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1. Introduction  

Most of the elastic materials in engineering are, with acceptable accuracy, considered as 
anisotropic materials; metal crystals (due to the symmetries of the lattice), fiber-reinforced 
composites, polycrystalline textured materials, biological tissues, rock structure etc. can be 
considered as orthotropic materials. In recent years fiber reinforced composite materials 
have been paid considerable attentions due to the search for materials of light weight, great 
strength and stiffness. Consequently the determination of their mechanical properties, i.e. 
stiffness effect, becomes important.  
Piezoelectric materials nowadays have been widely used to manufacture various sensors, 
conductors, actuators, and have been, extensively, applied in electronics, laser, ultrasonics, 
naval and space navigation as well as biologics, smart structures and many other high-tech 
areas. 
The wide-gap II-VI  semiconductors, well known anisotropic materials used in high 
technology, have received much attention  in the past decades  since they have important 
applications in short-wavelength light-emitting  diodes (LEDs), laser diodes and optical 
detectors (Okuyama, 1992). Moreover, semiconductor materials constitute today basic 
components of emitters and receivers in cellular, satellite, fiberglass communication, solar 
cells, and photovoltaic systems. Their electronic and structural properties of such systems 
are subject of considerable interest in nanotechnology as well. For the semiconductor 
compounds ZnX and CdX (X=S, Se, and Te), the zinc-blend structure (ZB) has the lowest 
minimum total energy. With respect to classical II- VI semiconductors, these semiconductor 
compounds have attracted much attention in recent years for their great potential in 
technological applications (Reich, 2005). They have a high melting point, high thermal 
conductivity, and large bulk modulus. The hardness and large bulk modulus of these 
anisotropic materials make them ideal protective coating materials in photovoltaic 
applications and in machine tools (Reich, 2005). These materials can, therefore, be used for 
optoelectric devices in which the availability of light sources in the mid-infrared spectral 
region is crucial for many applications, i. e., molecular spectroscopy and gas-sensor systems 
for environmental monitoring or medical diagnostics (Leitsmann et al., 2006). Being stable to 
high temperatures and can be made of sufficiently insulating allows precise measurements 
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of piezoelectric, elastic, and dielectric constants. For such data eventually a fully quantum-
mechanical description is essential in order to serve to verify a quantitative theory of 
piezoelectricity and elasticity in these structures. The window layer compounds CuInSe2, 
CuInS2, AgGaSe2, and AgGaS2 have a chalcopyrite structure that is closely related those of 
zinc blend and wurtzite structures. These compounds are found in many applications such 
as fiberglass communication, thin film solar cells, and photovoltaic systems.  Thin film solar 
cells made from ternary chalcopyrite compounds, such as the aforementioned hetrojunction 
layers, are characterized by low-cost and clean energy sources. Their high absorption and 
resistance to deterioration make them good candidate materials for solar cell absorbers. 
Moreover, due to their flexible optical properties and good stabilities, they are promising 
compounds for fabricating polycrystalline thin film hetrojunction solar cells (Ramesh et al., 
1999; Ramesh et al., 1998; Murthy et al.; 1991). Yet, the significant discrepancy in the 
efficiency of solar cells between the laboratory scale, over 19% (Murthy et al.; 1991), and the 
commercial one, around 13 %, is due to the lack of fundamental understanding of interface 
and junction properties in the film.  
Historically, the study of anisotropic elastic materials has been synonymous with study of 

crystals.  For a deep understanding of the physical properties of these anisotropic materials 

use of tensors is inevitable. Tensors are the most apt mathematical entities to describe 

direction-dependent-physical properties of solids, and the tensor components characterize 

physical properties which must be specified without reference to any coordinate system. 

When all the directions in the material can be considered as equivalent the physical property 

is isotropic, and consequently, the choice of the reference frame is of no real importance. 

More often the medium is anisotropic and tensor notation can not be avoided. Specifying 

the values of the tensor components which represent physical properties of crystals, as 

Nowack(Nowacki, 1962) points out, do not determine the material constants directly since 

their values vary with the direction of the coordinate axes. It is, therefore, natural to seek to 

characterize physical properties of crystals by constants whose values do not depend upon 

the choice of the coordinate system, i.e. constants which are invariant under all coordinate 

transformations. Some of such invariants have been obtained using different decomposition 

methods in the case of photoelastic coefficients ((Srinivasan & Nigam, 1968)), piezoelectric 

coefficients (Srinivasan, 1970) and elastic stiffness coefficients (Srinivasan et al. (Srinivasan & 

Nigam, 1968; Srinivasan, 1969; Srinivasan, 1985). A physical property is characterized by n 

rank tensor that has two kinds of symmetry properties. The first kind is due to an intrinsic 

symmetry derives from the nature of the physical property itself, and this can be established 

by the thermodynamical arguments or from the indispensability of some of the quantities 

involved. The second kind of symmetry is due to the geometric or crystallographic 

symmetry of the system described. 

The purpose of this chapter, hence, is to develop the existing methods of decomposing 

Cartesian tensors into orthonormal basis using invariant-form to decompose some well-

known tensors into orthonormal tensor basis. Next, as an outcome of these decompositions, 

to investigate the contributions to the formulation of the physical properties of elastic stress, 

strain, piezoelectric and elastic stiffness anisotropic materials. Finally, the concept of norm 

and norm ratios is introduced to measure the overall effect of material properties and to 

measure the degree of anisotropy. Numerical engineering applications are introduced for 

several engineering materials like semiconductor compounds, piezoelectric ceramics and 

fiber reinforced composites. 
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2. Form invariants and orthonormal basis elements 

The decomposition methods of tensors have many applications in different subjects of 

engineering. In the mechanics of continuous media i.e. in elasticity studies; so far, the stress 

and strain tensors are decomposed into spherical (hydrostatic) and deviatoric parts, the 

hydrostatic pressure is connected to the change of volume without change of shape, 

whereas the change of shape is connected to the deviatoric part of the stress. 

The anisotropic elastic properties represented by the fourth rank tensor of elastic coefficients 

is designated as the elasticity tensor. The constitutive relation for linear anisotropic elasticity 

is the generalized Hooke's law 

 Cij ijkm km
σ = ε  (1) 

which is the most general linear relation between the stress tensor whose components are 

ijσ and the strain tensor whose components are 
km
ε . The coefficients of linearity, 

namely C
ijkm

, are the components of the fourth rank elastic stiffness tensor. The elastic 

properties of crystals appear to be well described in terms of symmetry planes.  Symmetry 
planes (i.e. planes of mirror symmetry) were defined, for example, by Spencer (Spencer, 
1983). Cowin et al. (Cowin & Mehrabadi, 1987) classified the known elastic symmetries of 
materials and ordered materials on the basis of symmetry planes. Cowin et al. (Cowin & 
Mehrabadi, 1987), and Hue and Del Piero(Hue & Del Piero, 1991)   listed ten symmetry 

classes. There are three important symmetry restrictions on C
ijkm

that are independent of 

those imposed by material symmetry:  

 C = C , C = C , C = C
ijkm jikm ijkm ijmk ijkm kmij

 (2) 

which follow from the symmetry of the stress tensor, the symmetry of the strain tensor, and 

the thermodynamic requirement that no work be produced by the elastic material in a 

closed loading cycle, respectively(Srinivasan, 1998; Blinowski, A. & Rychlewski, 1998) . The 

number of independent components of a fourth rank tensor in three dimensions is 81, but 

the restrictions in (2) reduce the number of independents of C
ijkm

 to 21, which 

corresponds to the most asymmetric elastic solid, namely triclinic media. Since it has 21 

independent components, there is considerable information on the material properties 

apparent a decomposition of C
ijkm

 into orthonormal tensor basis would be of interest.  

