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1. Introduction

When a stable period-k cycle (k ≥ 1) loses its stability varying one of its parameters µ from
a particular value µ = µ0 and when a stable period-2k cycle appears at µ = µ0, then we
generally have a period-doubling bifurcation.
The variation of this system parameter µ in a larger interval can highlight this phenomenon
several times: this is called a cascade of period-doubling bifurcations.
Figure 1 represents bifurcation diagrams and illustrates this type of bifurcations.

Fig. 1. Illustration of a period-doubling bifurcation with the crossing of a period-1 cycle to a
period-2 cycle (on the left) and of a period-doubling bifurcations cascade (on the right).

We can observe this phenomenon in many fields like:

• medicine: onset of a heart attack, epilepsy, neural network... (Aihara et al., 1998), (Smith &
Cohen, 1984)

• demography: evolution of animal populations considering for example prey and predator
populations (Holmes et al., 1994), (Murray, 1989),

• stock market study (Gleick, 1991),

• sociology: human behaviors study...

• mechanics: system oscillations... (Chung et al., 2003)
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In this chapter, we focus on two applications: one in the thermal field with a thermostat
with an anticipative resistance (Cébron, 2000) and the second in electronics with a DC/DC
converter (Zhusubaliyev & Mosekilde, 2003).
Besides the fact that the bifurcations study allows to know the system behavior, it presents
other advantages. Indeed, it can be a useful way to study the system robustness with respect
to incertitudes related to the estimation of parameters. It can detect the apparition of chaos.
Moreover, bifurcations study can become a practical tool to detect the more influential
parameters on the system and so to know what parameter requires an accurate estimates of
its value. So, for example, it can save time and money on some costly experiments.
Many authors have already studied period-doubling bifurcations (Baker & Gollub, 1990),
(Demazure, 1989), (Guckenheimer & Holmes, 1991), (Kuznetsov, 2004), (Robinson, 1999),
(Zhusubaliyev & Mosekilde, 2003)... but most of the time, they focus on one-dimensional
systems or they have limited their work to numerical and graphical studies with a bifurcation
diagram. So, the theoretical proof of the existence of period-doubling bifurcations for systems
of any dimension N, N ≥ 1, was lacking.
Therefore, here, using some indices given in an exercise in (Robinson, 1999) and following
work begun in (Quémard, 2007a), we propose a generalization to any dimension N, N ≥ 1,
of the period-doubling bifurcation theorem. This result is introduced in (Robinson, 1999) for
only one-dimensional systems. A proof is also proposed.
Then, we present the studied particular class of hybrid dynamical systems whose two
industrial applications (thermostat with an anticipative resistance and DC/DC converter) are
chosen to apply this new theorem.
Finally, we conclude this chapter giving some prospects for the future.

2. Period-doubling bifurcation theorem

2.1 Generalization of the period-doubling bifurcation theorem to systems of any dimension

We propose in this paragraph the generalization to any dimension N, N ≥ 1, of the
period-doubling bifurcation theorem. This result was initially found in (Robinson, 1999) for
only one-dimensional systems. To do this, we use some indices given in (Robinson, 1999) in
an exercise and we complete the work initially realized in (Quémard, 2007a).

Theorem 2.1 (Generalization of the period-doubling bifurcation theorem)

Assume that f : R
N × R → R

N is a Cr-class (r ≥ 3) function. We will write fµ(x) = f (x, µ).
We assume that f satisfies the following conditions:

1. The point x0 is a fixed point of fµ for the parameter value µ = µ0 i.e. f (x0, µ0) = fµ0 (x0) =
x0.

2. The Jacobian matrix of fµ0 at x0 that is noted D fµ0 (x0) has for eigenvalues λ1(µ0) = −1
and λj(µ0), j = 2, ..., N with |λj(µ0)| �= 1.

Let v1 be a right eigenvector of D fµ0 (x0) associated to eigenvalue λ1(µ0). We set V =<

v1
>. Let v2,...,vN be the N − 1 vectors which form a basis of V′, direct sum of the

characteristic subspaces (on the right) of D fµ0 (x0) different than V. So, we have in

particular V ⊕ V′ = R
N .

3. Let x(µ) be the curve of fµ fixed points near x(µ0). We note λj(µ), j = 1, ..., N, the
eigenvalues of the matrix composed of the first partial derivatives of fµ with respect to
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2.2 Theorem proof

2.2.1 Existence of x(µ), curve of fixed points of fµ crossing through x0 at µ0

We set t : R
N × R −→ R

N

(x, µ) �−→ f (x, µ) − x.

Function t is clearly a Cr-class function (r ≥ 3) on R
N × R. Moreover, we have t(x0, µ0) = 0

and det(∂xt(x0, µ0)) �= 0 since, by assumption, D fµ0 (x0) has not 1 as eigenvalue.
So, we can apply the implicit functions theorem i.e. we can solve t(x, µ) = 0 in x near (x0, µ0)
that gives the existence of x(µ), fixed points curve of fµ near µ0 with, in particular, x(µ0) = x0.

2.2.2 Study of the fixed points stability near µ0

To work on this part, we have to introduce some notations. Let v1(µ) be a right eigenvector of
∂x fµ(x(µ)) associated to eigenvalue λ1(µ) and with v1 = v1(µ0) associated to λ1 = λ1(µ0) =

−1. Then, we set V(µ) =< v1(µ) > and V′(µ) the direct sum of the characteristic sub-spaces
of ∂x fµ(x(µ)) different than V(µ).

Let B′
µ = (v2(µ), . . . , vN(µ)) be a basis of V′(µ). As we have R

N = V(µ)
⊕

V′(µ), Bµ =

(v1(µ), . . . , vN(µ)) is a basis of R
N . Finally, let Π(µ) be the projection on V′(µ) in parallel to

x, ∂x fµ(x(µ)). We have:

α =
d

dµ
λ1(µ)|µ0 �= 0.

4. Let:
β = 1

3! w1D3 fµ0 (x0)(v1, v1, v1) + 1
4 w1D2 fµ0 (x0)(v1, (D fµ0 + IdRN )U)

+ 1
4 w1D2 fµ0 (x0)(v1, D2 fµ0 (x0)(v1, v1)) �= 0,

with:

U =

⎛

⎝

0

−
[

(

ΠD fµ0
(x0)

(

v2 . . . vN
))2

− IdV′

]−1
Π(D fµ0

(x0) + Id
RN )D2 fµ0

(x0)(v1, v1)

⎞

⎠ ,

and Π which corresponds to the projection of R
N on V′ =< v2...vN

> in parallel to
V =< v1

>,

Then, there is a period-doubling bifurcation at (x0, µ0). More specificially, there is a
differentiable curve of fixed points x(µ), passing through x0 at µ0 such that stability of the
fixed point changes at µ0 (depends on α sign). Moreover, there is also a differentiable curve
γ passing through (x0, µ0) such that γ\(x0, µ0) is the union of period-2 orbits. The curve is
tangent to < v1

> ×{µ0} at (x0, µ0) so γ is the graph of a function of x, µ = m(x) with

m′(x0) = 0 and m”(x0) =
−2β

α �= 0. Finally period-2 cycles are on one side of µ = µ0 and their
stability depends on β sign.

Remark 2.2

When parameter µ is fixed at µ0, function fµ0 only depends on x. So, we can note D fµ0 (x) and
we call this matrix, jacobian matrix of fµ0 . Nevertheless, if µ is not fixed, we note ∂x fµ(x) and
call this matrix, matrix of the first derivatives of fµ with respect to x.
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V(µ). When all those elements are applied at µ0, we will just note the name of the element
without parenthesis (for example, V(µ0) = V).
Firstly, we need to compute the matrix of ∂x fµ(x(µ)) in basis Bµ. To do this, we set {wj}j=1,...,N

the dual basis of {vj}j=1,...,N such that wjvi =

{

1 if i = j
0 otherwise.

