the two parents.
For instance, if the two parents are:
parent1 = [ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 3, 6, 9, 12], ge[11], g f [13, 4]] and
parent2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11], g4[10, 11], g5[2, 3, 12], g6[5, 9]], for the cutting
point 3, the two resulting offsprings are:
o f f spring1 = [ga[1, 7], gb[3, 5, 10], gc[8], g4[10, 11], g5[2, 3, 12], g6[5, 9]] and
o f f spring2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11], gd[2, 3, 6, 9, 12], ge[11], g f [13, 4]].
Mutation operator
Mutation operator used here exchanges the value of a gene with another value from the
allowed set. Namely, mutation of the i-th gene consists of adding or removing a software
entity from the set that denotes the i-th gene.
For example, if the individual to be mutated is
parent = [ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 6, 9, 12], ge[12], g f [13, 4]] and
if the 5-th gene is to be mutated, the obtained offspring is o f f spring =
[ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 6, 9, 12], ge[10, 12] g f [13, 4]] by adding the 10-th software
entity to the 5-th gene.

7.2 Entity-based solution representation

The RSSGAEnt algorithm uses the solution representation presented in (Chisăliţă-Creţu,

2009), where the decision vector (chromosome)
→
S= (S1, . . . , Sm), Si ∈ P(SR), 1 ≤ i ≤ m

determines the refactorings that may be applied in order to transform the proposed set of
software entities SE.
The item Si on the i-th position of the solution vector represents a set of refactorings that may
be applied to the i-th software entity from SE, where each entity elu ∈ Srl , Srl ∈ P(SR), 1 ≤
u ≤ q, 1 ≤ q ≤ m, 1 ≤ l ≤ t. It means it is possible to apply more than once the same
refactoring to different software entities, i.e., distinct gene values from the chromosome may
contain the same refactoring.

450 Advances in Computer Science and Engineering

www.intechopen.com

7.2.1 Genetic operators

The genetic operators used by the RSSGAEnt algorithm are crossover and mutation as
described by Section 7.1.1. The crossover operator uses a simple one point cut scheme, randomly
chosen. All the data beyond the cut point from the parent strings is swapped between the two
parents.
The mutation operator used here exchanges the value of a gene with another value from the
allowed set. The mutation of the i-th gene consists of adding or removing a refactoring from
the set that denotes the i-th gene.

8. Input data

The adapted genetic algorithm proposed in (Chisăliţă-Creţu, 2009; 2010) is applied to
a simplified version of the LAN Simulation source code (see Section 1). Relevant data
about the source code is extracted and the software entity set is defined as: SE =
{c1, . . . , c5, a1, . . . , a5,m1, . . . ,m13}, |SE| = 23. The chosen transformations are refactorings
that may be applied to classes, attributes or methods, as: RenameMethod, ExtractSuperClass,
PullUpMethod, MoveMethod, EncapsulateField, AddParameter. They will form the refactoring set
SR = {r1, . . . , r6} in the following. The entity weights are gathered within the set Weight, that
presented by Table 1 , where ∑

23
i=1 wi = 1.

The dependency relationship between refactorings, described by the mapping rd and the
final impact of each refactoring stated by the res mapping are defined by the Table 1. The
res mapping value computation for each refactoring is based on the weight of each possible
affected software entity, as it was defined in Section 5.
Each software entity allows specific refactorings to be applied to, otherwise the cost mapping
values are 0. E.g., the r1, r3, r4, r6 refactorings may be applied to the m1,m4,m7,m10,m13

methods. For special methods, i.e., constructors, refactorings like pullUpMethod (r3) and
moveMethod (r4) cannot be applied. Here, the cost mapping rc is computed as the number of
transformations needed in order to apply the refactoring. Therefore, refactoring applications
to related entities may have different costs.
Intermediate data for the e f f ect mapping was used to compute the res mapping values. The
e f f ect mapping values were considered numerical data, denoting an estimated impact of
refactoring application, e.g., a software metric assessment.

8.1 Proposed refactoring strategy

A possible refactoring strategy for the LANSimulation Problem is presented below. Based on the
dif�culties (see Section 6) presented for the corresponding class hierarchy, three transformation
categories may be identified. For each of them several improvement targets that may be
achieved through refactoring are defined.

