
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



19 

Understanding the Effects of Fires on  
Surface Evapotranspiration Patterns Using  

Satellite Remote Sensing in Combination  
with an Energy Balance Model  

Juan M. Sánchez1, Vicente Caselles2 and Eva Rubio1 

1University of Castilla-La Mancha 
2University of Valencia 

Spain 

1. Introduction    

Forest fires are highly destructive for nature, affecting the landscape, the natural cicle of the 

vegetation, and the structure and functioning of ecosystems. Beyond that, they also provoke 

changes in the local and regional meteorology, and particularly in the surface energy flux 

patterns. In a fire-affected area, changes in the ecosystem structure and species composition 

modify the evapotranspiration (LE) and the rest of the terms involved in the energy balance 

equation. Besides, these changes in the local energy balance may persist for decades 

(Randerson et al., 2006). There is an increasing concern among the scientific community 

about the effect of forest fires on climate change at this point (Randerson et al. 2006). In this 

work we focus on the study of the changes in the energy flux patterns after a forest fire, with 

particular emphasis on the evapotranspiration, which effect on the global system should be 

further analyzed by the radiative forcing models. 

The physical characterization of the hydrological processes plays a very important role in 
the framework of the activities for the management of hydrological resources. Particularly, 
the soil-vegetation-atmosphere energy exchanges are the basis of an appropriate 
hydrological balance, and thus, of an appropriate planning of the hydrological resources. 
The fusion of physical models for estimating the hydrological balance, and particularly the 
evapotranspiration, with technological advances for the characterization of hydrological, 
hydro-geological, and atmospheric issues, is of great utility. Although there are several 
surface-based methods that can accurately measure surface heat fluxes at point locations, it 
is not feasible to use a network of these systems to create spatially distributed flux maps 
because of the high variability of real landscapes. As stated by Scott et al. (2000), 
micrometeorological approaches can only realistically provide measurements representative 
of a particular type of vegetation cover when there is a reasonably extensive, uniform area 
of that vegetation immediately upwind of the instruments. The use of remote sensing 
techniques supplies the frequent lack of ground-measured variables and parameters 
required to apply the local models at a regional scale. Modelling evapotranspiration is very 
sensitive to the surface features and conditions. For this reason, a regional model must 
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account for the surface variability. In this context, satellite remote sensing has become a 
basic tool since it allows us the regular monitoring of extensive areas. Different surface 
variables and parameters can be extracted from the combination of the multi-spectral 
information contained in a satellite image. The surface can be characterized with a detail 
depending on the spatial resolution of the sensor used. One of the goals of remote sensing is 
to provide us with data on barely accessible areas. This includes some regions such as, for 
example, forest areas where evapotranspiration retrieval is more difficult due to evident 
limitations on experiments. 
The basis of the remote sensing models using thermal infrared data for determining 
evapotranspiration is the direct relationship between surface thermodynamic temperature 
and energy balance, which has long been recognized by meteorologists and hydrologists. 
The surface thermodynamic temperature can be obtained from the brightness temperature 
after atmospheric and emissivity corrections. Monteith (1973) proposed a single source 
model based on a convection analogue to Ohm´s Law to obtain the sensible heat flux. 
However, the evaluation of this single source model showed important limitations for 
partial canopy cover conditions (Hall et al. 1992). Two-source (soil + vegetation) layer 
models have been developed to accommodate partial canopy cover conditions considering 
energy exchange between soil and canopy components (Shuttleworth & Wallace, 1985; 
Choudhury & Monteith, 1988, Norman et al., 1995, Sánchez et al., 2008).   
Inoue and Moran (1997) proposed a simple method to estimate daily values of actual canopy 
transpiration. The method utilizes instantaneous differences of canopy and air temperature 
around mid-day as a major input. Results were found to be well correlated to those 
measured by sap-flow heat balance method in soybean canopies. Anderson et al. (1997) 
presented an operational two-source (soil+vegetation) model for evaluating the surface 
energy balance given measurements of the time rate of change in radiometric surface 
temperature during morning hours. Using this model, the need for ancillary measurements 
of near-surface air temperature is eliminated. The performance of this model was evaluated 