So, here, w1(µ) represents a left eigenvector of ∂x fµ(x(µ)) associated to λ1(µ) and w1(µ) ∈

V′(µ)⊥. We have:

∂x fµBµ
(x(µ)) = MatBµ

(∂x fµ(x(µ))) =

⎛

⎜

⎝

w1(µ)
...

wN(µ)

⎞

⎟

⎠
∂x fµ(x(µ))

(

v1(µ) . . . vN(µ)
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1(µ) 0 . . . 0

0
... MatB′

µ
(Π(µ)D fµ(x(µ)))

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then, we call x0B the column matrix of vector x0 = x(µ0) written in basis B = Bµ0 with

x0B = (x1
0B

, . . . , xN
0B

)T = (w1 . . . wN)T x0 and xBµ
(µ) the column matrix of vector x(µ) written

in basis Bµ with xBµ
(µ) = (x1

Bµ
(µ), . . . , xN

Bµ
(µ))T = (w1(µ) . . . wN(µ))T x(µ) where x0 and

x(µ) are considered relatively to the canonical basis.

Similarly, we note fµBµ
=
(

f 1
µBµ

. . . f N
µBµ

)T
= (w1(µ) . . . wN(µ))T fµ the column matrix of

vector fµ = ( f 1
µ . . . f N

µ )T written in basis Bµ.
Now, we define the following function Ψ :

Ψ : R
N × R −→ R

N−1

(x, µ) �−→ Π(µ)( f 2
µ(x) − x),

(1)

where f 2
µ = fµ ◦ fµ. We have near µ = µ0, Ψ(x(µ), µ) = 0 since, by assumption, x(µ) is a fixed

point of fµ near µ0. Moreover:

∂Ψ
∂x2

Bµ
...xN

Bµ

(x(µ), µ) = Π(µ)

[

(

∂ fµBµ

∂x1
Bµ

...xN
Bµ

(x(µ))

)

Bµ

(

∂ fµBµ

∂x2
Bµ

...xN
Bµ

(x(µ))

)

Bµ

−

(

0 . . . 0
IN−1

)

Bµ

]

=

⎛

⎝

∂ f 2
µBµ

. . . f N
µBµ

∂x2
Bµ

. . . xN
Bµ

(x(µ))

⎞

⎠

2

B′
µ

− IdV ′(µ). (2)

Since |λj(µ0)| �= 1 ∀j ≥ 2, we can conclude that, near µ0, ∂Ψ
∂x2

Bµ
...xN

Bµ

(x(µ), µ) is an

invertible matrix. Thus, for a fixed µ near µ0, we can apply the implicit functions theorem
near x(µ) and we can solve Ψ(x, µ) = 0 in terms of x1

Bµ
i.e. there exists a function ϕµ,

314 Advances in Computer Science and Engineering

www.intechopen.com



defined near x1
Bµ

such that ϕµB′µ
(x1

Bµ
) = (x2

Bµ
. . . xN

Bµ
)T = (ϕ2

µB′µ
(x1

Bµ
) . . . ϕN

µB′µ
(x1

Bµ
))T with

Ψ((x1
Bµ

, ϕµB′µ
(x1

Bµ
))Bµ

, µ) = 0.

Derivating Ψ with respect to x1
Bµ

, we have:

∂Ψ

∂x1
Bµ

(x, µ) +
∂Ψ

∂x2
Bµ

. . . xN
Bµ

(x, µ)
∂ϕµ

∂x1
Bµ

(x1
Bµ

) = 0 at x = (x1
Bµ

, ϕµB′µ
(x1

Bµ
))Bµ

.

Thus, using the form of the ∂x fµ(x(µ)) matrix in basis Bµ, we obtain:

∂Ψ

∂x1
Bµ

(x(µ), µ) = Π(µ)

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

∂x fµBµ
(x(µ))

∂ fµBµ

∂x1
Bµ

(x(µ)) −

⎛

⎜

⎜

⎜

⎝

1
0
...
0

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

Bµ

⎤

⎥

⎥

⎥

⎥

⎦

= 0V ′

and since ∂Ψ
∂x2

Bµ
...xN

Bµ

(x(µ), µ) is invertible near µ0, we conclude that
∂ϕµ

∂x1
Bµ

(x1
Bµ

(µ)) = 0V ′ .

Thereafter, in order to obtain 0 as a fixed point near all µ, we introduce, in the basis Bµ, the
following function φµ near (0, µ0):

φµ(y) =

⎛

⎝

x1
Bµ

(µ) + y

ϕµ(x1
Bµ

(µ) + y)

⎞

⎠

Bµ

with

⎧

⎨

⎩

φµ(0) = x(µ)

∂φµ

∂y (0) = v1(µ).

Then, we introduce g(y, µ) = w1(µ)
[

fµ(φµ(y)) − φµ(y)
]

. We have g(0, µ) =

w1(µ)
[

fµ(x(µ)) − x(µ)
]

= 0 since x(µ) is a fixed point of fµ and φµ(0) = x(µ).

Since
∂g
∂y (0, µ) = w1(µ)[∂x fµ(x(µ)) − IRN ]

∂φµ

∂y (0) = λ1(µ) − 1, the calculation of
∂g2

∂µ∂y (0, µ)

permits us to study the stability change of the fixed points along the fixed points curve. We

have near µ0:
∂2g

∂µ∂y (0, µ) = dλ1
dµ (µ) �= 0 by the third condition of the theorem.

Conclusion: the sign of α = dλ1
dµ (µ0) determines which side of the plan µ = µ0 the fixed point

will be attractive or repulsive.

2.2.3 Existence of a differentiable curve γ passing through (x0, µ0) such that γ\(x0, µ0) is

the union of period-2 cycles

We set h(y, µ) = w1(µ)
[

f 2
µ(φµ(y)) − φµ(y)

]

.

We have h(0, µ) = w1(µ)
[

fµ ◦ fµ(x(µ)) − x(µ)
]

= 0. Here, we search y not null, solution of

h(y, µ) = 0 which will give us a fixed point φµ(y) different than φµ(0) = x(µ) for f 2
µ . To do

this, we introduce:

M(y, µ) =

⎧

⎪

⎨

⎪

⎩

h(y,µ)
y if y �= 0

lim
y→0

h(y,µ)
y = ∂h

∂y (0, µ) if y = 0.

We compute M(0, µ) = ∂h
∂y (0, µ) = w1(µ)

[

(∂x fµ(x(µ)))2 − IdRN

] ∂φµ

∂y (0) = λ2
1(µ) − 1. So,

M(0, µ0) = 0.
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Then, we compute Mµ(0, µ0) = ∂M
∂µ (0, µ0):

Mµ(0, µ0) = 2
dλ1

dµ
(µ0)λ1(µ0) = −2α �= 0 (third theorem condition).

Thus, we can apply the implicit functions theorem and we obtain the existence of a
differentiable function µ = m(y) (whose curve is noted γ, µ0 = m(0)) such that M(y, m(y)) =
0 near (0, µ0). Then, φm(y)(y) is a period-2 fixed point of fµ.

2.2.4 Calculation of m′(0)
Differentiating function M, we have:

My(0, µ0) + Mµ(0, µ0)m′(0) = 0 ⇒ m′(0) = −
My(0, µ0)

Mµ(0, µ0)
.

We know Mµ(0, µ0) = −2α so it remains to compute My(0, µ0) = ∂M
∂y (0, µ0) = lim

y→0

h(y,µ0)
y2 . A

limited development of h near y = 0 gives:

h(y, µ0) = h(0, µ0) +
∂h

∂y
(0, µ0)y +

1

2!

∂2h

∂y2
(0, µ0)y2 + O(y3),

and permits us to conclude My(0, µ0) = 1
2

∂2h
∂y2 (0, µ0). Moreover, derivating twice function h

with respect to y, we obtain at y = 0, µ = µ0:

∂2h
∂y2 (0, µ0) = w1 ∂

∂y

[

D fµ0 ( fµ0 (φµ0 (y)))
]

|y=0D fµ0 (x0)v1

+w1D fµ0 (x0)
∂

∂y

[

D fµ0 (φµ0 (y))
]

|y=0v1 + w1(D fµ0 (x0))
2 ∂2φµ0

∂y2 (0) − w1 ∂2φµ0

∂y2 (0).