1. information management (data hiding, data cohesion):
(a) control the attribute access (EncapsulateField refactoring);

2. behaviour management (method definition, method cohesion):
(a) adapt the method signature to new context (AddParameter refactoring);
(b) increase the expressiveness of a method identifier by changing its name (RenameMethod

refactoring);
(c) increase method cohesion within classes (MoveMethod and PullUpMethod refactorings);

3. class hierarchy abstraction (class generalization, class specialization):
(a) increase the abstraction level within the class hierarchy by generalization

(ExtractSuperClass refactoring).

451The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

(a) Refactoring dependencies (rd)
and final impact (res) of their
applying to the entity set (SE)

rd r1 r2 r3 r4 r5 r6

r1 N B AA

r2 N B
r3 A A N N

r4 N N

r5 N
r6 AB N

res 0.4 0.49 0.63 0.56 0.8 0.2

(b) Refactoring costs (rc) and their applicability on
software entities. The weight for each software entity
(Weight)

rc r1 r2 r3 r4 r5 r6 Weight

c1
√

/1 0.1

c2
√

/1 0.08
c3

√
/2 0.08

c4
√

/2 0.07

c5
√

/1 0.07
a1

√
/4 0.04

a2
√

/5 0.03

a3
√

/5 0.03
a4

√
/5 0.05

a5
√

/5 0.05

m1
√

/1
√

/0
√

/0
√

/1 0.04
m2

√
/3

√
/1

√
/1

√
/3 0.025

m3
√

/5
√

/1
√

/1
√

/5 0.025
m4

√
/1

√
/0

√
/0

√
/1 0.04

m5
√

/1
√

/1
√

/1
√

/1 0.025

m6
√

/1
√

/1
√

/1
√

/1 0.025
m7

√
/1

√
/0

√
/0

√
/1 0.04

m8
√

/2
√

/1
√

/1
√

/2 0.025

m9
√

/1
√

/1
√

/1
√

/1 0.025
m10

√
/1

√
/0

√
/0

√
/1 0.04

m11
√

/2
√

/1
√

/1
√

/2 0.025

m12
√

/1
√

/1
√

/1
√

/1 0.025
m13

√
/1

√
/0

√
/0

√
/1 0.04

∑
23
i=1 wi = 1

Table 1. Input Data for the LAN Simulation Problem case study

452 Advances in Computer Science and Engineering

www.intechopen.com

9. Practical experiments

The algorithm was run 100 times and the best, worse and average fitness values were
recorded. The parameters used by the evolutionary approach were as follows: mutation
probability 0.7 and crossover probability 0.7. Different number of generations and of
individuals were used: number of generations 10, 50, 100, 200 and number of individuals
20, 50, 100, 200. The following subsections reveal the obtained results for different values of
the α parameter: 0.3, 0.5 and 0.7, presented in Chisăliţă-Creţu (2009); Chisăliţă-Creţu (2009)
(Chisăliţă-Creţu, 2009; 2010).

9.1 Refactoring-based solution representation experiments

Two types of experiments were run: with equal objective weights and different objectives
weights. The equal objective weights uses α = 0.5, while the two different weight experiments
uses α = 0.7 and α = 0.3. In the former experiment the refactoring cost has a greater
relevance than the refactoring impact, while in the last one, the refactoring impact drives the
chromosome competition.

9.1.1 Equal weights (α = 0.5)

The current experiment run on the LAN Simulation Problem proposes equal weights, i.e., α =
0.5, for the studied fitness function Chisăliţă-Creţu (2009); Chisăliţă-Creţu (2009). That is,

F(
→
r) = 0.5 · f1(

→
r) + 0.5 · f2(

→
r),

where
→
r = (r1, . . . , rt). Figure 2 presents the 200 generations evolution of the fitness function