The determination of the class system of an elastic medium from its elastic constants in an 

arbitrary coordinate is not a trivial matter. The problem has been studied thoroughly by 

several authors (Srinivasan, 1969; Srinivasan, 1985; Spencer, 1983; Cowin & Mehrabadi, 

1987; Hue & Del Piero, 1991; Srinivasan, 1998; Blinowski & Rychlewski, 1998; Tu, 1968). 

Another interesting material property in anisotropic solids is the direct piezoelectric effect 

that comprises a group of phenomena in which the mechanical stresses or strains induce in 

crystals an electric polarization (electric field) proportional to those factors. Besides, the 

mechanical and electrical quantities are found to be linearly related as following (Srinivasan, 

1998). 

www.intechopen.com



 Advances in Composites Materials - Ecodesign and Analysis 

 

552 

 P = d σi ijk jk
 (3) 

where Pi  and 
jk

σ denote the components of the electric polarization vector and the 

components of the mechanical stress tensor, respectively, and d
ijk

 are the piezoelectric 

coefficients forming a third rank tensor. The piezoelectric tensor is a third rank tensor 
symmetric with respect to the last two indices 

 d = d
ijk ikj

 (4) 

 with 18 coefficients for the noncentrosymmetric triclinic case. Considerable information on 

the material properties apparent a decomposition of d
ijk

 into orthonormal tensor basis 

would be of interest, as well. 
In writing out tensors which represent physical properties of solid materials, it is customary 
to choose a Cartesian frame reference which has a specific orientation with respect to the 
material coordinate axes. A physical property is characterized by n rank tensor that has two 
kinds of symmetry properties. The first kind is due to an intrinsic symmetry derives from 
the nature of the physical property itself, and this can be established by the 
thermodynamical arguments or from the indispensability of some of the quantities 
involved. The second kind of symmetry is due to the geometric or crystallographic 
symmetry of the system described. 
The symmetry properties of the material may be defined by the group of orthonormal 
transformations which transform any of these triads into its equivalent positions. For each of 
the symmetry classes, we will choose as reference system a rectangular Cartesian coordinate 
system Oxyz, so related to the material directions 1 2 3ν ,ν ,ν  in the material under 

consideration that the symmetry of the material may be described by one or more of the 
transformations. Transformations in which the coefficients satisfy the orthogonality 
relations are called linear orthogonal transformations. In this formulation, the number of 
elastic constants and their values do not depend on the choice of the coordinate system. 
The form-invariant expressions for the electrical susceptibility components, the piezoelectric 
coefficients and the elastic stiffness coefficients are, respectively 

 χ = ν ν Aij ai bj ab
 (5) 

 d = ν ν ν Aaiijk bj ck abc
   (6) 

 C = ν ν ν ν Aaiijkm bj ck dm abcd
   (7) 

Where summation is implied by repeated indices, aiν  are the components of the unit 

vectors aν ( a=1,2,3) along the material directions axes. The quantities ab abc abcdA , A , A  are 

invariants in the sense that when the Cartesian system is rotated around Ox y z′ ′ ′ , 

where 1 2 3ν ,ν ,ν form a linearly independent basis in three dimensions but are not necessarily 

always orthogonal. Their relative orientations in the seven crystal systems are well known 
(Ikeda, 1990). The corresponding reciprocal triads satisfy the relations 
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 aiν ν = δ
aj ij

 (8) 

2.1 Second rank tensors 

In the theory of linear elasticity, the relation between the stress and strain in a solid body is 
usually described by Hooke's law which postulates a linear relation between the two. The 
stress- strain relations for elastic anisotropic material have not been very well established as 
compared to those of the isotropic material in the classical theory of elasticity. The 
symmetry properties of the material, due to the geometric or crystallographic symmetry, 
may be defined by the group of orthonormal transformations which transform any of its 

triads aν into its equivalent positions. For the monoclinic symmetric second rank tensor, for 

instance, the basis elements can be found depending on the form invariant for the 
monoclinic system.  Its form invariant expression, with 2ν normal to the 1 3ν ν plane, can be 

written as 

 σ = A ν ν + A ν ν + A ν ν + A (ν ν + ν ν )
ij 11 1i 1j 22 2i 2j 33 3i 3j 31 3i 1j 1i 3j

 (9) 

where aiν are the components of the unit vectors (a 1, 2, 3)aν = along the material 

directions axes. The corresponding reciprocal triads satisfy the relations (Srinivasan, 1998) 

aiν ν = δaj ij  

using (8) and orthonormalization by the well known Gram-Schmidt scheme, the four basis 
elements of the monoclinic system are obtained (Srinivasan, 1998): 

 

1IT = δ
ij ij4

1IIT = (2δ δ δ +δ δ - δ )
ij ij 1i 1j 3i 3j ij2

1IIIT = - (3δ δ - δ )
ij 3i 3j ij6

1IVT = (δ δ +δ δ )
ij 3i 1j 1i 3j2

 (10) 

It is well known that for a symmetric second order tensor is of dimension six; an 
orthonormal basis set of six elements can be constructed. By taking cyclic permutation of {1, 
2, 3}; the elements V and VI can be generated from IV in (10) as 

 

1VT = δ δ +δ δ
ij 1i 2j 2i 1j2

1VIT = δ δ +δ δ
ij 2i 3j 3i 2j2

⎡ ⎤
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

 (11) 

A complete orthonormal basis for the second rank symmetric tensor will be the set {I, II,…, 

VI}. The decomposition of ijσ is given in terms of these basis elements as  
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 k kσ = (σ,T )T , (k = I,II,...,VI)
ij ij ij

k
∑  (12) 

where k(σ,T )ij represents the inner product of and the kth elements, kTij , of the basis. Hence, 

the second rank symmetric tensor is decomposed into six orthonormal terms expressed in 

matrix form: 

 

1 1σ 0 0 (2σ +σ - σ ) 0 0pp pp11 333 2
1 1σ = 0 σ 0 + 0 (-2σ - σ +σ ) 0 +pp ppij 11 333 2

0 0 01
0 0 σpp3

1
(-3σ - σ ) 0 0pp336 0 0 σ13

1
0 (-3σ - σ ) 0 + 0 0 0 +pp336

σ 0 0131
0 0 (6σ - 2σ )pp336

0 σ 012
+ σ1

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0

0 0 + 0 0 σ2 23
0 0 0 0 σ 023

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (13) 

From (13), the second rank symmetric tensor,
ij

σ , is decomposed into six terms, each of 

which has a physical meaning. Also, the second rank symmetric tensor is virtually 

decomposed into two parts: 