Since w1(D fµ0 (x0))
2 ∂2φµ0

∂y2 (0) − w1 ∂2φµ0

∂y2 (0) = 0 (because w1D fµ0 (x0) = −w1) and:

w1 ∂
∂y

[

D fµ0 ( fµ0 (φµ0 (y)))
]

|y=0D fµ0 (x0)v1 + w1D fµ0 (x0)
∂

∂y

[

D fµ0 (φµ0 (y))
]

|y=0v1

= −w1D2 fµ0 (x0)(D fµ0 (x0)v1, v1) − w1D2 fµ0 (x0)(v1, v1) = 0,

we obtain ∂2h
∂y2 (0, µ0) = 0 and we finally conclude that My(0, µ0) = 0, so m′(0) = 0. Therefore,

γ is tangent to < v1
> ×{µ0} at (x0, µ0).

2.2.5 Calculation of m”(0)
As µ = m(y) = m(0) + m′(0)y + 1

2 m”(0)y2 +O(y3) = µ0 + 1
2 m”(0)y2 +O(y3), we know that

a sufficient condition to have γ on only one side of µ = µ0 is that m”(0) �= 0.
To compute m”(0), by differentiating twice function M, we obtain:

Myy(y, m(y)) + 2Mµy(y, m(y))m′(y) + Mµµ(y, m(y))(m′(y))2 + Mµ(y, m(y))m”(y) = 0.
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Evaluating this equation at y = 0 and using m′(0) = 0, we have:

m”(0) = −
Myy(0, µ0)

Mµ(0, µ0)
.

As we know Mµ(0, µ0) = −2α, it remains to compute Myy(0, µ0) = 1
3

∂3h
∂y3 (0, µ0) (we have used

a limited development of h to order three near y = 0). We already know:

⎧

⎪

⎨

⎪

⎩

∂h
∂y (y, µ0) = w1R(y, µ0)

∂φµ0
∂y (y)

∂2h
∂y2 (y, µ0) = w1 ∂R

∂y (y, µ0)
∂φµ0
∂y (y) + w1R(y, µ0)

∂2φµ0

∂y2 (y),

with R(y, µ0) = D fµ0 ( fµ0 (φµ0 (y)))D fµ0 (φµ0 (y)) − IdRN .

Then, derivating ∂2h
∂y2 (y, µ0) with respect to y and applying it at y = 0, we obtain:

∂3h

∂y3
(0, µ0) = w1 ∂2R

∂y2
(0, µ0)

∂φµ0

∂y
(0) + 2w1 ∂R

∂y
(0, µ0)

∂2φµ0

∂y2
(0) + w1R(0, µ0)

∂3φµ0

∂y3
(0). (3)

In order to alleviate notations, we study each term of ∂3h
∂y3 (0, µ0) separately.

• For the first element, we have:

w1 ∂2R
∂y2 (0, µ0)v1 = w1 ∂

∂y

[

D2 fµ0 ( fµ0 (φµ0 (y)))
(

D fµ0 (φµ0 (y))
∂φµ0
∂y (y), D fµ0 (φµ0 (y))v1

)]

+w1 ∂
∂y

[

D fµ0 ( fµ0 (φµ0 (y)))D2 fµ0 (φµ0 (y))
(

∂φµ0
∂y (y), v1

)]

,

with the convention for all function f and all vectors u1 and u2 ∈ R
N :

D2 f (x)(u1, u2) = D2 f (x)(u2, u1) = ∑i,j
∂2 f

∂xi∂xj (x)ui
1u

j
2.

So, after some calculations and simplifications, we obtain:

w1 ∂2R
∂y2 (0, µ0)v1 = −2w1D3 fµ0 (x0)

(

v1, v1, v1
)

− 3w1D2 fµ0 (x0)
(

v1, D2 fµ0 (x0)
(

v1, v1
))

−w1D2 fµ0 (x0)

(

v1, (D fµ0 (x0) + IdRN )
∂2φµ0

∂y2 (0)

)

.

• Then, we study the second term of (3) and we finally have:

w1 ∂R

∂y
(0, µ0)

∂2φµ0

∂y2
(0)=−w1D2 fµ0 (x0)

(

v1, D fµ0 (x0)
∂2φµ0

∂y2
(0)

)

−w1D2 fµ0 (x0)

(

v1,
∂2φµ0

∂y2
(0)

)

.

• Finally, the last term of (3) gives:

w1R(0, µ0)
∂3φµ0

∂y3
(0) = w1(

(

D fµ0 (x0)
)2

− 1)
∂3φµ0

∂y3
(0) = w1 ∂3φµ0

∂y3
(0) − w1 ∂3φµ0

∂y3
(0) = 0,

since w1
(

D fµ0 (x0)
)2

= w1.
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From this, we can conclude:

∂3h
∂y3 (0, µ0) = −2w1D3 fµ0 (x0)

(

v1, v1, v1
)

− 3w1D2 fµ0 (x0)
(

v1, D2 fµ0 (x0)
(

v1, v1
))

−3w1D2 fµ0 (x0)

(

v1, (D fµ0 (x0) + IdRN )
∂2φµ0

∂y2 (0)

)

.

Now, it remains to find a relation between
∂2φµ0

∂y2 (0) and fµ0 (x0) in order that Myy(0, µ0) be

only a function of fµ0 (x0). To do this, we differentiate again function Ψ defined by (1) with

respect to x1
Bµ

. We obtain:

∂2Ψ

∂x12
Bµ

(x, µ) + 2 ∂2Ψ
∂x1

Bµ
∂x2

Bµ
...xN

Bµ

(x, µ)
∂ϕµ

∂x1
Bµ

(x1
Bµ

) + ∂2Ψ
(∂x2

Bµ
...xN

Bµ
)2 (x, µ)

(

∂ϕµ

∂x1
Bµ

(x1
Bµ

)

)2

+ ∂Ψ
∂x2

Bµ
...xN

Bµ

(x, µ)
∂2 ϕµ

∂x12
Bµ

(x1
Bµ

) = 0,

(4)

at x which satisfies Ψ(x, µ) = 0 i.e. x = (x1
Bµ

, ϕµB′µ
(x1

Bµ
))Bµ

.

Applied at (x0, µ0), relation (4) becomes:

∂2Ψ

∂x12

B

(x0, µ0) +
∂Ψ

∂x2
B . . . xN

B

(x0, µ0)
∂2 ϕµ0

∂x12

B

(x1
0B

) = 0.

As ∂Ψ
∂x2

B ...xN
B
(x0, µ0) given by (2) is an invertible matrix, it remains to compute ∂2Ψ

∂x12
B

(x0, µ0). We

have:

∂2Ψ

∂x12

B

(x0, µ0) = Π

[

D2 fµ0 (x0)

(

∂ fµ0

∂x1
B

(x0),
∂ fµ0

∂x1
B

(x0)

)

+ D fµ0 (x0)
∂2 fµ0

∂x12

B

(x0)

]

= Π
[

(

D fµ0 (x0) + IdRN

)

D2 fµ0 (x0)(v1, v1)
]

since by definition,
∂2 fµ0

∂x12
B

(x0) = D2 fµ0 (x0)(v1, v1).

Finally, all these calculations lead to write:

∂2 ϕµ0

∂x12

B

(x1
0B

) = −

[

(

ΠD fµ0 (x0)(v2 . . . vN)
)2

− IdV ′

]−1

Π
(

D fµ0 (x0) + IdRN

)

D2 fµ0 (x0)(v1, v1).

Thus, we obtain
∂2φµ0

∂y2 (0) as a function of fµ0 (x0) since
∂2φµ0

∂y2 (0) =

⎛

⎜

⎝

0

∂2 ϕµ0

∂x12
B

(x1
0B

)

⎞

⎟

⎠

B

.

We can conclude that ∂3h
∂y3 (0, µ0) = 3Myy(0, µ0) = −12β �= 0 (fourth assumption of the

theorem) so m”(0) = −
−4β
−2α = −2

β
α �= 0. This confirms that γ, curve of period-2 fixed points,

is on one side of µ = µ0.
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2.2.6 Stability study of period-2 cycles

To study the stability of the period-2 cycles, we study function ∂h
∂y (y, m(y)) near y = 0 (µ = µ0).