in comparison with data collected during the first International Satellite Land Surface 
Climatology Project field experiment, in Kansas, and the Monsoon ´90 experiment, 
conducted in southern Arizona. Comparisons yielded uncertainties comparable to 
measurement errors typical of standard micrometeorological methods for flux estimation. 
Chehbouni et al. (2001) used dual angle observations of radiative surface temperature in 
conjunction with a two-layer model to derive sensible heat flux over the Semi Arid Land 
Surface Atmosphere program (SALSA) in Mexico. The average error was about 23%. Moran 
et al. (1994) introduced a water deficit index for evaluating evapotranspiration rates of both 
full cover and partially vegetated sites. This index can be computed using remotely sensed 
measurements of surface temperature and reflectance with limited on-site meteorological 
data. Comparison with simulations of a two-source energy balance model showed accurate 
estimates of field evapotranspiration rates. French et al. (2005) used data from ASTER 
collected over an experimental site in central Iowa, in the framework of the Soil moisture 
Atmosphere Coupling Experiment (SMACEX), to retrieve surface energy fluxes. Two 
different approaches, designed to account for the spatial variability, were considered: the 
Two-Source Energy Balance model (TSEB) and the Surface Energy Balance Algorithm for 
Land model (SEBAL). Comparison of the results with eddy covariance measurements 
showed better agreement using the TSEB model with average deviations lower than 20 W 
m-2. These results were also supported by Li et al. (2005). These authors compared local 
model output using two different versions of the TSEB (series and parallel) with tower-
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based flux observations. Root mean square differences ranged from 20 to 50 W m-2. In this 
case, land surface temperatures were derived from high resolution Landsat Thematic 
Mapper (TM) and Enhanced Thematic Mapper (ETM+) scenes and aircraft imagery. Su et al. 
(2005) also used SMACEX data to evaluate the Surface Energy Balance System (SEBS) model 
using both high-quality local-scale data and high-resolution remote sensing data from the 
Landsat ETM+. 
Despite the wide variety of remote sensing-based works and proposed models on 
evapotranspiration retrieval, there is not a generalized agreement about the most appropriate 
model depending on the application area. In this work, we present a methodology focused on 
the LE retrieval from high-resolution satellite data. The bases of this method are the energy 
balance equation and a Simplified Two-Source Energy Balance (STSEB) model proposed by 
Sánchez et al. (2008) for estimating instantaneous surface fluxes. This model was validated 
over a variety of surface conditions with good results. Also, an exhaustive analysis of 
sensitivity to typical uncertainties (assumed for a regional variability) in the required inputs 
was performed by these authors (Sánchez et al., 2008, 2009). The combination of the STSEB 
model with remote sensing techniques results in an operational methodology to retrieve 
evapotranspiration at a regional scale from remote sensing and local meteorological data. In 
this work we show the application of this methodology to Landsat imagery and a particular 
region in Spain, but it could be extended to other high-resolution sensors, and what it is even 
more interesting, to any other regions in the world. 
In this work we focus on an area, located in Almodovar del Pinar, Cuenca (Spain), affected 
by a forest fire in the summer of 2001. This fire destroyed 172 ha of pine forest and 
shrubland. After the fire this area became an intensive study site. Our objective is to 
quantify the effect of this forest fire in terms of net radiation, soil and sensible heat fluxes, 
and evapotranspiration in the two land cover classes dominant in the area, mature pine 
forests and shrublands. With this aim we applied the STSEB model (Sánchez et al., 2008) to a 
set of 5 images Landsat 5 Thematic-Mapper (TM) corresponding to the period July 2007- 
July 2008. 

2. Methodology     

The governing equation is the Energy Balance Equation (EBE) of the land surface, which 
models a system formed by vegetation, surrounding soil, and atmosphere: 

 nR G H LE= + +  (1) 

where Rn is the net radiation flux (W m-2), G is the soil heat flux (W m-2), H is the sensible 
heat flux (W m-2) and LE is the latent heat flux in the atmosphere boundary  layer (W m-2). 
According to Seguin and Itier (1983): 

 d i

nd ni

H H

R R
=   (2) 

where the subscripts i and d refer to instantaneous and daily fluxes, respectively. 
On diurnal timescales, G can constitute an important contribution to the EBE (Choudhury, 
1987; Santanello and Friedl, 2003). However, at a daily scale G can be neglected in equation 
(1) (Seguin and Itier, 1983; Lagouarde and McAneney, 1992; Sánchez et al., 2007), and LE can 
be obtained from equations (1) and (2) as: 
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 ( )nd
d ni i

ni

R
LE R H

R
= −   (3) 