 
1 1σ = σ δ + (σ - σ δ )

ij pp ij ij pp ij3 3
 (14) 

From (14), it is clear that the symmetric second rank stress tensor is decomposed into 

spherical (hydrostatic pressure) part, 
1
σ δpp

ij3
, which is the first term of (13), and the 

deviatoric part,  
1

(σ - σ δ )ppij ij
3

, which is the sum of the other five terms of (13). Hence, it is 

shown that the method is able to decompose the symmetric second rank stress (and strain, 
in a similar manner) tensors into the spherical part which is connected to the change of 
volume without change of shape, and into deviatoric part, which is connected to the change 
of shape. This result is very well known in the literature. On the other hand, this method is 
introducing a new form of decomposition, which has a more featured and transparent 
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physical information.  It is easily verified that the sum of the six decomposed tensors is the 
symmetric second rank tensor,

ij
σ . Physically, each of the six tensor parts is associated with 

a distinct type of deformation; the first part of (13) represents the spherical (hydrostatic 
pressure) effect, the second and third parts represent combined simple extension or 
contraction along the various symmetry axes. The second term could be, for example, stress 
of a non-uniform distribution of pure shear stress, which occurs in a long rod subjected to 
pure torsion, while the last three parts represent simple shearing in the symmetry planes. 
Besides, the deviatoric part of the stress tensor is decomposed into traceless tensors each of 
them is related to shearing which represents a general symmetric second rank tensor (stress 
and strain tensors). The results agree with previous studies considered as special cases of 
this general case, for instance, Blinowski et al. (Blinowski & Rychlewski, 1998) have 
decomposed a tensor of only shear into exactly identical forms to the last three terms of (13) 
for this specific case. 

2.2 Third rank tensors 

In the continuum approach to the study of anisotropic solids it is well known that certain 

physical properties can be represented by tensors. The polarization of a crystal produced by 

an electric field is an example of an anisotropic material property that is represented by 

tensors. If a stress is applied to certain crystals they develop an electric moment whose 

magnitude is proportional to the applied stress; known as piezoelectric effect. The 

piezoelectric effect in materials has not attracted much attention until after the Second 

World War, since when the applications and the research of piezoelectric materials have 

advanced greatly.  Piezoelectric materials nowadays have been widely used to manufacture 

various sensors, conductors, actuators, resonators, oscillators and monitors.  They also play 

an important role in the so-called smart structures. In fact, piezoelectric materials have been 

applied extensively in electronics, laser, ultrasonics, microsonics, naval and space navigation 

as well as biologics and many other high-tech areas.  The piezoelectric coefficients appear in 

the equation i ijk jkP d= σ , where iP are the components of the electrical polarization vector 

and jkσ , the components of the stress tensor.  The form invariant expressions are derived for 

many classes of piezomagnatic (Srinivasan, 1970), and piezoelectric coefficients (Tsai, 1992).  

Although such constitutive equations are form invariant with respect to arbitrary 

orthogonal coordinate transformations, the coefficients, ijkd , do not determine directly the 

material constants since their values vary with the direction of the coordinate axes. The 

piezoelectric coefficients with the following symmetry ijk ikJd d=  the number of non-

vanishing independent coefficients is reduced from 27 to 18 independent coefficients for the 

triclinic system.  For the monoclinic system, for example, of class 2, the number of 

independent coefficients is reduced to 8, for the orthotropic system of class mm2 is reduced 

to five coefficients, and for the hexagonal system of class 6mm is reduced to three 

independent coefficients. The form invariant expression for the hexagonal system class 6mm 

is (Srinivasan, 1970) 

 d = d δ δ δ + d (δ δ +δ δ ) + d δ δ
ijk 1 3i 3j 3k 2 3k ij 3j ik 3 3i jk

 (15) 

Following the same procedure used for second rank tensor, the basis elements are 
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IT = δ δ δ
ijk 3i 3j 3k

1IIT = (δ δ - δ δ δ )
ijk 3i jk 3i 3j 3k2

1IIIT = (δ δ +δ δ - 2δ δ δ )
ijk 3k ij 3j ik 3i 3j 3k2

 (16) 

The decomposition of d
ijk

 is given in terms of this basis elements as  

 

q q
d = (d,T )T , (q = I,II,III)

ijk ijk ijk
k

I I II II III III       = (d,T )T +(d,T )T + (d,T )T
ijk ijk ijk ijk ijk ijk

∑
 (17)  

where 
q

(d,T )
ijk

 represents the inner product of d
ijk

and q
th   elements, 

q
T

ijk
of the basis . 

 

0 0 0 0 0 0 0 0 0 0 0 0

d = 0 0 0 0 0 0 + 0 0 0 0 0 0
ijk

0 0 d 0 0 0 1 1
33 (d + d ) (d + d ) 0 0 0 0

31 32 31 322 2

1
0 0 0 (d + d ) 0 0

24 152
1

+ 0 0 (d + d ) 0 0 0
24 152

0 0 0 0 0 0

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (18) 

Physically, we have decomposed the tensor d
ijk

into three independent tensors, each has an 

independent piezoelectric coefficient. If a tensile stress 3σ is applied parallel to x3 which is a 

diad axis of the crystal, the first matrix in (18) shows that the components of polarization are 

given by the moduli in the third column of the first matrix. Thus, the decomposition that we 

present is decomposing the polarization along orthogonal axes into three parts; the first part 

is the polarization along the diad axes due to normal stress, the second part, the polarization 

along the nondiad orthogonal axes due to normal stress, and the third part, is the 

polarization due to the shear stresses. 

2.3 Fourth rank tensors 

Fourth rank tensors were introduced in specification of physical properties for several 

anisotropic media. A decomposition of these tensors into independent elementary tensors is 

undertaken, to offer valuable insight into the tensor structure. In an anisotropic material, the 
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elasticity symmetric tensor generally contains twenty-one non-zero distinct constants. When 

the material has some kind of symmetry, the number of these coefficients is reduced if the 

coordinate axes coincide with symmetry axes for the material. 

In analyzing the mechanical properties of anisotropic linear elastic medium, a tensor of 

fourth rank is required to make up a linear constitutive relation between two symmetric 

second-rank tensors, each of which represents some directly detectable and measurable 

effect in the medium. The constitutive relation characterizing linear elastic anisotropic solids 

is the generalized Hook's law as expressed in (1). Due to the symmetries in (2), the number 

of elastic coefficients is reduced from 81 to 21 which correspond to the most asymmetric 

elastic solid, namely, triclinic medium. The presence of symmetry in a medium reduces still 

further the number of independent elastic coefficients.  For example, monoclinic symmetry 

medium (Tu. 1968)  reduces the number of the non-vanishing independent elastic 

coefficients to 13, similarly, orthotropic to 9, hexagonal to 5, cubic to 3 and isotropic medium 

(the most symmetry) to 2 elastic coefficients. 