To do this, we give the limited development of ∂h
∂y (y, m(y)) near 0:

∂h
∂y (y, m(y)) = ∂h

∂y (0, µ0) + ∂2h
∂y2 (0, µ0)y + ∂2h

∂µ∂y (0, µ0)(µ − µ0)

+ 1
2!

∂3h
∂y3 (0, µ0)y2 + O(y3) + O((µ − µ0)

2) + O(y2(µ − µ0)).

We know ∂h
∂y (0, µ0) = 0, ∂2h

∂y2 (0, µ0) = 0, ∂2h
∂µ∂y (0, µ0) = −2α and ∂3h

∂y3 (0, µ0) = 3Myy(0, µ0) =

−12β.
Moreover, we have:

∂2h

∂µ∂y
(0, µ0)(m(y) − m(0)) = Mµ(0, µ0)(

1

2
m”(0)y2 + O(y3)) = 2βy2 + O(y3)).

Finally, we find ∂h
∂y (y, m(y)) = −4βy2 + O(y3)). This confirms that the stability of period-2

cycles depends ont the β sign. This completes the proof of the theorem.

3. Presentation of the studied particular class of hybrid dynamical systems

3.1 General presentation

We consider the following hybrid dynamical system (h.d.s.) of order N, N ≥ 1:

⎧

⎨

⎩

Ẋ(t) = A
(

q(ξ(t))
)

X(t) + V
(

q(ξ(t))
)

,

ξ(t) = cst − WX(t),
(5)

where A is a stable square matrix of order N, V and X are column matrices of order N and
W is a row matrix of order N, all these matrices having real entries. Moreover, cst is a real
constant. We suppose that X and so ξ are continuous.
In this model, the discrete variable is q which can take two values u1, u2 according to ξ which
follows a hysteresis phenomenon described by figure 2.

Fig. 2. Hysteresis phenomenon followed by discrete variable q.

If ξ reaches its lower threshold S1 by decreasing value then q changes its value from u1 to u2.
Similarly, if ξ reaches its upper threshold S2 by increasing value then q changes its value from
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u2 to u1. In those conditions, multifunction q(ξ) is explicitly given by:

⎧

⎨

⎩

q(ξ(t)) = u1 if ξ(t−) = S2 and q(ξ(t−)) = u2

q(ξ(t)) = u2 if ξ(t−) = S1 and q(ξ(t−)) = u1

q(ξ(t)) = q(ξ(t−)) otherwise.
(6)

In the first two cases, t is called switching time and so, S1 and S2 are respectively called lower
and upper switching thresholds.
A lot of applications of many fields and of all dimensions belong to this h.d.s. class. In this
paper, we will study two of these applications:

• the first of dimension three: a thermostat with an anticipative resistance,

• the second of dimension four: a DC/DC converter.

3.2 Application 1: thermostat with an anticipative resistance

The first considered application is the one of a thermostat wtih an anticipative resistance
which controls a convector located in the same room (Cébron, 2000). The thermal processus is
given by figure 3 (on the left). We note x, y and z (in K) the temperatures respectively of the

Fig. 3. thermal processus (on the left) and hysteresis phenomenon (on the right).

thermostat, of the room and of the convector. The functioning principle of such a thermostat
is the following: powers of the thermostat Pt and of the convector Pc (in W) are active when
q = 1 and inactive when q = 0. If initially q = 1, as Pt is active, the desired temperature
is reached firstly by the thermostat temperature before the room temperature that makes q
changes its value from 1 to 0. Thus, the introduction of the anticipative resistance reduces the
amplitude of y. This presents an interest of energy saving.
The Fourier law and a power assessment (Saccadura, 1998) give the following differential
system of dimension three with the same form than (5):

⎧

⎨

⎩

Ẋ(t) = AX(t) + q(ξ(t))B + C,

ξ(t) = LX(t),

where:

A =

⎛

⎝

−a a 0
e −(b + d + e) b
0 c −c

⎞

⎠ , B =

⎛

⎝

pt

0
pc

⎞

⎠ , C =

⎛

⎝

0
d.θe

0

⎞

⎠ , L =

⎛

⎝

1
0
0

⎞

⎠

T

,
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and

a =
1

mtCtRt
, b =

1

mpCpRc
, c =

1

mcCcRc
, d =

1

mpCpRm
, e =

1

mpCpRt
, pt =

Pt

mtCt
, pc =

Pc

mcCc
.

Coefficients Rt, Rc, Rm (in K.W−1) are thermal resistances, Ct, Cp, Cc (in J.kg−1.K−1) are
heat capacities and mt, mp, mc (in kg) are masses according to indices t, p, c and m which
respectively represent the thermostat, the convector, the room and the house wall. Moreover,
θe (in K) corresponds to the outside temperature.
Here, the discrete variable q follows the hysteresis phenomenon described in figure 3 where
u1 = 0, u2 = 1, S1 = θ1 and S2 = θ2.

3.3 Application 2: DC/DC converter

The second studied application is the one of a DC/DC converter (Zhusubaliyev & Mosekilde,
2003), (Lim & Hamill, 1999). The electrical equivalent circuit is given by figure 4. This circuit

Fig. 4. Electrical equivalent circuit of a DC/DC converter.

includes a converter DC voltage generator and two filters LC (input and output). The output
voltage of the circuit, given by σU1, 0 < σ < 1, with σ the sensor gain, will be compared to
the reference signal Uref (in V). The difference of these two quantities, noted ξ = Uref − σU1,
called deviation signal, is applied to the relay element with hysteresis in order to form square
pulses to control the converter switching elements. Here, u1 = −1, u2 = 1, S1 = −χ0, S2 = χ0.
Thus, electronical laws give the following differential system of order four which takes the
form of (5):

⎧

⎨

⎩

Ẋ = A
(

q(ξ(t))
)

X(t) + V,

ξ(t) = Uref − UX(t),

where:

A(q) =

⎛

⎜

⎜

⎝

−η −η 0 0
γ 0 − γ

2 (1 + q) 0

0
µ
2 (1 + q) −ν −µ

0 0 λ
α − λ

β

⎞

⎟

⎟

⎠

, V =

⎛

⎜

⎜

⎝

ηΩ

0
0
0

⎞

⎟

⎟

⎠

, U =

⎛

⎜

⎜

⎝

0
0
0

σE∗

⎞

⎟

⎟

⎠

T

,
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with η = R0
L0

, Ω = E0
E∗ , γ = 1

C0R0
, µ = R0

L1
, ν = R1

L1
, λ = 1

C1R∗ , β = RL
R∗ , α = R0

R∗ where R∗ is a

normalization resistance taken equal to 1. Moreover, x1 = R0i0
E∗ , x2 = U0

E∗ , x3 = R0i1
E∗ , x4 = U1

E∗ ,
where E∗ is a voltage which permits us to work with dimensionless variables and is equal to
1 here.
Coefficients L0 and L1 (in H) are the inductances, C0 and C1 (in F) are capacities, R0, R1 and RL

(in Ω) are losses in the inductances, Rc is th load resistor. Moreover, i0 and i1 (in A) are currents
in the inductance coils. Values U0 and U1 (in V) are voltages on the condensers of capacities
C0 and C1 respectively according to indices 0 and 1. These indices respectively represent the
elements of the input filter and of the output filter. Finally, E0 is the input voltage.

3.4 Determination of period-k cycles equations (k ≥ 1)

In this paragraph, we remain the results established in (Quémard et al., 2005), (Quémard et al.,
2006), (Quémard, 2007b).
From general system (5), as we have ξ(tn) = S1 or S2 (tn is the n-th switching time if it
exists), the trajectory follows a cycle by construction. So, it is rather natural to study the limit
cycles existence for the general system. Moreover, the existence of such cycles for those non
linear systems has already been proved in (Zhusubaliyev & Mosekilde, 2003), (Girard, 2003)
for example.
Let t0 be an initial given time and t1 < t2 < ... < tn < tn+1 < ... the increasing suite of
successive switching times on [t0, +∞[, necessarily distincts because the definition of q(ξ(t))
implies ξ(tn) �= ξ(tn−1).
To simplify notations, we set qn = q(ξ(tn)) and we have q(ξ(t)) = qn on [tn, tn+1[. Similarly,
we set ξn = ξ(tn), An = A(qn), Vn = V(qn). A classical integration of (5) gives on interval
[tn, tn+1[:

X(t) = e(t−tn)An Γn − A−1
n Vn, (7)

where Γn ∈ R
N correspond to the integration constants, functions of n.