Using equation (3), LEd can be obtained from the instantaneous values of Rn and H at a 
particular time of day, and the relative net radiation contribution at that time when global 
radiative exchange is integrated, Rnd/Rni. 
The instantaneous net radiation is estimated by establishing a balance between the long-
wave and the short-wave radiation: 

 4(1 )n sky RR S L Tα ε εσ= − + −   (4) 

where S is the solar global radiation (W m-2), TR is the radiometric land surface temperature, 
α is the surface albedo, ε is the surface effective emissivity, and ǔ is the Stefan-Boltzmann 
constant. Lsky is the incident long-wave radiation (W m-2). 
In the STSEB approach proposed by Sánchez et al. (2008), the ground surface is divided in 
two components, canopy and soil surrounding (Fig. 1). According to this configuration, the 
total sensible heat flux is obtained by the addition between the soil and canopy 
contributions, Hs and Hc, respectively: 

 (1 )v c v sH P H P H= + −   (5) 

In this equation, Pv is the vegetation cover, and Hs and Hc are expressed as:  

 c a
c p h

a

T T
H C

r
ρ −

=   (6a) 

 s a
s p a s

a a

T T
H C

r r
ρ −

=
+

  (6b) 

where ρCp is the volumetric heat capacity of air (J K-1m-3), Ta is the air temperature at a 
reference height (K), Tc and Ts are the canopy and soil radiometric temperatures, 
respectively, rah is the aerodynamic resistance to heat transfer between the canopy and the 
reference height (m s-1), raa is the aerodynamic resistance to heat transfer between the point 
z0+d (z0: roughness length, d: displacement height) and the reference height (m s-1), ras is the 
aerodynamic resistance to heat flow in the boundary layer immediately above the soil 
surface (m s-1). A summary of the expressions to estimate these resistances using the wind 
speed and crop height, and more details about the STSEB model can be seen in Sánchez et 
al. (2008).  
Finally, the instantaneous soil heat flux can be obtained as a fraction of the net radiation: 

 (1 )G v nG C P R= −  (7) 

In this work we used a value of CG=0.275 (mean value of the usual range 0.15-0.40). 

2.1 Surface temperature and emissivity 
Landsat-TM and ETM+ sensors possess a unique thermal band with a spectral range of 10.4-
12.5 μm, and an effective wavelength of 11.457 μm. This limitation does not allow to apply 
split-window methods neither Temperature/Emissivity Separation (TES) methods. 
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Fig. 1. Scheme of resistances and flux partitioning between soil and canopy, corresponding 
to the STSEB approach. Symbols are defined in the text. 

Therefore, a single-channel method, based on the radiative transfer equation, was used. The 
remotely measured channel radiance, Ri, consist of two main contributions: (1) the radiance 
at surface level, which is attenuated by the absorption of the atmosphere between the 

surface and the instrument, characterized by the atmospheric transmittance, τi, and (2) the 
upwelling sky radiance emitted by the atmosphere in the viewing direction, Li

⇑
atm (θ), so that 

Ri, in agreement with the radiative transfer equation, is stated as: 

 ( ) 1i i i R i i
i atm hem i atm

R B T L Lε ε τ⇓ ⇑⎡ ⎤
= + − +⎡ ⎤⎢ ⎥⎣ ⎦
⎣ ⎦

 (8) 

where Bi(TR) is Planck´s function for a temperature TR, εi is the surface emissivity and Li
⇓ atm 

hem is the hemispheric downwelling sky irradiance divided by π (Lambertian reflection 
assumed). Radiosounding data were introduced into the MODTRAN 4.0 code (Berk et al., 

1999) to get estimates of τi, Li
⇑

atm (θ) and Li
⇓ atm hem. Altough equation (8) depends on the 

observation angle (θ), the nadir view provides good results for Landsat-TM and ETM+.  A 
simple and operational equation proposed by Valor & Caselles (2005) was used to estimate 
the surface emissivity from the knowledge of the vegetation cover, Pv, and the emissivities 
of the soil and canopy components, εs and εc, respectively. 