The isotropic system has the well defined form invariant as following (Srinivasan, 1968): 

 C = A δ δ + A δ δ + A δ δ1 ij 2 jm 3 imijkm km ik jk
 (19) 

where A1 , A2 and A3 are constants, and later, Tu (Tu. 1968)  has reduced the three tensors 

into two basis elements. Following the same procedure presented in previous sections, the 

decomposition of C
ijkm

 for the isotropic system is given in terms of the basis elements as:  

 

k kC = (C,T )T , (k = I,II)
ijkm ijkm ijkm

k

I I II II             = (C,T )T + (C,T )T
ijkm ijkm ijkm ijkm

∑

 (20) 

where k(C,T )
ijkm

represents the inner product of C
ijkm

and the kth elements, kT
ijkm

, of the 

basis, and 

 

1IT = δ δ
ijkm ij km3

1IIT = δ δ (3(δ δ +δ δ ) - 2δ δ )
ijkm ij km ik jm im jk ij km6 5

 (21) 

substituting these elements, then 

 

1
C = C δ δ +

ijkm ppqq ij km9

1
(6C - 2C )(3(δ δ +δ δ ) - 2δ δ )

pqpq ppqq ik jm im jk ij km36(5)

     (22) 

and in matrix form as: 
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2 1 1
- - 0 0 0

3 3 3
1 2 1

- - 0 0 01 1 1 0 0 0
3 3 3

1 1 1 0 0 0 1 1 2
- - 0 0 01 1 1 0 0 0 3 3 3C = K + 2G

pq ν ν0 0 0 0 0 0 1
0 0 0 0 0

20 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0
2

1
0 0 0 0 0

2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (23) 

with   

1
K = Cν ppqq9

1 1
G = (C - C )ν pqpq ppqq10 3

 

Kν and Gν are the well known Voigt average polycrystalline bulk and shear modulus, 

respectively. Hence, the symmetric fourth rank elastic tensor of isotropic media is 

decomposed into two orthogonal terms.  Equation (23) indicates that the isotropic 

symmetric fourth rank tensor, C
ijkm

, is a subset of the general symmetric fourth rank 

elastic tensor, and decomposed into two terms, each of which has a distinct physical 

meaning, and the two terms are the same terms consisting the isotropic case. It is easily 

verified that the decomposed tensors form an orthogonal set, and their sum is the isotropic 

symmetric fourth rank tensor, C
ijkm

, which is identical to those found by Nye (Nye, 1959). 

In fact, the above results are the same as those given in (Tu, 1968; Nye, 1959; Voigt, 1889; 

Radwan, 1991; Ikeda, 1990). Thus, it has been established that macroscopically isotropic 

elastic coefficients, which were obtained by W. Voigt, can be obtained directly from the 

procedure developed. Moreover, this procedure is valid for the most anisotropic triclinic 

elastic tensor. 

3. The concept of norm 

The comparison of magnitudes of the norms can give valuable information about the origin 

of the physical property under examination. Since the norm is invariant in the material, the 

norm of a Cartesian tensor may be used as the most suitable representing and comparing 

the overall effect of a certain property of anisotropic materials of the same or different 

symmetry or the same material with different phases based on the crystallographic level 

(Spencer, 1983; Srinivasan, 1998; Tu, 1968; Nye, 1959; Voigt, 1889; Radwan, 1991; Ikeda, 

1990). The larger the norm value, the more effective the property is. Generalizing the 
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concept of the modulus of a vector, a norm of a Cartesian tensor is defined as the square 

root of the contracted product over all the indices with itself (Srinivasan, 1998; Tu, 1968; 

Radwan, 1991). Since the constructed basis in this method is orthonormal and C
ijkm

is in 

the space spanned by that orthonormal basis, the norm for the elastic stiffness, for example, 

is given by: 

 { }
1

2
N = C = C � C

ij ij
 (24) 

3.1 A proposed relation between the norm ratio and the anisotropy degree  

It is known that the anisotropy of the material, i.e., the symmetry group of the material and 

the anisotropy of the measured property depicted in the same material may be quite 

different. Obviously, the property tensor must show, at least, the symmetry of the material. 

For example, a property which is measured in a material can almost be isotropic but the 

material symmetry group itself may have very few symmetry elements. 

In the elastic stiffness tensors, the isotropic symmetry material is decomposed into two 

parts, the decomposition of the cubic symmetry material is consisted of the same two 

isotropic decomposed parts and a third part, and the decomposition of the hexagonal 

symmetry material is consisted of the same two isotropic decomposed parts and another 

three parts. Consequently, the Norm Ratio Criteria (NRC) proposed in this chapter is close 

to that proposed in (Gaith &  Alhayek, 2009; Gaith & Akgoz, 2005).  For isotropic materials, 

the elastic stiffness tensor has two parts, so the norm of the elastic stiffness tensor for 

isotropic materials is equal to the norm of these two parts, i.e., N = Niso . Hence, the ratio 

(
Niso = 1

N
) for isotropic materials.  For cubic symmetry materials the elastic stiffness tensor 

has the same two parts that consisting the isotropic symmetry materials and a third, will be 

designated as the other than isotropic or the anisotropic part, so two ratios are defined: 

Niso
N

 for the isotropic  parts and 
Nanis

N
 for the anisotropic part. For more anisotropic 

materials, the elastic stiffness tensor additionally contains more anisotropic parts, so 
Nanis

N
 

is defined for all the anisotropic parts. 

Although the norm ratios of different parts represent the anisotropy of that particular part, 

they can also be used to asses the anisotropy degree of a material property as a whole, in 

this chapter the following criteria are proposed: 

1. When Niso  is dominating among norms of the decomposed parts, the closer the norm 

ratio
Niso

N
 is to one, the closer the material property is isotropic. 

2. When Niso is not dominating or not present, norms of the other parts can be used as a 

criterion. But in this case the situation is reverse; the larger the norm ratio value, the 
more anisotropic the material property is.  
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4. Applications 

4.1 Piezoelectric semiconductors and ceramics 

Among semiconductor crystals, a family of wurtzite- type belongs to the 6mm class, which 

is piezoelectric active. The material properties (Tsai, 1992) and the norm calculations are in 

Table 1. From the table, the most piezoelectric effective among the five materials is CdS 

which has a very important feature in the thin films of semiconductors. For piezoelectric 

ceramics, the most potential piezoelectric material because of its higher strength, high 

rigidity and more importantly the better piezoelectricity, Table 2 includes the piezoelectric 

coefficients (Temple, 1960) and calculated norms. From the table, the most effective 

piezoelectric among the seven ceramics is PZT-5H.  