Thus, introducing notation σn = tn − tn−1 > 0, n ≥ 1 and considering the continuity
assumption at tn, we obtain:

{

Γn = eσn An−1 Γn−1 + A−1
n Vn − A−1

n−1Vn−1, ∀n ≥ 1

Γ0 = X(t0) + A−1
0 V0.

(8)

Then, we set ∀n ≥ 1, ξn = f (S1, S2, qn−1, qn) ( f function from R
4 to R in order to have

ξn = S1 or S2 according to the hysteresis variable q). By definition, we also can write ∀n ≥ 1,
ξn = cst − WX(tn) = cst − W(Γn − A−1

n Vn). So, combining those two expressions for ξn, we
finally obtain:

∀n ≥ 1, cst − W(Γn − A−1
n Vn) − f (S1, S2, qn−1, qn) = 0. (9)

Resolution of system (5), (6) with unknowns X(t), (tn)n∈N is equivalent to the one of system
(8), (6) with unknowns (Γn)n≥1, (σn)n≥1. Nevertheless, it is very difficult to explicitly solve
this system with theoretical way (Jaulin et al., 2001), (Zhusubaliyev & Mosekilde, 2003) so we
content ourselves with a numerical resolution.
Moreover, such globally non linear systems can admit zero, one or more solutions (Quémard
et al., 2006), (Quémard, 2007b), (Quémard, 2009) that implies the existence of period-k cycles
(k ≥ 1). To determine equations of those cycles, we introduce for all suite (Un)n∈N the
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following notation Ui
n = U2kn+i , n ≥ 0, for i = 1, ..., 2k with k ∈ N

∗ which corresponds to
the cycle period.
Thus, the suite of successive switching times is noted (σ1

n , σ2
n , . . . , σ2k−1

n , σ2k
n )n∈N and the

one of the successive integration constants is noted (Γ1
n, Γ2

n, . . . , Γ2k−1
n , Γ2k

n )n∈N . We set Rn =
(σ1

n , Γ1
n, . . . , σ2k

n , Γ2k
n ). We suppose that Rn has a limit R = (σ1, Γ1, . . . , σ2k, Γ2k). In those

conditions, at R, system of equations (8), (9) is equivalent to system H(R, R) = 0, ∀n ≥ 0
where H = (H1, . . . , H4k)

T is a function defined for i = 1, ..., 2k by:

{

Hi(R, R) = Γi − eσi Ai−1 Γi−1 − A−1
i Vi + A−1

i−1Vi−1 = 0,

H2k+i(R, R) = cst − W(Γi − A−1
i Vi) − f (S1, S2, qi−1, qi) = 0,

(10)

with index i = 0 if i is even and i = 1 if i is odd. Moreover, Γ0
n = Γ2k

n .
From each 2k first equations Hi, i = 1, ..., 2k of (10) and using the first remaining 2k − 1
equations, we can determine by recurrence an expression of Γi, i = 1, ..., 2k which becomes
a function of σi, i = 1, ..., 2k. Then, replacing Γi, i = 1, ..., 2k with this expression in the last
2k equations H2k+i, i = 1, ..., 2k, of system (10), we can obtain, for i = 1, ..., 2k, the following
system of 2k equations Fi for 2k unknowns σi, i = 1, ..., 2k:

Fi = −W((IN − ∏
2k
m=1 D(i−m+1)mod(2k))

−1(IN + ∑
2k−1
j=1 (−1)j(∏

2k−j
l=1 D(i−l+1)mod(2k)))

(A−1
i Vi − A−1

i−1Vi−1) − A−1
i Vi) − f (S1, S2, qi−1, qi) + cst = 0.

(11)

with Dm = eσm Am−1 , m = 1, . . . , 2k and setting D0 = D2k.
This system represents the period-k cycle equations (k ≥ 1) and it will be solved numerically
for the two considered applications either with the formal calculus (Maple) and the interval
analysis (Proj2D) or with a classical Newton algorithm (Matlab). If we apply system (11) to
the application of the thermostat, we have, for example, for a period-2 cycle and after setting
K1 = F1 − F4, K2 = F3 − F2, K3 = F2 − F4, K4 = F1, the following equivalent system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K1(σ1, σ2, σ3, σ4) = L(IN − e(σ1+σ2+σ3+σ4)A)−1(IN − eσ1 A)

(IN − eσ4 A + e(σ3+σ4)A − e(σ2+σ3+σ4)A)A−1B + ∆θ = 0

K2(σ1, σ2, σ3, σ4) = L(IN − e(σ1+σ2+σ3+σ4)A)−1(IN − eσ3 A)

(IN − eσ2 A + e(σ1+σ2)A − e(σ1+σ2+σ4)A)A−1B + ∆θ = 0

K3(σ1, σ2, σ3, σ4) = L(IN − e(σ1+σ2+σ3+σ4)A)−1(eσ2 A(IN − eσ1 A + e(σ1+σ4)A)

−eσ4 A(IN − eσ3 A + e(σ2+σ3)A))A−1B = 0

K4(σ1, σ2, σ3, σ4) = ∆q1L(IN − e(σ1+σ2+σ3+σ4)A)−1(IN − eσ1 A + e(σ1+σ4)A

−e(σ1+σ3+σ4)A)A−1B − (1 − q0)LA−1B − LA−1C − (1 − q0)θ1 − q0θ2 = 0.

(12)

Similarly, wo have for the electronical application the following system for period-2 cycle
equations:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K1(σ1, σ2, σ3, σ4) = Ure f − U((IN − eσ1 A0 eσ4 A1 eσ3 A0 eσ2 A1 )−1

(IN − eσ1 A0 + eσ1 A0 eσ4 A1 − eσ1 A0 eσ4 A1 eσ3 A2 )(A−1
1 − A−1

0 )V − A−1
1 V) − 1

2 (q1 − q0)χ0 = 0,

K2(σ1, σ2, σ3, σ4) = Ure f − U((IN − eσ2 A1 eσ1 A0 eσ4 A1 eσ3 A0 )−1

(IN − eσ2 A1 + eσ2 A1 eσ1 A0 − eσ2 A1 eσ1 A0 eσ4 A1 )(A−1
0 − A−1

1 )V − A−1
0 V) − 1

2 (q0 − q1)χ0 = 0,

K3(σ1, σ2, σ3, σ4) = Ure f − U((IN − eσ3 A0 eσ2 A1 eσ1 A0 eσ4 A1 )−1

(IN − eσ3 A0 + eσ3 A0 eσ2 A1 − eσ3 A0 eσ2 A1 eσ1 A0 )(A−1
1 − A−1

0 )V − A−1
1 V) − 1

2 (q1 − q0)χ0 = 0,

K4(σ1, σ2, σ3, σ4) = Ure f − U((IN − eσ4 A1 eσ3 A0 eσ2 A1 eσ1 A0 )−1

(IN − eσ4 A1 + eσ4 A1 eσ3 A0 − eσ4 A1 eσ3 A0 eσ2 A1 )(A−1
0 − A−1

1 )V − A−1
0 V) − 1

2 (q0 − q1)χ0 = 0.
(13)

3.5 Hybrid Poincaré application

Function f of theorem 2.1 will be the hybrid Poincaré application for our two applications. So,
we have to introduce this function for the general system (5) (see (Quémard et al., 2005)).
To do this, we firstly consider the following different ways to write ξ(tn) = ξn given by this
system:

{

ξn = f (S1, S2, qn−1, qn),

ξn = cst − WX(t−n ) = cst − W(eσn An−1 Γn−1 − A−1
n−1Vn−1)

and that gives:

cst − W(eσn An−1 Γn−1 − A−1
n−1Vn−1) − f (S1, S2, qn−1, qn) = 0. (14)

Duration σn, n ≥ 1, implicitly given by equation (14), defines for n ≥ 1 a function Ψqn of Γn−1

such that:
σn = ψqn (Γn−1), ∀n ≥ 1. (15)

Moreover, equation (8), introduced in the last paragraph, defines for n ≥ 1 a function gqn of
σn and of Γn−1 i.e.:

Γn = gqn (σn, Γn−1), ∀n ≥ 1. (16)

Then, we set:
{

∀n ≥ 1, Gqn (.) = gqn (ψqn (.), .),

∀n ≥ 2, hqn = Gqn ◦ Gqn−1 (.).
(17)

Since qn = q0 if n is even and qn = q1 if n is odd, we obtain hqn = hq0 if n is even and hqn = hq1

if n is odd (n ≥ 1). We note:

h : R
N −→ R

N

Γ �−→

{

hq0 (Γ) if n is even

hq1 (Γ) if n is odd.