 (1 )(1 1.74 ) 1.7372 (1 )c v s v v v vP P P P Pε ε ε= + − − + −   (9) 

Equation (9) includes the effect of the geometrical distribution of the vegetated surface and 
also the internal reflections. Typical emissivity values can be assumed for εc and εs (Rubio et 
al., 1997, 2003). 

2.2 Vegetation cover 
Bands 3 (0.63-0.69 μm) and 4 (0.76-0.90 μm) of TM and ETM+ were used to estimate NDVI. 
Previously, visible and near-infrared bands were corrected of atmospheric effects using the 
radiosounding data and the MODTRAN 4.0 code. For this purpose, the at-surface channel 
reflectivity, ρi, is calculated with the following equation: 
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2( )

( cos( ) ( ) )

i i atm
i

i i i atm hem

R L d

ESUN L

π
ρ

τ α τ α

⇑

⇓

−
=

+
  (10) 

where Ǖ(α) is the atmospheric transmissivity between the sun and the surface, α is the 
zenithal solar angle, ESUNi is the spectral solar irradiance on the top of the atmosphere, and 
d is the Earth-Sun distance.  
Vegetation cover was obtained through the expression (Valor & Caselles, 1996): 

 

1

1 1

s
v

s v

NDVI

NDVI
P

NDVI NDVI
K

NDVI NDVI

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (11) 

where the coefficient K is obtained by: 

 v v

s s

NIR RED

NIR RED

R R
K

R R

−
=

−
 (12) 

where RNIR is the near infrared reflectivity, and RRED is the red visible reflectivity. The 
subscript v and s correspond to completely vegetated and unvegetated areas, respectively, 
selected by looking at the spectral contrast among bands 3-5. These selected areas were also 
used to estimate Tc and Ts, required in equations (6a) and (6b), respectively, from the land 
surface temperature maps generated. 
 

Agro-meteorological

stations

Land use map
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+ MODTRAN 4
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Rni

LEd

Landsat images
Visible and infrared
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TR
(Tc , Ts)

α

ε
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DEM
Gi

 

Fig. 2. Scheme of the methodology proposed to retrieve actual daily evapotranspiration at a 
regional scale. 
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2.3 Albedo 
Some authors such as Dubayah (1992), Duguay (1992), etc, divided the spectral region from 
0.3 to 3.0 μm into 10 spectral bands to estimate surface albedo. Each band has a different 
integrating weight according to the typical vegetation spectral reflectance pattern. In this 
paper, the surface albedo is integrated by using the equation (Dubayah, 1992): 

 1 2 3 4 5 70.221 0.162 0.102 0.354 0.059 0.0195α ρ ρ ρ ρ ρ ρ= + + + + +   (13) 

where ρi is the corrected reflectivity for the i band of TM or ETM+. The average error of the 
calculated surface net radiation, using equation (12) for estimating the albedo, is around 2% 
when comparing to field measurements (Dubayah, 1992). 

2.4 Meteorological variables 
Ancillary meteorological data are required to complete the set of variables and parameters 
involved in the previously shown scheme of equations. Air temperature, Ta, is necessary in 
equations (6a) and (6b) to estimate the exchange of sensible heat flux between the surface 
and the atmospheric boundary layer. Wind speed, u (m s-1), is required in the expressions to 
calculate the aerodynamic and soil resistances taking part in the STSEB model (Sánchez et 
al., 2008). The global solar radiation, S, and the incident long-wave radiation, Lsky, are 
necessary in the net radiation balance (Eq. 4). All these variables, except Lsky, are 
continuously registered in typical agro-meteorological stations, regional maps can be 
created by interpolating the data registered in a network of stations distributed within the 
study area. Regarding Lsky, due to its known spatial homogeneity across a relative extensive 
area (Humes et al., 2002), a single value of this variable can be used for each image, and it 
can be obtained from launched radiosoundings. Sánchez et al. (2008) showed that particular 
care must be taken with the air temperature when the STSEB model is applied since an 
uncertainty in Ta can lead to a significant error in the evapotranspiration retrieval. For this 
reason a Digital Elevation Model (DEM) can be considered in order to obtain more reliable 
maps of this meteorological variable. 
A scheme of the methodology exposed is shown in Figure 2. 
 