 

Material d
11

 d
33

 d15  N 

BeO -0.12 0.24  0.29 

ZnO -5.0 12.4 -8.3 18.48 

CdS -5.2 10.3 -14.0 23.50 

CdSe -3.9 7.8 -10.0 17.07 

Table 1. The Constants and Norms of Piezoelectric Semiconductors[10-12 C N-1] 

 

Material d11  d33  d15  N 

PZT-4 -5.2 15.1 12.7 24.59 

PZT-5 -5.4 15.8 12.3 24.71 

BaTi O3 -4.35 17.5 11.4 18.82 

PZT-5H -6.5 23.3 17 34.72 

PZT-6B -0.9 7.1 4.6 9.71 

PZT-8 -4.0 23.3 10.4 28.13 

C-24 1.51 8.53 3.89 10.37 

Table 2. The Constants and Norms of Piezoelectric Ceramics [10-12 C N-1] 

4.2 Fiber reinforced composite materials 

Under specific couplings of the elastic constants of orthotropic media, a very important 
family of orthotropic materials degenerates into the class of either transversely isotropic or 
isotropic media. Most of the engineering composites, especially fiber-reinforced, are of 
transversely isotropic media. Hence, for different composites, the norms are calculated for 
each material (Radwan, 1991) in Table 3. From the table, it can be clearly concluded that 
B(4)/N5505 has the strongest stiffness effect among the five composites. From Table 4, the 
most isotropic composite is E-glass/epoxy, and the most anisotropic composite is 
T300/5208. From the latter table, it was possible to measure the degree of anisotropy for 
several composites.  
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Materials 11C  22C  12C  23C  44C  55C  Norm 

T300/5208 184.60 13.94 5.88 7.06 3.44 7.17 174.06 

B(4)/N5505 208.08 25.04 95.72 12.70 6.17 5.59 284.62 

AS/H3501 141.80 12.20 85.08 6.21 3.00 7.10 222.11 

E-lass/Epoxy 41.12 11.57 21.38 6.04 2.77 4.14 62.58 

Kev 9/Epoxy 78.66 7.53 53.49 3.86 1.83 2.30 132.92 

Table 3. Elastic constants and norms for transversely isotropic materials, GPa 

 

Material Niso  Naniso N  
Niso

N
 

Nanis
N

 

T300/5208 99.67 142.64 174.06 0.56 0.82 

B(4)/N5505 223.39 176.37 284.62 0.78 0.62 

AS/H3501 173.04 139.24 222.11 0.78 0.63 

E-glass/Epoxy 55.01 29.84 62.58 0.88 0.48 

Kev 49/Epoxy 105.13 81.34 132.92 0.79 0.61 

Table 4. The Norm ratios for transversely isotropic materials, GPa 

4.3 II-IV semiconductor compounds ZnX (X=S, Se, Te) 
Covalent materials such as II-IV semiconductor compounds ZnX (X=S, Se, Te) have been 
extensively studied for their intrinsic structural, optical, and elastic properties such as energy 
gap, charge density, lattice constants and bulk modulus.  However, bulk modulus has been 
found to correlate well with strength and hardness in many materials and those with largest 
bulk moduli are usually expected to be the hardest materials. Therefore, one of the important 
parameters that characterize the physical property of a material system is the material stiffness 
and its corresponding bulk modulus which measures the degree of stiffness or the energy 
required to produce a given volume deformation. The bulk modulus reflects important 
bonding characters in the material and, for many applications, is used as an indicator for 
material strength and hardness. Early experimental and theoretical investigations for bulk 
modulus were reported in (Cohen, 1985; Lam et al., 1987). Cohen (Cohen, 1985) obtained an 
empirical expression for the bulk modulus based on the nearest-neighbour distance. His 
theoretical and experimental results were in agreement. Lam et al. (Lam, 1987) obtained an 
expression for bulk modulus using the total energy method with acceptable results. The bulk 
modulus for the semiconductor compounds was found to be inverse proportionally correlated 
to the lattice constants (Lam et al., 1987; Al-Douri et al., 2004). 
Physical properties are intrinsic characteristics of matter that are not affected by any change 
of the coordinate system. Therefore, tensors are necessary to define the intrinsic properties 
of the medium that relate an intensive quantity (i.e. an externally applied stimulus) to an 
extensive thermodynamically conjugated one (i.e. the response of the medium). Such 
intrinsic properties are the dielectric susceptibility, piezoelectric, and the elasticity tensors. 
An interesting feature of the decompositions is that it simply and fully takes into account 
the symmetry properties when relating macroscopic effects to microscopic phenomena. One 
can directly show the influence of the crystal structure on physical properties, for instance, 

www.intechopen.com



 Advances in Composites Materials - Ecodesign and Analysis 

 

562 

when discussing macroscopic properties in terms of the sum of the contributions from 
microscopic building units (chemical bond, coordination polyhedron, etc). A significant 
advantage of such decompositions is to give a direct display of the bearings of the crystal 
structure on the physical property.  
The proposed procedure in this chapter has introduced a method to measure the stiffness 

and piezoelectricity in fiber reinforced composite and piezoelectric materials using the norm 

criterion on the crystal scale. In this method, norm ratios proposed to measure the degree of 

anisotropy in an anisotropic material, and compare it with other materials of different 

symmetries. It was able to segregate the anisotropic material property into two parts: 

isotropic and anisotropic parts. Of the new insights provided by invariance considerations, 

the most important is providing a complete comparison of the magnitude of a given 

property in different crystals. Such a comparison could be obvious for average refractive 

index, even birefringence, piezoelectricity, electro-optic effects, elasticity, etc. From a device 

point of view, the new insights facilitate the comparison of materials; one is interested in 

maximizing the fig. of merit by choosing the optimum configuration (crystal cut, wave 

propagation direction and polarization, etc); and one wants to be able to state that a 

particular material is better than another for making a transducer or modulator 

(Jerphagnon, 1978). It is most suitable for a complete quantitative comparison of the strength 

or the magnitude of any property in different materials belonging to the same crystal class, 

or different phases of the same material.  The norm concept is very effective for selecting 

suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices. 

Therefore, using the elastic constant for anisotropic material, an elastic stiffness scale for 

such anisotropic material, and a scale to measure the isotropic elasticity within the material 

will be discussed. Besides, the microscopic origin of the overall elastic stiffness and bulk 

modulus calculation will be correlated with the structural properties parameter, i.e. lattice 

constant a, which represents some fundamental length scale for the chemical bond of the 

unit cell. 

The elastic stiffness matrix representation for the isotropic system can be decomposed in a 

contracted form as: 

 

2C + C C C 0 0 0
44 12 12 12
C 2C + C C 0 0 0

12 44 12 12
C C 2C + C 0 0 0

12 12 44 12C =
ij 0 0 0 C 0 0

44
0 0 0 0 C 0

44
0 0 0 0 0 C

44

1 1 1 0 0 0 4 -2 -2 0 0 0

1 1 1 0 0 0 -2 4 -2 0 0 0

1 1 1 0 0 0 -2 -2 4 0 0 0
= A +A

1 20 0 0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ 0 0 0 0 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(25) 
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where  

 

1
A = (C + 2C ), C = 2C + C

1 11 12 11 44 123

1
A = (C - C + 3C )

2 11 12 4415

  (26) 

where A
1

and A
2

 are the Voigt average polycrystalline bulk B and shear G modulus, 

respectively. The decomposed parts of Eq. (25) designated as bulk and shear modulus are 

identical to those found in literature (Voigt, 1889; Hearmon, 1961; Pantea et al., 2009).  

For cubic crystals such as the II-VI semiconductor compounds, there are only three 

independent elastic stiffness coefficients C11, C12, and C44 that can describe the mechanical 

elastic stiffness for these materials. The elastic coefficient  C11 is the measure of resistance to 

deformation by a stress applied on the (100) plane, while C44, represents the measure of 

resistance to deformation with respect to a shearing stress applied across the (100) plane. 