(18)
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Function h defined by (18) corresponds to the hybrid Poincaré application associated to the
studied h.d.s. Period-1 cycles are built from fixed points Γ2 for hq0 and Γ1 for hq1 . Period-2

cycles correspond to a 2-periodic point Γ4 (or Γ2) for hq0 and Γ1 (or Γ3) for hq1 characterized

by hq0 (Γ4) = Γ2, hq1 (Γ1) = Γ3 and hq0 ◦ hq0 (Γ4) = h2
q0

(Γ4) = Γ4, hq1 ◦ hq1 (Γ1) = h2
q1

= Γ1.

4. Theorem application to the thermostat

For this application to the thermostat presented in section 3, we decide to vary parameter
µ = Rc which corresponds to the convector resistance and we choose for other parameters,
fixed values given in table 1.

Rt Rm Qt Qc Qp Pt Pc θe θ1 θ2

1.5 1 50 800 5000 0.8 50 281 293 294

Table 1. Numerical values to illustrate a period-doubling bifurcation for the thermostat.

To plot the bifurcation diagram given by figure 5, we use Matlab and for each value of
parameter Rc, we solve system (12) with a classical Newton algorithm. Then, we plot the
corresponding values of σ2 and σ4 (we could have chosen σ1 and σ3). If σ2 and σ4 have the
same values then, the Newton algorithm tends to a period-1 cycle. Otherwise, it tends to a
period-2 cycle. It is from value Rc = Rc0 ≃ 1.5453923 that σ2 and σ4 begin to take different

Fig. 5. Bifurcation diagram for the thermostat.

numerical values. For Rc ≤ Rc0 , the Newton algorithm tends to a period-1 cycle and for
Rc > Rc0 , it tends to a period-2 cycle. Figure 6 illustrates this phenomenon.
Before verifying the four conditions of theorem 2.1, we need to compute numerical values
for σi and Γi, i = 1, 2 at Rc = Rc0 . From system (12), we obtain values of σi and from
these values, we can compute the ones of Γi which can be written as a function of σi. We

obtain σ1 ≃ 144.473853, σ2 ≃ 466.851260, Γ1 = (15.172083 1.049091 − 3.221174)T ,

Γ2 = (−47.749927 − 1.221632 8.971559)T .
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Fig. 6. Period-1 cycle for Rc ≤ Rc0 (on the left) and period-2 cycle for Rc > Rc0 (on the right).

Now, we can begin to apply theorem 2.1 to the adapted Poincaré application hqn associated to
the thermostat which is explicitly given by:

hqn : R
N × R −→ R

N

(Γn−2, Rc) �−→

{

hq0 (Γ2
n−1, Rc) = hq0Rc

(Γ2
n−1) if n is even

hq1 (Γ1
n−1, Rc) = hq1Rc

(Γ1
n−1) if n is odd.

Here, we restrict our study to the case n even (the case n odd giving the same results). Let us
verify the four assumptions of theorem 2.1.
• First assumption:

We have built the Poincaré application in order to have Γ2 as a fixed point of hq0 . So,

hq0Rc0

(Γ2) = Gq0Rc0

◦ Gq1Rc0

(Γ2) = Gq0Rc0

(Γ1) = Γ2 and the first assumption is satisfied.

• Second assumption:

Here, we can omit parameter Rc since it is fixed and so, does not affect the result. Then,
the Poincaré application becomes a function only of Γ2

n−1. Thus, we can write Dhq0 (Γ2) =

∂Γ2
n−1

hq0Rc0

(Γ2) the Jacobian matrix of hq0 .

We need to give the expression of the Jacobian matrix Dhq0 so, since it will be also used for
the electronical application, we will compute it in the general way. We note hqn (Γn−2) = Gqn ◦
Gqn−1 (Γn−2). Therefore, the Jacobian matrix Dhqn is given by:

Dhqn (Γn−2) = DGqn (Gqn−1 (Γn−2))DGqn−1 (Γn−2)

= DGqn (Γn−1)DGqn−1 (Γn−2). (19)

>From definition (17) of Gqn , we have:

DGqn (Γn−1) =
∂gqn

∂σn
(σn, Γn−1)

∂ψqn

∂Γn−1
(Γn−1) +

∂gqn

∂Γn−1
(σn, Γn−1). (20)
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We easily obtain
∂gqn

∂σn
(σn, Γn−1) and

∂gqn

∂Γn−1
(σn, Γn−1) derivating the second member of equation

(8) respectively with respect to σn and Γn−1:

⎧

⎨

⎩

∂gqn

∂σn
(σn, Γn−1) = An−1eσn An−1 Γn−1

∂gqn

∂Γn−1
(σn, Γn−1) = eσn An−1 .

Moreover, the calculus of
∂ψqn

∂Γn−1
(Γn−1) is obtained differentiating implicit equation given by

(14) with respect to Γn−1 with σn = Ψqn (Γn−1) and gives:

−WAn−1eσn An−1 Γn−1
∂ψqn

∂Γn−1
(Γn−1) − Weσn An−1 = 0.

If −WAn−1eσn An−1 Γn−1 �= 0 that we assume, we can deduce:

∂ψqn

∂Γn−1
(Γn−1) =

−Weσn An−1

WAn−1eσn An−1 Γn−1
. (21)

Finally, we can write:

DGqn (Γn−1) =

(

IN −
An−1eσn An−1 Γn−1W

WAn−1eσn An−1 Γn−1

)

eσn An−1 , (22)

and we deduce the expression of Dhqn (Γn−2) with (19).
For the first application of the thermostat, we choose an eigenvectors basis and relatively to
this basis, we obtain:

Dhq0 (Γ2) =

(

I3 −
Aeσ2 AΓ1L

LAeσ2 AΓ1

)

eσ2 A

(

I3 −
Aeσ1 AΓ2L

LAeσ1 AΓ2

)

eσ1 A.

Numerically, we have:

Dhq0 (Γ2) ≃

⎛

⎝

−1.8419626299 0.4499899352 −0.8182826401
−0.0011184622 0.0097398043 0.0174088456
1.8430810922 −0.4597297396 0.8008737945

⎞

⎠ ,

which has three eigenvalues λ1 = −1, λ2 = 0, λ3 ≃ −0.031348. One is equal to -1 and the
others respect |λi| �= 1, i = 2, 3 so the second assumption of the theorem is verified.
• Third assumption: If we reason like in the theorem proof, we have, since Dhq0 (Γ2) has not

1 as eigenvalue, x f (Rc), curve of fixed points exists with, in particular, x f (Rc0 ) = Γ2.

Matrix of the first derivatives of hq0Rc
with respect to Γ2

n−1 at x f (Rc) takes the following form

∀n ≥ 1:

∂Γ2
n−1

hq0Rc
(x f (Rc)) =

⎛

⎝

∂hi
q0Rc

∂Γ
2j
n−1

(x f (Rc))

⎞

⎠

i,j=1,...,3

=

⎛

⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞

⎠ , (23)
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where Γ
2j
n−1, j = 1, . . . , 3 represents the j-th component of vector Γ2

n−1 and hi
q0Rc

, i = 1, . . . , 3 is

the i-th component of hq0Rc
.

So, to find eigenvalues of ∂Γ2
n−1

hq0Rc
(x f (Rc)), we have to solve equation

det(∂Γ2
n−1

hq0Rc
(x f (Rc)) − zI3) = 0.