(best, worse and average) for 20 chromosomes populations (Figure 2(a)) and 200 chromosomes
populations (Figure 2(b)).
There is a strong competition among chromosomes in order to breed the best individual. In the
20 individuals populations the competition results in different quality of the best individuals
for various runs, from very weak to very good solutions. The 20 individuals populations runs
have few very weak solutions, better than 0.25, while all the best chromosomes are good
solutions, i.e., all individuals have fitness better than 0.41.
Compared to the former populations, the 200 chromosomes populations breed closer best
individuals. The number of good chromosomes is smaller than the one for 20 individuals
populations, i.e., 53 chromosome with fitness better than 0.41 only.
The data for the worst chromosomes reveals similar results, since for the 200 individuals
populations there is no chromosome with fitness better than 0.25, while for the 20
chromosomes populations there are 12 worst individuals better than 0.25. This situation
outlines an intense activity in smaller populations, compared to larger ones, where diversity
among individuals reduces the population capability to quickly breed better solutions.
Various runs as number of generations, i.e., 10, 50, 100 and 200 generations, show the
improvement of the best chromosome. For the recorded experiments, the best individual for
200 generations was better for 20 chromosomes populations (with a fitness value of 0.4793)
than the 200 individuals populations (with a fitness value of just 0.4515). This means in
small populations (with fewer individuals) the reduced diversity among chromosomes may
induce a harder competition than within large populations (with many chromosomes) where
the diversity breeds weaker individuals. As the Figure 2 shows it, after several generations
smaller populations produce better individuals (as number and quality) than larger ones, due
to the poor populations diversity itself.

453The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Runs

F
it

n
e
s
s

fu
n

c
ti

o
n

Series1 Series2 Series3Best WorstAverage

(a) Experiment with 200 generations and 20 individuals

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Runs

F
i
t
n

e
s
s

f
u

n
c
t
i
o

n

Best Average WorstBest WorstAverage

(b) Experiment with 200 generations and 200 individuals

Fig. 2. The evolution of fitness function (best, worse and average) for 20 and 200 individuals
with 200 generations, with 11 mutated genes, for α = 0.5

The number of chromosomes with fitness value better than 0.41 for the studied populations
and generations is captured by Figure 3. It shows that smaller populations with poor
diversity among chromosomes involve a harder competition within them and more, the
number of eligible chromosomes increases quicker for smaller populations than for the larger
ones. Therefore, for the 20 chromosomes populations with 200 generations evolution all 100
runs have shown that the best individuals are better than 0.41, while for 200 individuals
populations with 200 generations the number of best chromosomes better than 0.41 is only
53.

Impact on the LAN simulation source code
The best individual obtained allows to improve the structure of the class hierarchy. Therefore,
a new Server class is the base class for PrintServer class. Moreover, the signatures of
the print method from the PrintServer class is changed, though the method renaming
to process identifier was not suggested. Opposite to this, for the save method in the
FileServer class was recommended to change the method name to process, while
the signature changing was not suggested yet. The two refactorings (addParameter and

454 Advances in Computer Science and Engineering

www.intechopen.com

Number of chromosomes with fitness better than 0.41

0

10

20

30

40

50

60

70

80

90

100

110

10 50 100 200
Number of evolutions

N
u

m
b

e
r

o
f

c
h

r
o

m
o

s
o

m
e

s

20 Chromosomes Population 50 Chromosomes Population

100 Chromosomes Population 200 Chromosomes Population

Fig. 3. The evolution of the number of chromosomes with fitness better than 0.41 for the 20,
50, 100 and 200 individual populations, with α = 0.5

renameMethod) applied to the print and save methods would had been ensured their
polymorphic behaviour.
The accept method is moved to the new Server class for the FileServer class, though
the former was not suggested to be added as a base class of the latter. The correct access to
the class fields by encapsulating them within their classes is enabled for three of five class
attributes.
The refactoring cost and refactoring impact on software entity have been treated with the same
importance within the refactoring process (α = 0.5).
The current solution representation allows to apply more than one refactoring to each
software entity, i.e., the print method from the PrintServer class is transformed by two
refactorings, as the AddParameter and RenameMethod refactorings.

FileServer

+FileServer()

+process()

+accept(p: Packet)

Node

+name: String

-nextNode: Node

+Node()

+setNextNode(nextNode: Node)

+getNextNode(): Node

+accept(p: Packet)

#send(p: Packet)

Packet

+contents: String

-sender: Node

-receiver: Node

+Packet()

+setSender(sender: Node)

+getSender(): Node

+setReceiver(receiver: Node)

+getReceiver(): Node

PrintServer

+PrintServer()

+print(p: Packet)

+accept(p: Packet)

Server

+Server()

Workstation

+Workstation()

+originate(p: Packet)

+accept(p: Packet)

+2

Fig. 4. The class diagram for the LAN Simulation source code, after applying the RSSGARef
Algorithm solution for α = 0.5