These elastic coefficients are function of elastic material parameters, namely, Young’s 

modulus, shear modulus, and Poisson's ratio. Thus, using the orthonormal decomposition 

procedure (Gaith & Akgox, 2005), the elastic stiffness matrix representation for cubic system 

can be decomposed in a contracted form as: 

 

C C C 0 0 0
11 12 12 1 1 1 0 0 0

C C C 0 0 0
12 11 12 1 1 1 0 0 0

C C C 0 0 0 1 1 1 0 0 012 12 11C = = A
ij 10 0 0 C 0 0 0 0 0 0 0 0

44
0 0 0 0 0 00 0 0 0 C 0

44
0 0 0 0 0 0

0 0 0 0 0 C
44

4 -2 -2 0 0 0

-2 4 -2 0 0 0

-2 -2 4 0 0 0
+A

2 0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

-4 2 2 0 0 0

2 4 -2 0 0 0

2 2 -4 0 0 0
+ A

3 0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

  (27) 

where  

 

1
A = (C + 2C )

1 11 123
1

A = (C - C + 3C )
2 11 12 4415

1
A = (C - C + 2C )

3 12 11 4410

 (28)  
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It can be shown that the sum of the three orthonormal parts on the right hand side of Eq. 

(27) is apparently the main matrix of cubic system (Hearmon, 1961). Also, the first two 

terms on the right hand side are identical to the corresponding two terms obtained in Eq. 

(23) for the isotropic system (Hearmon, 1961). Hence, it can be stated that the cubic system 

is discriminated into the sum of two parts: isotropic part (first two terms), and anisotropic 

part (third term). The latter term resembles the contribution of the anisotropy on elastic 

stiffness in the cubic system. On the other hand, the first term on the right hand side of 

Eqs (23) and (27), designated as the bulk modulus, is identical to Voigt bulk modulus 

(Hearmon, 1961). 

Nowadays, the necessity of alternative energy use is widely accepted. In solar energy 

technology, thin film solar technology based on the II-IV semiconductor compounds, is 

very promising due to lower production costs and shorter energy pay back times (Fischer, 

2006). For these compounds, a successful interface between absorber and buffer layers 

with alternative and promising non-toxic materials requires compositional and electronic 

material characterization as a prerequisite for understanding and intentionally generating 

interfaces in photovoltaic devices (Fischer, 2006). On the other hand, stability of 

ZnTe/ZnS solar cells is of concern for their application in space, where the cells have to 

withstand high energy particles, mainly electrons and protons that can cause severe 

damage in solar cells up to a complete failure. Therefore, the radiation hardness and 

damage mechanism of the ZnTe solar cells is associated with the overall elastic stiffness 

and bulk modulus (Bätzner, 2004). Table 5 presents the materials elastic stiffness 

coefficients, calculated bulk B and overall elastic stiffness N moduli for the II-VI 

semiconductor ZnX (X=S, Se, and Te) compounds. Fig. 1 shows clearly the correlation 

between overall elastic stiffness N and bulk modulus B. Quantitatively, the overall elastic 

stiffness increases as the calculated bulk modulus B increases. Besides, the calculated bulk 

moduli are identical to those found by theory of anisotropy (Hearmon, 1961), and are in 

agreement with experimental values (Cohen, 1985) with maximum error of 8.5 % for 

ZnTe. The calculated bulk moduli obey the cubic stability conditions, meaning that 

C B C
12 11

≤ ≤ . Fig. 2 shows that the bulk modulus is inversely proportional to lattice 

constants a which was confirmed in several studies (Lam et al., 1987; Al-Douri et al., 

2004). Consequently, from Fig. 3 the overall elastic stiffness N is inversely proportional to 

lattice constants a, as well. Fig. 1-3 indicate that among the three compounds under 

examination, ZnS has the largest elastic stiffness, largest bulk modulus (lowest 

compressibility), and lowest lattice constant, while ZnTe, in contrary, has the smallest 

elastic stiffness, smallest bulk modulus, and largest lattice constant. Therefore, the overall 

elastic stiffness and bulk modulus, the only elastic moduli possessed by all states of 

matter, reveal much about interatomic bonding strength. The bulk modulus also is the 

most often cited elastic constant to compare interatomic bonding strength among various 

materials (Pantea, 2009), and thereafter the overall elastic stiffness can be cited as well. 

For the isotropic symmetry material, the elastic stiffness tensor is decomposed into two 

parts as shown in Eq. (23), meanwhile, the decomposition of the cubic symmetry 

material, from Eq. (27), is consisted of the same two isotropic decomposed parts and a 

third part. It can be verified the validity of this trend for higher anisotropy, i.e., any 

anisotropic 
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 C11 C12, C44 N B 
Bexp 

(Cohen, 
1985) 

a 
(Chelikowsky, 

1987) 

ZnS 104 65 46.2 266.5 78 77 0.54 

ZnSe 95.9 53.6 48.9 244.0 67.7 64.7 0.57 

ZnTe 82 42 55 224.0 55.3 51 0.61 

Table 5. Elastic coefficients (GPa) (Cohen, 1985), overall stiffness N (GPa), bulk modulus B 
(GPa), and lattice constants a (nm) 
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Fig. 1. The overall elastic stiffness N versus bulk modulus B for ZnX (X=S, Se, Te) 
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Fig. 2.The bulk modulus B versus the lattice constants a for ZnX (X=S, Se, Te) 
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Fig. 3. The overall stiffness N versus the lattice constants a for ZnX (X=S, Se, Te) 

 

 Niso Naniso N 
Niso

N
 

Nanis
N

 B A 

ZnS 262 49 266.5 0.9830 0.1836 78 0.54 

ZnSe 238.7 50.9 244.0 0.9780 0.2084 67.7 0.57 

ZnTe 214.6 64.2 224.0 0.9581 0.2865 55.3 0.61 

Table 6. The overall elastic stiffness N (GPa) and norm ratios for the II-IV semiconductor 
compounds ZnS, ZnSe, and ZnTe 

The norms and norm ratios for ZnS, ZnSe, and ZnTe are calculated and presented in Table 6. 