  
                                            (a)                                                               (b)                              (c) 

Fig. 3. (a) Location of the study site. (b) Overview of the burned area, and the Bowen station 
placed in site. (c) Overview of the forested_c areas, and the meteorological tower placed in site. 

3. Study site 

The study site is a forest area, with some inserted crop fields, located in Almodóvar del 

Pinar, Cuenca (39º 40´N, 1º 50´W, 950 m above sea level) (Fig. 3a). Climate is mediterranean, 

www.intechopen.com



 Evapotranspiration 

 

438 

with warm and dry summers, and cool winters. The dominant tree species is Pinus pinaster 

Ait., but many other species coexist. In the summer of 2001, a fire affected a total of 172 ha of 

which 113 ha were covered by pines and 59 ha by shrubs (Fig. 4). After the fire, the species 

Quercus ilex L. was occupying the burned area as a consequence of a natural regeneration 

process. Four 125×125 m test sites, two inside and two outside the burned area perimeter, 

were selected for this study, as samples of both pine areas and shrublands. Test sites outside 

the fire perimeter were called control sites (_c). Environmental conditions in these control 

sites mimic those in the two test sites inside the burned perimeter in case the fire had never 

happened. A meteorological tower was placed in the Forest_c area (Fig. 3c) with the 

instrumentation necessary to measure air temperature and wind speed, at several heights, as 

well as incident solar radiation, precipitation, etc. Also, a Bowen station was set up in the 

Forest site in september 2007 (Fig. 3b). Moreover, we selected a nearby area representative of 

a mature holm oak forest to analyze the effect of the fire on a future scenario in which pines 

are replaced by holm oaks as the dominant species. For this work we have used a set of 5 

Landsat 5-TM scenes (19 July 2007, 4 August 2007, 28 September 2007, 2 May 2008, 21 July 

2008) with a spatial resolution of 30 m for the visible and near infrared bands, and 120 m for 

the thermal band (all bands were rescaled to 25 m). Also, the atmospheric profiles required 

for the atmospheric correction of the images were obtained from the website http://atm-

corr.gsfc.nasa.gov/. 

 
 

 

 
 

Fig. 4. Study site: (a) False color composition (7,5,3) from a L7-ETM+ image for the 8 June 
2001 (prior fire), (b) Idem for the 26 July 2001 (post- fire), (c) Land use map before the fire, 
(d) Idem after the fire. 
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4. Results 

4.1 Comparison with control areas 
Firstly, the similarity between the control sites and the fire-affected areas was tested. For 
this, two Landst 7-ETM+ were used, before and after the fire date (8 June 2001 and 26 July 
2001). Using digital count data, without further processing, we compared values obtained in 
both sites for each one of the 7 Landsat channels. Figure 5a shows this comparison prior the 
fire. Differences between the control areas and those affected by the fire a few days 
afterwards are negligible. However, these differences are evident after the fire (Fig. 5b). A 
significant increase is observed in values of bands 6 (thermal infrared) and 7, whereas 
values decrease in band 4 (near infrared), consequence of the vegetation disappearance. 
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(b) 

Fig. 5. Average digital count values, and their corresponding error bars, for each one of the 
selected areas, and differences with their corresponding control areas, (a) before the fire, (b) 
after the fire. Spectral ranges for the different bands: (1) 0.45-0.52 µm, (2) 0.52-0.60 µm, (3) 
0.63-0.69 µm, (4) 0.76-0.9 µm, (5) 1.55-1.75 µm, (6) 10.4-12.5 µm, (7) 2.08-2.35 µm. 
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4.2 Comparison with observed fluxes 
Once processed with MODTRAN the atmospheric profiles for each one of the Landsat 
images, we obtained the atmospheric parameters required for the atmospheric correction of 
the different bands. Inputs required in equations (6), (11), and (12), were extracted after 
selecting a full covered area and a bare soil area. Merging the satellite information with 
values of air temperature, wind speed and global radiation, the data set we need is 
completed. Figure 6 shows, as an example, maps generated from the 28 September 2007 
image. Three of the five scenes in the present study are concurrent with ground flux 
measurements, which allows us to compare flux results with values registered in the Bowen 
station located in the forest site. Table 1 lists the values estimated and those ground-
measured. A good agreement is shown between predicted and observed fluxes. To sum up, 
relative errors of 7% (40 W m-2), 12% (10 W m-2), 19% (70 W m-2), and 21% (21 W m-2) are 
obtained for Rn, G, H, and LE, respectively, at a instantaneous scale, while at a daily scale 
errors are 6% (11 W m-2), 3% (4 W m-2), and 22% (10 W m-2) for Rn, H, and LE, respectively. 
Note that this is not a robust validation, however the model has been previously tested 
under different coverages (Sánchez et al., 2008, 2009). 
 