455The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

9.1.2 Discussion on RSSGARef algorithm experiments

Current subsection summarizes the results of the proposed RSSGARef Algorithm for three
different values of the α parameter, i.e., 0.3, 0.5, 0.7, in order to maximize the weighted sum
fitness function that optimizes the refactoring cost and the refactoring impact on affected
software entities Chisăliţă-Creţu (2009). A chromosome summary of the obtained results
for all run experiments as it is presented in Chisăliţă-Creţu (2009); Chisăliţă-Creţu (2009)
(Chisăliţă-Creţu, 2009) is given below:

• α = 0.3, bestFitness = 0.33587 for 20 chromosomes and 200 generations
– bestChrom = [[10, 22, 21, 19, 15], [3, 2], [21, 19, 10, 16, 17, 13, 11,

14, 12], [19, 10, 22, 11, 13, 16], [∅], [21, 22]]
• α = 0.5, bestFitness = 0.4793 for 20 chromosomes and 200 generations

– bestChrom = [[20, 13, 19, 11], [1, 2], [15, 10, 20, 17, 19, 13, 12],
[12, 11, 15, 14, 21], [6, 8, 9] , [22, 12, 18, 17, 13, 14, 15]]

• α = 0.7, bestFitness = 0.61719 for 20 chromosomes and 200 generations
– bestChrom = [[20, 16], [3], [15, 18, 14, 21, 16, 13, 22, 10],

[20, 10, 22, 16, 17] , [∅], [16, 10, 11]]

The experiment for α = 0.3 should identify those refactorings for which the cost has a lower
relevance than the overall impact on the applied software entities. But, the best chromosome
obtained has the fitness value 0.33587, lower than the best fitness value for the α = 0.5
chromosome, i.e., 0.4793. This shows that an unbalanced aggregated fitness function with a
higher weight for the overall impact on the applied refactorings, promotes the individuals
with a lower cost and small refactorings. Therefore, there are not too many key software
entities to be refactored by such an experiment.
The α = 0.7 experiment should identify the refactorings for which the cost is more important
than the final effect of the applied refactorings. The fitness value for the best chromosome for
this experiment is 0.61719, while for the α = 0.5 experiment the best fitness value is lower
than this one.
The experiment for α = 0.7 gets near to the α = 0.5 experiment. The data shows similarities for
the structure of the obtained best chromosomes for the two experiments. A major difference
is represented by the EncapsulatedField refactoring that may be applied to the public
class attributes from the class hierarchy. This refactoring was not suggested by the solution
proposed by the α = 0.7 experiment. Moreover, there is a missing link in the same experiment,
due to the fact the AddParameter refactoring was not recommended for the save method
from the FileServer and the print method from the PrintServer class.
Balancing the fitness values for the studied experiments and the relevance of the suggested
solutions, we consider the α = 0.5 experiment is more relevant as quality of the results than
the other analyzed experiments. Figure 4 highlights the changes in the class hierarchy for the
α = 0.5 following the suggested refactorings from the recorded best chromosome.

9.2 Entity-based solution representation experiments

Similar to the RSSGARef Algorithm, the RSSGAEnt Algorithm was run 100 times and the best,
worse and average fitness values were recorded. The algorithm was run for different number
of generations and of individuals, as: number of generations 10, 50, 100, 200, and number of
individuals 20, 50, 100, 200.
The parameters used by the evolutionary approach were the same as the ones used in the
refactoring-based approach, like: mutation probability 0.7 and crossover probability 0.7. The

456 Advances in Computer Science and Engineering

www.intechopen.com

run experiments Chisăliţă-Creţu (2009) have used different values for the α parameter (0.3, 0.5
and 0.7).

9.2.1 Different weights (α = 0.7)

One of the different weighted experiments was run for α = 0.7, where the cost (rc mapping)
of the applied refactorings is more important than the implied final effect (res function) on the
affected software entities Chisăliţă-Creţu (2009).
The results of the this experiment for the 20 individual populations with 50 generations
evolution (Figure 5(a)) and 200 chromosome populations with 10 generations evolution
(Figure 5(b)) are depicted by the Figure 5 with the fitness function (best, worse and average)
values.