Moreover, firstly, we can remark, from equation (9), that we have −WDΓn = 0 i.e.
−WDGqn (Γn−1) = 0 by definition of Gqn . This means that −W is a left eigenvector of
DGqn (Γn−1) associated to eigenvalue 0 and so, 0 is always an eigenvalue for Dhqn (Γn−2) i.e.
det(∂Γ2

n−1
hq0Rc

(x f (Rc)) = 0.

Taking into account this remark, we know that to compute the two other eigenvalues, it
remains to solve the following equation:

− λ2 + λ.Tr(∂Γ2
n−1

hq0Rc
(x f (Rc))) − Tr(com(∂Γ2

n−1
hq0Rc

(x f (Rc)))) = 0, (24)

where com(M) corresponds to the comatrix of M for any square matrix M and with:

⎧

⎨

⎩

Tr(∂Γ2
n−1

hq0Rc
(x f (Rc))) = a1 + b2 + c3,

Tr(com(∂Γ2
n−1

hq0Rc
(x f (Rc)))) = b2c3 − b3c2 + a1c3 − a3c1 + a1b2 − a2b1.

If λ1(Rc) (with λ1(Rc0 ) = −1) is an eigenvalue of ∂Γ2
n−1

hq0Rc
(x f (Rc)), then λ1(Rc) verifies

equation (24). Thus, derivating this obtained equation with respect to parameter Rc and then,
applying it at Rc = Rc0 , we obtain:

−2λ′
1(Rc0 )λ1(Rc0 ) + λ′

1(Rc0 )Tr(∂Γ2
n−1

hq0Rc0

(Γ2)) + λ1(Rc0 )
∂

∂Rc
(Tr(∂Γ2

n−1
hq0Rc

(x f (Rc))))|Rc=Rc0

− ∂
∂Rc

(Tr(com(∂Γ2
n−1

hq0Rc
(x f (Rc)))))|Rc=Rc0

= 0.

Thus, we finally obtain an expression for λ′
1(Rc0 ) = dλ1

dRc
(Rc0 ):

λ′
1(Rc0 ) =

∂
∂Rc

(

Tr(∂Γ2
n−1

hq0Rc
(x f (Rc))) + Tr(com(∂Γ2

n−1
hq0Rc

(x f (Rc))))
)

|Rc=Rc0
(

2 + Tr(∂Γ2
n−1

hq0Rc0

(Γ2))
) .

Therefore, we developp all computations and applying them to our numerical values, we
finally obtain:

λ′
1(Rc0 ) =

dλ1

dRc
(Rc0 ) ≃ 16.9072 �= 0,

that satisfies the third assumption of theorem 2.1.
• Fourth assumption:

To verify the last assumption of theorem 2.1, we have to compute β. As for the second
assumption, we can omit Rc in all expressions because it does not affect the result.
To compute β, we need the calculation of the second and third derivatives of hi

q0
, i =

1, ..., 3. They have been obtained applying the formula of the n-th derivatives of a function
composition with several variables (we do not explicit them here since it is very long and
without a big interest).
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Moreover, for the second assumption, we have proved that Dhq0 (Γ2) has three different

eigenvalues noted λi, i = 1, ..., 3. So, we choose a basis a right eigenvectors of Dhq0 (Γ2) noted

(v1 v2 v3) such that vi is associated to λi, i = 1, ..., 3 with, in particular, v1 associated to -1.
We numerically have:

v1 ≃

(

1
0.018670
−1.018670

)

, v2 ≃

(

1.037479 − 0.297064i
0.811752 − 0.232431i
−1.849231 + 0.529494i

)

, v3 ≃

(

0.870614 − 0.066942i
1.816933 − 0.139705i
−0.960593 + 0.073860i

)

.

Similarly, we take as a dual basis {wj}j=1,...,3 of {vj}j=1,...,3 the left eigenvectors of matrix

Dhq0 (Γ2, Rc0 ) associated to λi, i = 1, ..., 3 such that wivj = 1 if i = j and wivj = 0 otherwise.
We numerically obtain:

w1 ≃

(

1.885527
−0.448237
0.861079

)

, w2 ≃

(

−1.237960 − 0.354468i
−0.049794 − 0.014257i
−1.216183 − 0.348232i

)

, w3 ≃

(

0.575651 + 0.044262i
0.575651 + 0.044262i
0.575651 + 0.044262i

)

.

Thus, the computation of β becomes possible and numerically gives:

β ≃ 0.7049 �= 0,

that verifies the fourth and last assumption of theorem 2.1.
• Conclusion: These four assumptions theoretically prove, with the period-doubling
bifurcation thereom, that there exists at Rc ≃ Rc0 ≃ 1.5453923 a period-doubling bifurcation
which highlights the loss of stability of the stable period-1 cycle and the emergence of a stable
period-2 cycle. It confirms that we had graphically seen.

5. Theorem application to the DC/DC converter

Other authors (Zhusubaliyev & Mosekilde, 2003), (Lim & Hamill, 1999) were interested in the
problem of period-doubling bifurcations for this electronical application. However, they often
study the phenomenon only using bifurcation diagrams.
Here, we propose a theoretical proof but firstly, we can also propose a bifurcation diagram
to highlight the crossing of a period-1 cycle to a period-2 cycle with the variation of one
parameter.
We choose the fixed following numerical values in table 2 and L0 is the variable parameter.
To plot the bifurcation diagram given by figure 7, we use the same method than the

R1 R0 RL L1 C0 C1 Ure f σ χ0 E0

2 5 80 0.09 3.10−6 2.10−5 2.4 0.1 0.25 200

Table 2. Numerical values to illustrate a period-doubling bifurcation for the DC/DC
converter.

one use for the thermostat solving system (13) with a Newton algorithm for each value
of L0. It is from value L0 ≃ L00

≃ 0.1888073 that σ2 and σ4 begin to take different
values. Figure 8 illustrates that, for L0 ≤ L00

, the Newton algorithm tends to a period-1
cycle and for L0 > L00

, it tends to a period-2 cycle. As for the thermal application,
we need to compute values of σi and Γi, i = 1, 2 at L0 = L00

. It is done with
a Newton algorithm and system (13) to obtain σi and the integration constants Γi,
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Fig. 7. Bifurcation diagram for the DC/DC converter.

Fig. 8. Period-1 cycle for L0 ≤ L00
(on the left) and period-2 cycle for L0 > L00

(one the right).

i = 1, 2 are computed from the obtained values of σi since we have seen that they
are only functions of σi. We numerically obtain: σ1 ≃ 0.0030227, σ2 ≃ 0.0023804,

Γ1 ≃ (7.690 + 1.156i − 54.176 − 386.422i 6.199 + 3.877i − 81.201 − 55.029i)T , Γ2 ≃

(−2.266 + 0.742i − 38.350 + 113.344i − 3.090 + 0.286i 13.250 + 39.466i)T .
Thus, we verify the four assumptions of theorem 2.1 using the Poncaré application hq0L0

(we

obtain the same results for hq1L0
) associated to our DC/DC converter.

• First assumption:

The first assumption is clearly staisfied by construction of the Poincaré application associated
to our system.
• Second assumption:

As for the thermal application, for this assumption, parameter L0 is fixed to L00
so does not

affect the result. Thus, the Poincaré application can be considered as a function of Γ2
n−1. With

numerical values of table 2, of σi and of Γi, i = 1, 2, we numerically compute the Jacobian
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matrix of hq0 at Γ2 and L00
and we obtain:

Dhq0 (Γ2) ≃

⎛

⎜

⎝

−0.3194 − 0.2921i 0.0048 − 0.0027i 0.1451 − 0.0027i 0.0165 − 0.0074i
12.0276 + 6.8908i −0.3194 + 0.2921i 8.0084 + 9.1076i 0.0673 + 1.1643i
0.49640 + 0.1299i 0.0091 + 0.0046i −0.3067 − 0.0494i −0.0126 − 0.0194i
4.2869 − 5.3865i 0.1065 − 0.0865i −2.2699 + 3.4955i −0.3067 + 0.4939i

⎞

⎟

⎠
.