From the table, interesting phenomena are observed; as the isotropic ratio 
Niso

N
 increases, 

the anisotropic ratio 
Nanis

N
 decreases, which confirms the definitions of these two ratios, 

and the bulk modulus increases at the same time. Therefore, the nearest material to isotropy 

(or least anisotropy) is ZnS, with 
Niso

N
= 0.9830, in which corresponds to the largest bulk 

modulus B = 78 GPa. The least isotropic (or nearest to anisotropy) is ZnTe, with 
Niso

N
= 

0.9581, in which corresponds to the smallest bulk modulus B = 55.3 GPa.  Since the cubic 
system is the nearest to isotropy among the anisotropic systems, the calculated values of 

isotropic norm ratio, 
Niso

N
, in Table 2 are very close to one (i.e., 0.9581 - 0.9830). Hence, it 

can be concluded that the closer the material is to isotropy, the larger the bulk modulus for 
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the material is.  A reverse trend correlating the norm ratios and lattice constants can be seen 
from the table; the closer the material is to isotropy, the smaller the lattice constant for the 
material is.  
The overall elastic stiffness of II-IV semiconductor compounds ZnS, ZnSe, and ZnTe is 

calculated and found to be directly proportional to bulk modulus and inversely 

proportional to lattice constants. Among these compounds, ZnS has the largest overall 

elastic stiffness and bulk modulus and the smallest lattice constant. Meanwhile, ZnTe has 

the smallest overall elastic stiffness and bulk modulus and the largest lattice constant. The 

Norm Ratio Criteria (NRC) is introduced to scale and measure the isotropy in the cubic 

system material among the semiconductor compounds ZnS, ZnSe, and ZnTe. Hence, a scale 

quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to 

measure the degree of anisotropy in an anisotropic material is proposed. ZnS is the nearest 

to isotropy (or least anisotropic) while ZnTe is the least isotropic (or nearest to anisotropic) 

among these compounds. These conclusions can be investigated on the II-IV semiconductor 

compounds CdX (X=S, Se, Te) in similar manner. 

4.3 The hetrojunction layers compounds in solar photovoltaic cells: CuInSe2, CuInS2, 
AgGaSe2, and AgGaS2 

Various attempts have been made to correlate the bulk modulus of compound 

semiconductors and chalcopyrite compounds with many other physical parameters. 

Nevertheless, it is found that bulk modulus interconnected well with strength and hardness 

in many materials (Choi & Yu, 1996). Therefore, the material stiffness and its corresponding 

bulk modulus is one of the important factors that characterize the physical property of a 

material system which quantifies the degree of stiffness or the energy required to produce a 

given volume deformation. With a good agreement result, an empirical expression for the 

bulk modulus was obtained by Cohen (Cohen, 1985) based on the nearest-neighbour 

distance. Using the total energy method Lam et al. (Lam et al., 1987) obtained an expression 

for bulk modulus with acceptable results. The bulk modulus for the semiconductor 

compounds was found to be inverse proportionally correlated to the lattice constants (Lam 

et al., 1987 & Al-Douri, 2004). Gaith et al (Gaith & Alhayek, 2009) have studied the 

correlation between the bulk modulus and the over all stiffness and lattice constants for CdX 

and ZnX (X=S, Se, and Te) using orthonormal decomposition method (ODM) (Gaith & 

Alhayek, 2009) from continuum mechanics point of view.  

The purpose of this section is to understand how qualitative ground state concepts of the 

hetrojunction layer compounds, CuInSe2, CuInS2, AgGaSe2, and AgGaS2, such as overall 

elastic stiffness, can be related to bulk modulus and lattice constants. Therefore, using the 

elastic coefficients for anisotropic material, an elastic stiffness scale for such anisotropic 

material, and a scale to quantify the isotropic elasticity within the material will be discussed. 

The number of elements of the decomposed stiffness tensor should be equal to the number 
of non-vanishing distinct stiffness coefficients, i.e., six constants for tetragonal materials, that 
can completely describe the elastic stiffness in that medium. Thus, using Orthonormal 
Decomposition Method (ODM), namely, Orthonormal Tensor Basis Method (OTBM) (Gaith 
&  Alhayek, 2009; Gaith & Akgoz, 2005), the matrix representation for the elastic stiffness 
with tetragonal symmetry system is decomposed into a contracted form as shown in Eq. 
(29): 
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C C C 0 0 0
11 12 13 1 1 1 0 0 0

C C C 0 0 0
12 11 13 1 1 1 0 0 0

C C C 0 0 0 1 1 1 0 0 013 13 33C = = A +
ij 10 0 0 C 0 0 0 0 0 0 0 0

44
0 0 0 0 0 00 0 0 0 C 0

44
0 0 0 0 0 0

0 0 0 0 0 C
66

4 -2 -2 0 0 0

-2 4 -2 0 0 0

-2 -2 4 0 0 0
+A

2 0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦
⎡
⎢
⎢
⎢
⎢
⎢

⎣

-3 -1 -1 0 0 0

-1 -3 -1 0 0 0

-1 -1 12 0 0 0
+ A +

3 0 0 0 -1 0 0

0 0 0 0 -1 0

0 0 0 0 0 -1

-3 -5 4 0 0 0 -1 1 0 0 0 0

-5 -3 4 0 0 0 1 -1 0 0 0 0

4 4 0 0 0 0 0 0 0 0 0 0
+A + A

4 50 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 -1

⎤ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

+

-1 1 0 0 0 0

1 -1 0 0 0 0

0 0 0 0 0 0
+A

6 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (29) 

where  

 

1
A = (2C + 2C + C + 4C )

1 11 12 33 1390

1
A = (2C -C + 6C + 3C + C - 2C )

2 11 12 44 66 33 1345

1
A = (-3C -C - 4C - 2C + 6C - 2C )

3 11 12 44 66 33 1390

1
A = (-6C - 10C + 8C + 4C + 16C )

4 11 12 44 66 13144

1
A = (-2C + 2C + 8C - 4C )

5 11 12 44 6616

1
A = (-2C + 2C + 4C )

6 11 12 668

     (30) 
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Where A 1  to A 6  are constants in terms of elastic stiffness coefficients expressed as in Eq. 

(30). It can be observed clearly that the first two terms on the right hand side are identical to 

the corresponding well known two terms namely bulk and shear (Gaith & Akgoz, 2005) 

which are identical to those found in literature (Voigt, 1889)  for the isotropic system 

(Hearmon, 1961). Here, A 1  and A 2 defined in Eq. (2), are the Voigt average polycrystalline 

bulk B and shear modulus G, respectively. Hence, it can be stated that the tetragonal system 

is discriminated into the sum of two parts: isotropic part (first two terms), and anisotropic 

part (other four terms). The latter part resembles the contribution of the anisotropy on 

elastic stiffness in the tetragonal system.  

In solar energy technology, thin film solar technology based on the hetrojunction layer 

compounds CuInSe2, CuInS2, AgGaSe2, and AgGaS2, is very promising due to lower 

production costs and shorter energy pay back times (Fischeret al., 2006). For these 

compounds, the successful interface between absorber and buffer layers with alternative 

materials requires structural and optical material characterization as a prerequisite for 

understanding interfaces in photovoltaic devices (Fischeret al., 2006). On the other hand, 

stability of these compounds in solar cells is of concern due to their application in space, 

where the cells have to withstand high energy particles, mainly electrons and protons that 

can cause severe damage in solar cells up to a complete failure. Therefore, the radiation 

hardness and damage mechanism of the hetrojunction layer compounds solar cells is 

associated with the overall elastic stiffness and bulk modulus (Bätzner et al., 2004). The 

materials elastic stiffness coefficients and lattice constants for CuInSe2, CuInS2, AgGaSe2, 

and AgGaS2 are presented in Table 7. The correlation trend between overall elastic 

stiffness  N and bulk modulus B for each group, i.e.  (CuInS2, CuInSe2) and (AgGaS2, 

AgGaSe2) is clearly shown in Fig. 4; the overall elastic stiffness increases as the calculated 

bulk modulus B increases. Besides, the calculated bulk moduli are in good agreement 

with those found by theory of anisotropy (Hearmon, 1961) and experimental values 

(Cohen, 1985). Also, the bulk modulus for each group is inversely proportional to lattice 

constants a, as shown in Fig. 5, which was confirmed in several studies (Lam et al., 1987; 

Al-Douri et al., 2004; (Christensen & Christensen, 1986; Al-Douri et al., 2001). 