Date 
Instantaneous 

Observed / Estimated 
Daily 

Observed / Estimated 
Rn 

28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
492 
633 
653 

 

 
544±7 
640±6 
626±7 

 

 
118 
187 
203 

 

 
130.6±1.7 
192.0±1.8 

194±2 
 

G 
28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
123 
134 
101 

 

 
98±6 

125±6 
105±7 

 

 
 

 
 

H 
28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
305 
386 
427 

 

 
390±30 
365±19 
375±25 

 

 
92 

118 
122 

 

 
91±7 
110±6 
116±8 

 

LE 
28 Sep.2007 
2 May 2008 
21 Jun.2008 

 
64 

113 
126 

 
60±40 
150±30 
150±40 

 
25 
51 
61 

 
38±8 
83±7 
78±9 

Table 1. Estimated and observed values of the surface energy fluxes (Wm-2) at the forest site. 

4.3 Analysis of the fire effect 
Average values of the fluxes and most significant parameters of the model were obtained for 

each one of the test sites and dates. Note that the fire event occurred in 2001, and 6 years is 

enough time for the shrublands to recover its original stage (prior the fire); however, it is a 

very short time period for the forested area. This can be seen in the average values of NDVI 

and Pv listed in Table 2. A similar effect can be observed in terms of surface temperature. In 

the forest site TR values are, in average, 6 ºC higher in the burned area, whereas in the 
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shrubs site, temperature is 0.6 ºC lower in the burned area. These differences are in 

agreement with those observed by other authors in similar studies (Amiro et al., 1999). After 

those 6 years, the effect of the fire on the energy flux pattern has almost disappeared in the 

shrub sites, while it is still significant in the forested sites. Figure 7 shows the plots with the 

average values (for the 5 study dates) of the differences in terms of energy fluxes between 

calculated values for the forested and shrub test sites and their respective control sites. The 

increase in albedo and TR produces a decrease in both shortwave and longwave net 

radiation, yielding an average net decrease in Rni of 54±5 W m-2. The opposite effect is 

observed in Gi, with an average increase of 43±10 W m-2. At a daily scale the average decrese 

in Rnd results 15±3 W m-2. Sensible heat flux is higher in the burned area, in average 160±40 

W m-2 at the time of the satellite overpass, and 45±9 W m-2 at daily scale, whereas latent heat 

flux is lower, 250±50 W m-2 at the time of the satellite overpass, and 61±7 W m-2 (2.1±0.2 

mm/day) at daily scale. Therefore, even though the effect of the fire on the total net 

radiation is not very important, it is significant the increase in the Bowen ratio (H/LE), and 

the drastic decrease in the evapotranspiration in forested areas. 

 

Date 
Forest 

Control    Burned 
Shrub 

Control    Burned 
Mature holm 

oak forest 
Albedo 
19 Jul. 2007 
4 Aug.2007 
28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
0.117 
0.119 
0.095 
0.116 
0.114 

 

 
0.140 
0.134 
0.115 
0.127 
0.131 

 
0.124 
0.126 
0.098 
0.119 
0.120 

 
0.139 
0.138 
0.12 
0.128 
0.134 

 
0.144 
0.143 
0.132 
0.135 
0.138 

NDVI 
19 Jul. 2007 
4 Aug.2007 
28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
0.43 
0.40 
0.63 
0.46 
0.44 