This matrix has four different eigenvalues λ1 = −1, λ2 = 0, λ3 ≃ 0.079202 and λ4 ≃
−0.331416. One of this value is equal to -1 and the others verify |λi| �= 1, i = 2, 3, 4 so the
second assumption is satisfied.
• Third assumption:

Let x f (L0) be the curve of the fixed-point of hq0L0
. The matrix of the first derivatives of hq0L0

with respect to Γ2
n−1 at x f (L0) can be written for the DC/DC converter:

∂Γ2
n−1

hq0L0
(x f (L0)) =

⎛

⎝

∂hi
q0L0

∂Γ
2j
n−1

(x f (L0))

⎞

⎠

i,j=1,...,4

=

⎛

⎜

⎜

⎝

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

⎞

⎟

⎟

⎠

.

Then, to compute λ′
1(L00

) = dλ1
dL0

(L00
), we use the same method than the one explained for the

thermostat. We develop equation det(∂Γ2
n−1

hq0L0
(x f (L0)) − λI4) = 0 and we simplify it using

the fact that 0 is always an eigenvalue of ∂Γ2
n−1

hq0L0
(x f (L0)). Then, assuming that λ1(L0) is an

eigenvalue of ∂Γ2
n−1

hq0L0
(x f (L0)) with λ1(L00

) = −1, we obtain at L00
:

λ′
1(L00

) =

∂
∂L0

(

Tr(∂
Γ2

n−1
hq0L0

(x f (L0)))+M1(L0)+Tr(com(∂
Γ2

n−1
hq0L0

(x f (L0))))

)

|L0=L00

(3+2Tr(∂
Γ2

n−1
hq0L00

(Γ2))+M1(L00
))

,

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Tr(∂Γ2
n−1

hq0L0
(x f (L0))) = a1 + b2 + c3 + d4,

M1(L0) = a1b2 − a2b1 + a1c3 − a3c1 + a1d4 − a4d1 + b2c3 − b3c2 + b2d4 − b4d2 + c3d4 − c4d3,

Tr(com(∂Γ2
n−1

hq0L0
(x f (L0)))) = a1b2c3 + a1b2d4 + a1c3d4 + b2c3d4 + b3c4d2 + b4c2d3 + a2b4d1

+a3b1c2 + a3c4d1 + a4b1d2 + a4c1d3 + a2b3c1 − a1b4d2 − a1c4d3 − a1b3c2 − b2c4d3 − b3c2d4

−b4c3d2 − a3c1d4 − a4b2d1 − a4c3d1 − a3b2c1 − a2b1c3 − a2b1d4.

We do not detail calculations here since they are the same than the one for the thermostat with
index i which varies from 1 to 4. We finally numerically obtain:

λ′
1(L00

) ≃ 376.77 + 48.85i �= 0,

that satisfies the third assumption of theorem 2.1.
• Fourth assumption:

To verify the last assumption of theorem 2.1, we have to compute β. To do this, we need
to know the first, the second and the third derivatives of hq0 with respect to Γ2

n−1. They
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are obtained using our knowledge of the derivatives of a function composition with various
variables.
Thus, it remains to give a right and a left eigenvectors basis of Dhq0L00

(Γ2). For the right

eigenvectors basis, we choose (v1 v2 v3 v4) with vi associated to λi, i = 1, ..., 4 with, in
particular, λ1 = −1. We numerically choose:

v1 ≃

⎛

⎜

⎜

⎝

1
−11.442836 + 48.851737i
−0.426519 − 1.349074i
−18.867917 − 2.085051i

⎞

⎟

⎟

⎠

, v2 ≃

⎛

⎜

⎜

⎝

0.5166742 − 0.78824872i
17.01036378 + 44.12314420i

0.65810329 − 0.22792681i
9.27738581 + 1.11320087i

⎞

⎟

⎟

⎠

v3 ≃

⎛

⎜

⎜

⎝

0.01119889 − 0.01608901i
0.52509800 + 0.08316542i
0.01236110 + 0.00503187i
0.12880400 − 0.12438117i

⎞

⎟

⎟

⎠

, v4 ≃

⎛

⎜

⎜

⎝

0.01627771 − 0.18549512i
2.81524460 + 8.90855146i
0.05802415 + 0.01511695i
0.50027614 − 0.62998584i

⎞

⎟

⎟

⎠

.

Identically, we take as a dual basis {wj}j=1,...,4 of {vj}j=1,...,4 the left eigenvectors of Dhq0L00

(Γ2)

associated to eigenvalues λi, i = 1, ..., 4 such that wivj = 1 if i = j and wivj = 0 otherwise. We
numerically have:

w1 ≃

⎛

⎜

⎜

⎝

−6.00780496 + 3.31230746i
−0.10257727 − 0.09040793i
−0.65155347 − 1.40122597i
−0.10158624 + 0.05428312i

⎞

⎟

⎟

⎠

, w2 ≃

⎛

⎜

⎜

⎝

0
0

0.45187014 + 0.88898172i
0.04698337 − 0.05759709i

⎞

⎟

⎟

⎠

,

w3 ≃

⎛

⎜

⎜

⎝

−0.15269597 − 0.97827008i
−0.007293202 − 0.01833645i

0.44704526 + 0.83019484i
−0.026511494 + 0.06508790i

⎞

⎟

⎟

⎠

, w4 ≃

⎛

⎜

⎜

⎝

50.68797524 − 15.97723598i
1.02351719 + 0.27277622i
0.82854165 − 35.60644916i
−0.93039774 + 2.48628517i

⎞

⎟

⎟

⎠

.

We conclude β ≃ 0.076 − 0.13i �= 0, that satisfies the last assumption.
• Conclusion:

The fourth assumptions of theorem 2.1 being satisfied, so, the theorem of period-doubling
bifurcation can be applied and theoretically prove the existence of a period-doubling
bifurcation at L0 = L00

. It confirms the observations made on the bifurcation diagram of
figure 7.

6. Conclusion

We have presented a new tool to theoretically prove the existence of a period-doubling
bifurcation for a particular value of the parameters. This is a generalization of the
period-doubling bifurcation theorem of systems of any dimension N, N ≥ 1.
This result has been applied to two applications of industrial interest and of two different
dimensions: the one of dimension three with the thermostat with an anticipative resistance
and the second in dimension four with the DC/DC converter. This work has confirmed the
observations graphically made on the bifurcation diagrams.
Such a bifurcation can appear from three-dimensional systems for the studied h.d.s. class.
Indeed, in dimension one, as zero is the single eigenvalue of the Jacobian matrix Dhqn , we
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can directly conclude that there is not exist a bifurcation. Moreover, in dimension two, in
(Quémard, 2007a), we have proved that the two eigenvalues of the Jacobian matrix Dhqn are 0

and exp((A1 + A2)(σ1 + σ2)) where A1 and A2 are the diagonal elements of matrix A written
in an eigenvectors basis and with A1 < 0, A2 < 0. So, since σ1

> 0 and σ2
> 0, in dimension

two, Dhqn has two eigenvalues which belong to the open unit disk. Thus, there is no such
bifurcation in dimension two.
Finally, in this paper, we have directly chosen numerical values for which there exists this
type of bifurcation but sometimes, it is very difficult to find them. So, it would be very
interesting to find a method which permits to quickly obtain those values. To do this, for
exemple in dimension three, we can firstly use a graphical method varying two parameters
and solving the period-2 cycle equations system with a Newton algorithm for each value
of those parameters. Then, we plot, with two different colors, the corresponding points
depending whether the algorithm converges to a period-1 cycle or to a period-2 cycle. It is
not very precise but it can give an interval containing searched values. Then, to refine these
values, we should build a system with three equations for three unknowns σ1, σ2 and the
parameter which varies. This system could be solved with a Broyden algorithm for example
taking initial values belonging to the obtained interval to ensure the algorithm convergence.
From det(∂Γ2

n−1
hq0 (Γ2) − zI3) = 0 and knowing that 0 and -1 are two solutions at the

bifurcation point, we could obtain the first equation. Then, from system (11) applied for
period-1 cycles, we can obtain the two others considering the varying parameter as the third
variable. This could be a future research work.
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