Consequently, the overall elastic stiffness N is inversely proportional to lattice constants a, 

as shown in fig. 3. CuInS2 and AgGaS2 have larger elastic stiffness, largest bulk modulus, 

and lower lattice constant than those for CuInSe2 and AgGaSe2, respectively. Therefore, 

the overall elastic stiffness and bulk modulus, the only elastic moduli possessed by all 

states of matter, reveal much about interatomic bonding strength. The bulk modulus also 

is the most often cited elastic constant to compare interatomic bonding strength among 

various materials (Pantea et al., 2009), and thereafter the overall elastic stiffness can be 

cited as well (Gaith & Alhayek, 2009). 

For the isotropic symmetry material, the elastic stiffness tensor is decomposed into two 

parts (Kim & Chen, 2004; Spencer, 1983; Voigt, 1889; Hearmon, 1961); meanwhile, the 

decomposition of the tetragonal symmetry material, from Eq. (29) is consisted of the same 

two isotropic decomposed parts and other four terms. The Norm Ratio Criteria (NRC) used 

in here is similar to that proposed in (Gaith &  Alhayek, 2009; Gaith & Akgoz, 2005). For 

tetragonal symmetry materials, the elastic stiffness tensor has the same two parts that 

consisting the isotropic symmetry materials and the other four terms, will be designated as 

www.intechopen.com



 Advances in Composites Materials - Ecodesign and Analysis 

 

570 

the other than isotropic or the anisotropic part. Hence, two ratios are defined as: 
Niso

N
 for 

the isotropic parts and 
Nanis

N
for the anisotropic parts. The norm ratios can also be used to 

assess the degree of anisotropy of a material property as a whole. The norms and norm 

ratios for the hetrojunction layer compounds CuInSe2, CuInS2, AgGaSe2, and AgGaS2 are 

calculated and shown in Fig. 7 and 8; as the isotropic ratio 
Niso

N
 increases, the anisotropic 

ratio 
Nanis

N
 decreases and this confirms the definitions of these two ratios, and the bulk 

modulus increases at the same time. 

Therefore, CuInS2 is a closer material to isotropy (or less anisotropy), with 
Niso

N
= 0.9859, 

and larger bulk modulus B = 64.43 GPa than those for CuInSe2. Similarly, AgGaS2 

possesses a closer material structure to isotropy and larger bulk modulus B than those for 

AgGaSe2. 

 

 C11 C12 C44 C13 C33 C66 a 

CuInS2 
 
(Pantea et al., 
2009) 

83.7 54.4 34.5 54.8 84.5 33.9 

0.5532 
 

(Krustok et 
al., 2001) 

CuInSe2 
 
(Pantea et al., 
2009) 

71.0 45.3 45.5 45.3 63.3 47.4 

0.5782 
 

(Kannan et 
al., 2004) 

AgGaS2 
 
(Grimsditch & 
Holah, 1975) 

87.9 58.4 24.1 59.2 84.5 30.8 

0.5759 
 

(Chahed et 
al., 2005) 

AgGaSe2 
 
(Eimerl et al., 
1991) 

89.8 65.7 21.7 45.1 63.3 13.3 

0.5993 
 

(Chahed et 
al., 2005) 

Table 7. Elastic coefficients (GPa) and lattice constants a (nm) for the hetrojunction layers 
compounds 
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Fig. 4. The relation between the overall elastic constant N and bulk modulus B for the  
hetrojunction layer compounds 

 

 

Fig. 5. The relation between the bulk modulus B and lattice constant a for the hetrojunction 
layer compounds 

www.intechopen.com



 Advances in Composites Materials - Ecodesign and Analysis 

 

572 

 

Fig. 6. The relation between the overall elastic constant N and lattice constant a for the 
hetrojunction layer compounds 

 

 

Fig. 7. The relation between the overall elastic constant N and isotropy ratio 
Niso

N
 for the  

hetrojunction layer compounds 
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Fig. 8. The relation between the overall elastic constant N and anisotropy ratio 
Nanis

N
for 

the hetrojunction layer compounds 

A significant contribution of this decomposition method is the direct correlation between the 

macroscopic and microscopic features of a material by means of symmetry properties. Based 

on the Orthonormal Tensor Basis Method (OTBM), the elastic stiffness for tetragonal system 

materials into two parts; isotropic (two terms) and anisotropic (four parts) is presented. The 

overall elastic stiffness is calculated and correlated with lattice constants and calculated bulk 

modulus for the hetrojunction layer compounds CuInSe2, CuInS2, AgGaSe2, and AgGaS2. 

The overall elastic stiffness is quantified and correlated to bulk modulus and inversely 

proportional to lattice constants. CuInS2 and AgGaS2 have larger overall elastic stiffness 

and bulk modulus and the smaller lattice constant than CuInSe2 and AgGaSe2, respectively. 

Based on the Norm Ratio Criteria (NRC), the hetrojunction layer compounds CuInS2 and 

AgGaS2 are closer to isotropy (or less anisotropic) than CuInSe2 and AgGaSe2. 

5. Conclusion  

Any physical property is characterized by n rank tensors, and this method is capable for 

decomposing these tensors with intrinsic symmetry, which is derived from the nature of the 

physical property itself, of any rank into orthonormal tensor basis. This method is capable to 

decompose tensors with non-intrinsic symmetry of rank n by generating an orthonormal 

basis using the well Known Gram-Schmidt process for the corresponding symmetry media 

of that tensor, and the number of basis elements should be equal to the number of non-

vanishing distinct coefficients in that media. The decomposition procedure developed in 

this work has many engineering applications in anisotropic elastic materials which are, both 
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qualitatively and quantitatively, different from isotropic materials. A new innovational 

decomposition of general and more explicit physical property for the symmetric second 

rank stress and strain tensors is introduced. The results are compared and found to be 

identical for special cases available in literature (Spencer, 1983; Cowin & Mehrabadi, 1987; 

Hue & Del Piero, 1991; Srinivasan, 1998; Blinowski & Rychlewski, 1998; Tu, 1968; Nye, 1959; 

Ikeda, 1990).  Nevertheless, this method is introducing a new form of decomposition that 

has a more featured and transparent physical information. The Criteria to measure the 

overall effect of the material properties proposed using the norms to represent the 

piezoelectricity and stiffness effect in the material like piezoceramics and fiber-reinforced 

composites, respectively. Through this method it is possible to study the effect of angle 

orientation of fibers and the material properties of fiber and matrix on the stiffness of the 

composite. A new proposed norm ratios criterion is introduced to measure the anisotropy 

degree and compare it with other materials of different symmetries. These ratios can be used 

to study the linear and non-liner damage parameters using total energy for fiber reinforced 

composite structures (will be published soon).  
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