 

 
0.29 
0.28 
0.38 
0.28 
0.33 

 
0.32 
0.29 
0.42 
0.29 
0.35 

 
0.31 
0.29 
0.38 
0.29 
0.35 

 
0.35 
0.33 
0.45 
0.37 
0.39 

Pv 
19 Jul. 2007 
4 Aug.2007 
28 Sep.2007 
2 May 2008 
21 Jun.2008 
 

 
0.58 
0.52 
0.74 
0.63 
0.61 

 

 
0.33 
0.29 
0.34 
0.29 
0.39 

 
0.37 
0.31 
0.41 
0.33 
0.43 

 
0.36 
0.31 
0.35 
0.32 
0.44 

 
0.44 
0.39 
0.46 
0.48 
0.51 

TR (ºC) 
19 Jul. 2007 
4 Aug.2007 
28 Sep.2007 
2 May 2008 
21 Jun.2008 

 
36.8 
37.5 
21.4 
18.6 
26.2 

 
42.9 
43.5 
27.1 
25.3 
33.1 

 
42.1 
43.3 
26.0 
22.1 
31.6 

 
41.2 
42.8 
25.8 
21.4 
30.7 

 
39.5 
40.6 
24.5 
22.0 
30.0 

 
Table 2. Average values of the main radiometric parameters for all study sites and dates. 
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                                      (a)               (b) 

         

                                    (c)                                         (d) 

         
                                   (e)                (f) 

Fig. 6. Instantaneous values of: (a) Pv, (b) TR (ºC), (c) Rn (W m-2), (d) G (W m-2), (e) H (W m-2) 
and (f) LE (W m-2), obtained from the L5-TM image corresponding to the date 28 September 
2007.  
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(b) 

Fig. 7. Average values of the differences between burned and non-burned areas in terms of 
Rn, G, H, and LE: (a) Instantaneous fluxes; (b) Daily fluxes. Error bars represent the standard 
deviations of the averages. 

Figure 7 shows also the effect of the fire in a future scenario in which the burned area has 
been naturally reforested and a mature holm oak forest is occupying the area. With this aim, 
differences between the forest_c area and a selected area representative of the mature holm 
oak forest are shown. Note that the net radiation is barely affected by the pass of the years. 
However, differences in terms of G, H, and LE would be half reduced at both instantaneous 
and daily scales. Despite this reduction significant differences in the flux patterns remain 
when replacing the pine with the holm oak as the dominant species. Thus we might 
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conclude a irreversible reduction above 1 mm/day in the fire-affected area, even many years 
after the event. It would be desirable to expand this study to coming years and perform a 
more detailed temporal monitoring of the flux patterns in the area. 

5. Conclusions 

We have analyzed the effect of a fire on the energy flux pattern in a mediterranean forest 
area affected by a fire in the summer of 2001, located in a central Spain region. High 
resolution satellite imagery has been used, and two different ecosystems, a pines area and a 
shrublands area, have been studied. Maps of the different fluxes have been obtained for 
each one of the 5 Landsat 5-TM images, applying the described methodology. Validation 
with ground measurements shows relative errors of 7, 12, 19, and 21% for Rn, G, H, and LE, 
respectively, at a instantaneous scale, and of 6, 3, and 22% for Rn, H, and LE, respectively, at 
a daily scale. These results are in agreement with those obtained in recent validations of the 
presented methodology under different land cover types. The effect of the fire in the 
shrubland test site is negligible after 6 years. However, in the forested test site, an increase in 
H over 150 W m-2, and a decrease in LE over 250 W m-2, still remain around midday. At a 
daily scale the increase in H results 40 W m-2, and the decrease in LE over 60 W m-2 (2.1 
mm/day). This is mainly due to fire effects such as the decrease in Pv of almost 30%, or the 
increase in TR of 6 ºC approximately. Additional comparison with a nearby area covered by 
mature holm oak allows the analysis of the effect of the replacement of the pine with the 
holm oak as the dominant species, consequence of a natural post-fire regeneration process. 
The main result is the irreversible reduction of more than 1 mm/day produced in terms of 
daily evapotranspiration, that might have an impact on the local hydrological cycle and also 
on the local, or even regional, meteorology. 
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