0.12

0.13

0.14

0.15

0.16

0.17

0 10 20 30 40 50 60 70 80 90 100

Runs

F
it
n
e
s
s

fu
n
c
ti
o
n

Best Average Worst

(a) Experiment with 50 generations and 20 individuals

0.12

0.13

0.14

0.15

0.16

0 10 20 30 40 50 60 70 80 90 100

Runs

F
it
n
e
s
s

fu
n
c
ti
o
n

Best Average Worst

(b) Experiment with 10 generations and 200 individuals

Fig. 5. The evolution of the fitness function (best, worst and average) for 20 and 200
individuals with 50 and 10 generation evolutions, with 11 mutated genes, for α = 0.7

The best individual was obtained for a 50 generations run with a 20 chromosomes population
with the fitness 0.16862 (with 98 chromosomes with fitness > 0.155), while the greatest fitness
value of the 200 chromosomes populations with 10 generations evolution was 0.15901 (11
individuals only with fitness value > 0.155).

457The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

The worst individual was recorded for a 200 chromosomes population with a 10 generations
evolution with the fitness value 0.121 (72 individuals having the fitness < 0.13), while for
the 20 individuals population for a 50 generations evolution the worst chromosome had the
fitness value 0.12515 (27 chromosomes with fitness value < 0.13).
The number of chromosomes better than 0.155 for the 20, 50, 100 and 200 individuals
populations with 10, 50, 100 and 200 generations is captured by Figure 6. The solutions for the
20 individuals populations for each studied number of evolutions keep their good quality, but
the 50, 100 and 200 chromosomes populations carry a more intense chromosome competition
compared to previously run experiments.

Number of chromosomes with fitness better than 0.155

0
10

20
30
40
50

60
70
80

90
100

10 50 100 200

Number of evolutions

N
u

m
b

e
r

o
f
c
h

ro
m

o
s
o

m
e

s

20 Chromosomes Population 50 Chromosomes Population

100 Chromosomes Population 200 Chromosomes Population

Fig. 6. The evolution of the number of chromosomes with fitness better than 0.155 for the 20,
50, 100 and 200 individuals populations, with α = 0.7

Impact on the LAN simulation source code
The best chromosome obtained within this experiment suggests several refactorings, but
there are some that have to be interpreted by the programmer as well. A new base class for
the PrintServer and the FileServer classes is recorded by the obtained solution. The
signature for the save method from the FileServer class is suggested to be changed by the
best chromosome, though the similar change for the print method from the PrintServer
class is not included by the studied best chromosome. The renameMethod refactoring was
recommended for the save method from the FileServer class and for the print method
from the PrintServer sibling class yet. Another improvement suggested by the current
experiment is to apply the PullUpMethod refactoring in order to highlight the polymorphic
behaviour of the acceptmethod from the PrintServer but not for the same method within
the FileServer class. No appearance of the EncapsulatedField refactoring was recorded in
order to protect public class attributes from unauthorized access.

9.2.2 Discussion on RSSGAEnt algorithm experiments

The results of the proposed RSSGAEnt Algorithm for three different values of the α parameter,
i.e., 0.3, 0.5, 0.7, in order to maximize the weighted-sum fitness function that optimizes the
refactoring cost and the refactoring impact on the affected software entities Chisăliţă-Creţu
(2009) are discussed by this section. A best chromosome summary for all run experiments as
it is presented in Chisăliţă-Creţu (2009) is given below:

458 Advances in Computer Science and Engineering

www.intechopen.com

• α = 0.3, bestFitness = 0.19023 for 20 chromosomes and 200 generations
– bestChrom = [[1], [∅], [1], [∅], [1], [4], [∅], [4], [4], [4], [3], [0, 3, 5], [3, 0, 5],

[3] , [3, 5, 0], [3], [5], [2, 3, 0], [3], [5, 0, 3, 2], [0, 5, 2], [2, 3], [3]]
• α = 0.5, bestFitness = 0.17345 for 20 chromosomes and 200 generations

– bestChrom = [[∅], [1], [1], [1], [1], [4], [∅], [∅], [∅], [4], [0, 2], [2, 0], [0],
[5, 2] , [5, 3], [2, 5], [2, 0, 3], [0, 3, 2], [5, 0, 3, 2], [3, 2, 5], [3], [3, 0], [3, 5]]

