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1. Introduction

It is well known that in low-dimensional systems, the motion of electrons is restricted. The
confinement of electron in these systems has changed the electron mobility remarkably.
This has resulted in a number of new phenomena, which concern a reduction of sample
dimensions. These effects differ from those in bulk semiconductors, for example, electron-
phonon interaction effects in two-dimensional electron gases (Mori & Ando, 1989; Rucker
et al., 1992; Butscher & Knorr, 2006), electron-phonon interaction and scattering rates
in one-dimensional systems (Antonyuk et al., 2004; Kim et al., 1991) and dc electrical
conductivity (Vasilopoulos et al., 1987; Suzuki, 1992), the electronic structure (Gaggero-Sager
et al., 2007), the wave function distribution (Samuel & Patil, 2008) and electron subband
structure and mobility trends in quantum wells (Ariza-Flores & Rodriguez-Vargas, 2008).
The absorption of electromagnetic wave in bulk semiconductors, as well as low dimensional
systems has also been investigated (Shmelev et al., 1978; Bau & Phong, 1998; Bau et al., 2002;
2007). However, in these articles, the author was only interested in linear absorption, namely
the linear absorption of a weak electromagnetic wave has been considered in normal bulk
semiconductors (Shmelev et al., 1978), the absorption coefficient of a weak electromagnetic
wave by free carriers for the case of electron-optical phonon scattering in quantum wells
are calculated by the Kubo-Mori method in quantum wells (Bau & Phong, 1998) and in
doped superlattices (Bau et al., 2002), and the quantum theory of the absorption of weak
electromagnetic waves caused by confined electrons in quantum wires has been studied based
on Kubo’s linear response theory and Mori’s projection operator method (Bau et al., 2007); the
nonlinear absorption of a strong electromagnetic wave by free electrons in the normal bulk
semiconductors has been studied by using the quantum kinetic equation method (Pavlovich
& Epshtein, 1977). However, the nonlinear absorption problem of an electromagnetic wave,
which has strong intensity and high frequency, in low dimensional systems is still open for
study.
In this book chapter, we study the nonlinear absorption of a strong electromagnetic wave in
low dimensional systems (quantum wells, doped superlattices, cylindrical quantum wires and
rectangular quantum wires) by using the quantum kinetic equation method. Starting from
the kinetic equation for electrons, we calculate to obtain the electron distribution functions
in low dimensional systems. Then we find the expression for current density vector and
the nonlinear absorption coefficient of a strong electromagnetic wave in low dimensional
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2 Electromagnetic Waves

systems. The problem is considered in two cases: electron-optical phonon scattering
and electron-acoustic phonon scattering. Numerical calculations are carried out with a
AlAs/GaAs/AlAs quantum well, a compensated n-p n-GaAs/p-GaAs doped superlattices,
a specific GaAs/GaAsAl quantum wire.
This book chapter is organized as follows: In section 2, we study the nonlinear absorption of
a strong electromagnetic wave by confined electrons in a quantum well. Section 3 presents
the nonlinear absorption of a strong electromagnetic wave by confined electrons in a doped
superlattice. The nonlinear absorption of a strong electromagnetic wave by confined electrons
in a cylindrical quantum wire and in a rectangular quantum wire is presented in section 4 and
section 5. Conclusions are given in the section 6.

2. The nonlinear absorption of a strong electromagnetic wave by confined

electrons in a quantum well

2.1 The electron distribution function in a quantum well

It is well known that in quantum wells, the motion of electrons is restricted in one dimension,
so that they can flow freely in two dimension. The Hamiltonian of the electron - phonon
system in quantum wells in the second quantization representation can be written as (in this
chapter, we we select h̄=1)

H = H0 = ∑
n,�p⊥

εn(�p⊥ − e

c
�A(t))a+

n,�p⊥
an,�p⊥ + ∑

�q

ω�qb+
�q

b�q+

+ ∑
n,n′ ,�p⊥ ,�q

C�q In,n′ (qz)a+
n′ ,�p⊥+�q⊥

an,�p⊥ (b�q + b+−�q), (1)

where e is the electron charge, c is the velocity of light, n denotes the quantization of the energy
spectrum in the z direction (n = 1,2,...), (n, �p⊥) and (n’, �p⊥ +�q⊥) are electron states before and
after scattering, respectively. �p⊥(�q⊥) is the in plane (x,y) wave vector of the electron (phonon),
a+

n,�p⊥
and an,�p⊥ (b

+
�q

and b�q) are the creation and the annihilation operators of electron (phonon),

respectively. �q =(�q⊥,qz), �A(t) = c
Ω
�E0cos(Ωt) is the vector potential, �E0 and Ω are the intensity

and the frequency of the EMW, ω�q is the frequency of a phonon, C�q is the electron-phonon

interaction constants, In′ ,n(qz) is the electron form factor in quantum wells.
In order to establish the quantum kinetic equations for electrons in a quantum well, we use the
general quantum equation for the particle number operator (or electron distribution function)

nn,�p⊥ (t) =
〈

a+
n,�p⊥

an,�p⊥

〉
t

i
∂nn,�p⊥ (t)