• α = 0.7, bestFitness = 0.16862 for 20 chromosomes and 50 generations
– bestChrom = [[∅], [1], [1], [1], [∅], [∅], [∅], [∅], [∅], [∅], [2, 3], [3, 2, 0], [3],

[5, 0, 2] , [0, 2], [2, 3], [2], [2, 0, 3], [2, 3], [0, 5, 3, 2], [0, 2, 5], [3, 0], [2, 3, 0]]

The experiment for α = 0.5 should identify those refactorings for which the refactoring
cost and impact on the applied software entities have the same relevance within the overall
maximization problem. Though, this best chromosome is lower than the best fitness value
obtained for α = 0.3, i.e., 0.19023.
Moreover, the analysis for the obtained best individuals suggests that an unbalanced
aggregated fitness function (with a higher weight for the overall impact of the applied
refactorings) advances low cost refactorings, bringing a higher benefit for the structure and
the quality of the suggested solution.
The refactorings suggested by the α = 0.5 experiment are not connected one to another, such
that a coherent strategy may be drawn. The main achievement suggested by the analyzed best
chromosome of this experiment is related to the EncapsulateField refactoring for the public class
attributes, not suggested for all five of them yet.
The α = 0.7 experiment should identify the refactorings for which the cost is more important
than the final effect of the applied refactorings. The fitness value of the best chromosome for
this experiment is 0.16862, lower than the α = 0.5 experiment best fitness value.
The experiment for α = 0.7 gets near to the α = 0.3 experiment as quality of the proposed
solution. The best chromosome obtained within the former experiment suggests several
refactorings, but there are some that have to be interpreted by the programmer. The achieved
improvements cover two of the aspects to be improved within the class hierarchy, i.e., common
behaviour (refactorings for methods), and class hierarchy abstraction (refactorings for classes).
The information hiding aspects by suggesting refactorings for attributes was not recorded at
all.
Compared to the other run experiments (α = 0.5 and α = 0.3) the achievements are more
important as quality, though the effective overall fitness value is not the biggest.
The proposed solution by the α = 0.3 experiment is more homogeneous, touching all
the improvement categories. The drawback of this solutions is the ambiguity in several
suggested refactoring sets for behaviour improvement. Therefore, the save method from
the FileServer class and the print method from the PrintServer class may contain
refactorings that belong to different refactoring strategies, i.e., MoveMethod and PullUpMethod
refactorings.

9.3 Results analysis

This section analyzes the proposed solutions for the refactoring-based and entity-based
solution representations. Both solution representations identify a set of refactorings for each
software entity to which it may be applied to.
The chromosome size within the refactoring-based approach is 6, i.e., the number of possible
refactorings to be applied, while the individual for the entity-based approach has 23 genes.

459The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

The recommended refactorings proposed by different runs and experiments does not shape a
fully homogeneous refactoring strategy for none of the studied solution representations.
The best individual was obtained by the refactoring-based approach (RSSGARef Algorithm)
was for a 200 generations evolution with 20 chromosomes population, having the fitness
value of 0.4793, while by the entity-based approach (RSSGAEnt Algorithm) the recorded best
chromosome was obtained for 200 generations and 20 individuals, with a fitness value of
0.19023. These solutions may be transposed from a representation to another, which means
their structure may be compared and their efficiency assessed.
The idea that emerge from the run experiments was that smaller individual populations
produce better individuals (as number, quality, time) than larger ones, that may be caused
by the poor diversity within the population itself. Large number of genes of the individual
structure induces poor quality to the current entity-based solution representation.
Table 2 summarizes the solutions obtained for the studied solution representation together
with the goals reached by each of them. The number of achieved targets is computed based
on the recommended refactoring presence within the studied chromosomes genes.

Solution α Best chrom. Best Execution Number of achieved targets (%)
represen- value (pop. size/ Fitness Time Data Method (2) Class

tation no. gen.) (1a) (2a) (2b) (2c) hierarchy
(3a)

Refactoring 0.5 20c/200g 0.4793 36secs 60 50 50 50 50
based 0.3 20c/200g 0.33587 32secs 0 0 0 50 100

0.7 20c/200g 0.61719 37secs 0 0 50 100 50

Entity 0.5 20c/200g 0.17345 75secs 40 0 50 100 100
based 0.3 20c/200g 0.19023 61secs 80 50 100 100 50

0.7 20c/50g 0.16862 19secs 0 50 100 100 100

Table 2. The best chromosomes obtained for the refactoring and entity based solution
representations, with the α parameter values 0.5, 0.3, and 0.7

10. Conclusions

This work has advanced the evolutionary-based solution approach for the MORSSP. Adapted
genetic algorithms have been proposed in order to cope with the multi-objectiveness of
the required solution. Two conflicting objectives have been addressed, as to minimize the
refactoring cost and to maximize the refactoring impact on the affected software entities. Different
solution representations were studied and the various results of the run experiments were
presented and compared.
The main contributions and results of the current work are:

• new genetic algorithms were proposed and different solution representations were studied
for the MORSSP;

• adapted genetic operators to the refactoring selection area were tackled;
• a new goal-based assessment strategy for the selected refactorings was proposed in order

to analyze and compare different achieved solutions;
• different experiments on the LAN Simulation Problem case study were run in order to

identify the most appropriate refactoring set for each software entity such that the
refactoring cost is minimized and the refactoring impact is maximized.

Further work may be done in the following directions:

460 Advances in Computer Science and Engineering

www.intechopen.com

• different and adapted to the refactoring selection area crossover operators may be
investigated;

• the Pareto principle approach may be studied further;
• other experimental run on other relevant and real-world software systems case studies.

11. References

Bagnall, A., Rayward-Smith, V. & Whittley, I. (2001). The next release problem, Information and
Software Technology Vol. 43(No. 14): 883–890.

Bowman, M., Briand, L. C. & Labiche, Y. (2007). Multi-Objective Genetic Algorithm to Support
Class Responsibility Assignment, Proceedings of the IEEE International Conference on
Software Maintenance (ICSM1007), IEEE, October 2-5, 2007, Paris, France, pp. 124–133.

Chisăliţă-Creţu, C. (2009). A Multi-Objective Approach for Entity Refactoring Set Selection
Problem, Proceedings of the 2nd International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2009), August 4- 6, 2009, London, UK,
pp. 790–795.

Chisăliţă-Creţu, M.C. (2009). First Results of an Evolutionary Approach for the Entity
Refactoring Set Selection Problem, Proceedings of the 4th International Conference
"Interdisciplinarity in Engineering" (INTER-ENG 2009), Editura Universităţii Petru
Maior din Târgu Mureş, November 12-13, 2009, Târgu Mureş, România, pp. 303–308.

Chisăliţă-Creţu, M.C. (2009). The Entity Refactoring Set Selection Problem - Practical
Experiments for an Evolutionary Approach, Proceedings of the World Congress on
Engineering and Computer Science (WCECS2009), Newswood Limited, October 20-22,
2009, San Francisco, USA, pp. 285–290.

Chisăliţă-Creţu, M.C. (2009). Solution Representation Analysis For The Evolutionary
Approach of the Entity Refactoring Set Selection Problem, Proceedings of the 12th
International Multiconference "Information Society" (IS2009), Informacijska druz̆ba,
October 12-16, 2009, Ljubljana, Slovenia, pp. 269–272.

Chisăliţă-Creţu M.C. (2009). An Evolutionary Approach for the Entity Refactoring Set
Selection Problem, Journal of Information Technology Review accepted paper.

Chisăliţă-Creţu M.C. & Vescan, A. (2009). The Multi-objective Refactoring Selection
Problem, Studia Universitatis Babes-Bolyai, Series Informatica Special Issue KEPT-2009:
Knowledge Engineering: Principles and Techniques (July 2009)(No.): 249–253.

Chisăliţă-Creţu, M.C. & Vescan, A. (2009). The Multi-objective Refactoring Selection Problem,
Proceedings of the 2nd Internaltional Conference Knowledge Engineering: Principles and
Techniques (KEPT2009), Presa Universitară Clujeană, July 1-3, 2009, Cluj-Napoca,
Romania, pp. 291–298.

Demeyer, S., Van Rysselberghe, F., Gĭrba, T., Ratzinger, J., Marinescu, R., Mens, T., Du Bois, B.,
Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H. & El-Ramly, M. (2005). The
LAN-simulation: a refactoring teaching example,Proceedings of the Eighth International
Workshop on Principles of Software Evolution (IWPSE05), September 05-06, 2005, Lisbon,
Portugal, pp. 123–131.

van Emden, E. & Moonen, L. (2002). Java quality assurance by detecting code smells,
Proceedings of 9th Working Conference on Reverse Engineering, IEEE Computer Society
Press, October 29 - November 01, 2002, Richmond, Virginia, USA, pp. 97–107.