∂t
=

〈
[a+

n,�p⊥
an,�p⊥ , H]

〉
t
, (2)

where
〈

ψ
〉

t
denotes a statistical average value at the moment t, and

〈
ψ
〉

t
= Tr

(
Ŵψ̂

)
( Ŵ

being the density matrix operator). Starting from the Hamiltonian Eq. (1) and using the
commutative relations of the creation and the annihilation operators, we obtain the quantum
kinetic equation for electrons in quantum wells:

∂nn,�p⊥ (t)

∂t
= −∑

�q,n′
|C�q|2|In,n′ |2

∞

∑
k,s=−∞

Jk(
e�E0�q⊥
mΩ2

)Js(
e�E0�q⊥
mΩ2

)exp[−i(s − k)Ω]
∫ t

−∞
dt′
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The Nonlinear Absorption of a Strong Electromagnetic Wave in Low-dimensional Systems 3

×
{
[nn,�p⊥ (t

′)N�q − nn′ ,�p⊥+�q⊥ (t
′)(N�q + 1)]exp[i(εn′ ,�p⊥+�q⊥ − εn,�p⊥ − ω�q − kΩ + iδ)(t − t′)]

+ [nn,�p⊥ (t
′)(N�q + 1)− nn′ ,�p⊥+�q⊥ (t

′)N�q]exp[i(εn′ ,�p⊥+�q⊥ − εn,�p⊥ + ω�q − kΩ + iδ)(t − t′)]

− [nn′ ,�p⊥−�q⊥ (t
′)N�q − nn,�p⊥ (t

′)(N�q + 1)]exp[i(εn,�p⊥ − εn′ ,�p⊥−�q⊥ − ω�q − kΩ + iδ)(t − t′)]

− [nn′ ,�p⊥−�q⊥ (t
′)(N�q + 1)− nn,�p⊥ (t

′)N�q]exp[i(εn,�p⊥ − εn′ ,�p⊥−�q⊥ + ω�q − kΩ + iδ)(t − t′)]
}

.

(3)

where Jk(x) is the Bessel function, m is the effective mass of the electron, N�q is the
time - independent component of the phonon distribution function, and the quantity δ
is infinitesimal and appears due to the assumption of an adiabatic interaction of the
electromagnetic wave.
It is well known that to obtain the explicit solutions from Eq. (3) is very difficult. In this
paper, we use the first - order tautology approximation method (Pavlovich & Epshtein, 1977;
Malevich & Epstein, 1974; Epstein, 1975) to solve this equation. In detail, in Eq. (3), we use the
approximation:
nn,−→p ⊥

(t′) ≈ n
n,−→p ⊥

, nn,−→p ⊥+
−→q ⊥

(t′) ≈ n
n,−→p ⊥+−→q ⊥

, nn,−→p ⊥−−→q ⊥
(t′) ≈ n

n,−→p ⊥−−→q ⊥
.

where n
n,−→p ⊥

is the time - independent component of the electron distribution function. The

approximation is also applied for a similar exercise in bulk semiconductors (Pavlovich &
Epshtein, 1977; Malevich & Epstein, 1974). We perform the integral with respect to t. Next,
we perform the integral with respect to t of Eq. (3). The expression of electron distribution
function can be written as

nn,�p⊥ (t) = −∑
�q,n′

|C�q|2|In,n′ |2
∞

∑
k,l=−∞

Jk(
e�E0�q⊥
mΩ2

)Jk+l(
e�E0�q⊥
mΩ2

)
1

lΩ
e−ilΩt

×
{
−

n̄n,�p⊥ N�q − n̄n′ ,�p⊥+�q⊥ (N�q + 1)

εn′ ,�p⊥+�q⊥ − εn,�p⊥ − ω�q − kΩ + iδ
−

n̄n,�p⊥ (N�q + 1)− n̄n′ ,�p⊥+�q⊥ N�q

εn′ ,�p⊥+�q⊥ − εn,�p⊥ + ω�q − kΩ + iδ

+
n̄n′ ,�p⊥−�q⊥ N�q − n̄n,�p⊥ (N�q + 1)