Greer, D. & Ruhe, G. (2004). Software release planning: an evolutionary and iterative
approach, Information and Software Technology Vol. 46(No. 4): 243–253.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Software, Addison Wesley.

461The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis

www.intechopen.com

Harman, M., Swift, S. & Mahdavi, K. (2005). An empirical study of the robustness of
two module clustering fitness functions, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2005), IEEE Computer Society Press, 25-29 June 2004,
Washington DC, USA, pp. 1029–1036.

Harman, M. & Tratt, L (2007). Pareto optimal search based refactoring at the design level,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2007), ACM
Press, July 7-11, 2007, London, UK, pp. 1106–1113.

O’Keefe, M. & O’Cinneide, M. (2006). Search-based software maintenance, Proceedings of the
10th European Conference on SoftwareMaintenance and Reengineering (CSMR2006), IEEE
Computer Society, 22-24 March 2006, Bari, Italy, pp. 249–260.

Kirsopp, C., Shepperd, M. & Hart, J. (2002). Search heuristics, case-based reasoning
and software project effort prediction, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), Morgan Kaufmann Publishers, 9-13 July 2002,
San Francisco, CA, USA, pp. 1367–1374.

Kim, Y. & deWeck, O.L. (2005). Adaptive weighted-sum method for bi-objective optimization:
Pareto front generation, IEEE Transactions on Software EngineeringStructural and
Multidisciplinary Optimization Vol. 29(No. 2): 149–158.

Marinescu, R. (1998). Using object-oriented metrics for automatic design flaws in large scale
systems, Lecture Notes in Computer Science Vol. 1543(No.): 252–253.

Mens, T. & Tourwe, T. (2003). Identifying refactoring opportunities using logic meta
programming, Proceedings of 7th European Conference on Software Maintenance and
Re-engineering (CSMR2003), IEEE Computer Society Press, 26-28 March 2003,
Benevento, Italy, pp. 91–100.

Mens, T. & Tourwe, T. (2004). A Survey of Software Refactoring, IEEE Transactions on Software
Engineering Vol. 30(No. 2): 126–129.

Mens, T., Taentzer, G. & Runge, O. (2007). Analysing refactoring dependencies using graph
transformation, Software and System Modeling Vol. 6(No. 3): 269–285.

Simon, F., Steinbruckner, F. & Lewerentz, C. (2001). Metrics based refactoring, Proceedings
of European Conference on Software Maintenance and Reengineering, IEEE Computer
Society Press, March 14-16, 2001, Lisbon, Portugal, pp. 30–38.

Seng, O., Stammel, J. & Burkhart, D. (2006). Search-based determination of refactorings for
improving the class structure of objectoriented systems, Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, ACM Press, Seattle, Washington,
USA, 2006, pp. 1909–1916.

Vescan, A. & Pop, H.F (2008). The Component Selection Problem as a Constraint Optimization
Problem, Proceedings of the Work In Progress Session of the 3rd IFIP TC2 Central and East
European Conference on Software Engineering Techniques (Software Engineering Techniques
in Progress), IEEE Computer Society Press, Wroclaw, Poland, pp. 203–211.

Zhang, Y., Harman, M. & Mansouri, S.A. (2007). The multi-objective next release problem,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2007), ACM
Press, London, UK, 2006, pp. 1129–1136.

462 Advances in Computer Science and Engineering

www.intechopen.com

Advances in Computer Science and Engineering

Edited by Dr. Matthias Schmidt

ISBN 978-953-307-173-2

Hard cover, 462 pages

Publisher InTech

Published online 22, March, 2011

Published in print edition March, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters

written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of

Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and

Applications and Advances in Applied Modeling.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Camelia Chisăliţă-Creţu (2011). The Multi-Objective Refactoring Set Selection Problem - A Solution

Representation Analysis, Advances in Computer Science and Engineering, Dr. Matthias Schmidt (Ed.), ISBN:

978-953-307-173-2, InTech, Available from: http://www.intechopen.com/books/advances-in-computer-science-

and-engineering/the-multi-objective-refactoring-set-selection-problem-a-solution-representation-analysis

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