εn,�p⊥ − εn′ ,�p⊥−�q⊥ − ω�q − kΩ + iδ
+

n̄n′ ,�p⊥−�q⊥ (N�q + 1)− n̄n,�p⊥ N�q

εn,�p⊥ − εn′ ,�p⊥−�q⊥ + ω�q − kΩ + iδ

}
. (4)

From Eq.(4) we see that the electron distribution function depends on the constant in the case
of electron - phonon interaction, the electron form factor and the electron energy spectrum in
quantum wells. Eq.(4) also can be considered a general expression of the electron distribution
function in two dimensional systems with the electron form factor and the electron energy
spectrum of each systems.

2.2 Calculations of the nonlinear absorption coefficient of a strong electromagnetic wave

by confined electrons in a quantum well

In a quantum well, the motion of electrons is confined and that energy spectrum of electron
is quantized into discrete levels. We assume that the quantization direction is the z direction.
The total wave function of electrons can be written as

ψn(�r) = ψ0ei�p⊥�r⊥ sin(pn
z z), (5)

where ψ0 is normalization constant, the electron energy spectrum takes the simple form:
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4 Electromagnetic Waves

εn,�p⊥ =
1

2m
(p2

⊥ + pn2
z ). (6)

where pn
z takes discrete values: pn

z = nπ/L, L is width of a quantum well.
The electron form factor can be written as

In′ ,n(qz) =
2

L

∫ L

0
sin(pn′

z z)sin(pn
z z)eiqzzdz (7)

The carrier current density formula in quantum wells takes the form (Pavlovich & Epshtein,
1977)

�j⊥(t) =
e

m ∑
n,�p⊥

(�p⊥ − e

c
�A(t))nn,�p⊥ (t). (8)

Because the motion of electrons is confined along the z direction in a quantum well, we only

consider the in - plane (x,y) current density vector of electrons,�j⊥(t). Using Eq. (4), we find
the expression for current density vector:

�j⊥(t) = − e2

mc ∑
n,�p⊥

�A(t)nn,�p⊥ (t) +
∞

∑
l=1

�jlsin(lΩt). (9)

Here,

�jl = 2π
e

m

1

lΩ ∑
n,n′

∑
�p,�p⊥

|C�q|2|In,n′ |2
∞

∑
k=−∞

�q⊥ Jk

( e�E0�q⊥
mΩ2

)[
Jk+l

( e�E0�q⊥
mΩ2

)
+ Jk−l

( e�E0�q⊥
mΩ2

)]

× N�q(n̄n,�p⊥ − n̄n′ ,�p⊥+�q⊥ ){δ(εn′ ,�p⊥+�q⊥ − εn,�p⊥ + ω�q − kΩ) + [ω�q →−ω�q]}. (10)

Using the expression of the nonlinear absorption coefficient of a strong electromagnetic wave
(Pavlovich & Epshtein, 1977)

α =
8π

c
√

x∞E2
0

〈
�j⊥(t)�E0sinΩt

〉
t
, (11)

and properties of Bessel function, we obtain the nonlinear absorption coefficient of a strong
electromagnetic wave by confined electrons in quantum well

α =
8π2Ω

c
√

χ∞E2
0

∑
n,n′

|In,n′ |2 ∑
�q,�p

|C�q|2N�q

∞

∑
k=−∞

[
n̄n,�p − n̄n′ ,�p+�q

]
×

× kJ2
k

( eE0�q

mΩ2

)
{δ(εn′ ,�p+�q − εn,�p + ω�q − kΩ) + [ω�q →−ω�q]} (12)

In the following, we study the problem with different electron-phonon scattering mechanisms.
We only consider the absorption close to its threshold because in the rest case (the absorption
far away from its threshold) α is very smaller. In the case, the condition |kΩ − ω�q| ≪ ε̄ must
be satisfied (Pavlovich & Epshtein, 1977). We restrict the problem to the case of one photon
absorption and consider the electron gas to be non-degenerate:
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The Nonlinear Absorption of a Strong Electromagnetic Wave in Low-dimensional Systems 5

n̄n,�p = n∗
0exp(−

εn,�p

kbT
), with n∗

0 =
n0(eπ)

3
2

V(m0kbT)
3
2

(13)

where, V is the normalization volume, n0 is the electron density in quantum well, m0 is the
mass of free electron, kb is Boltzmann constant.

2.2.1 Electron - optical phonon scattering

In this case, The electron-optical phonon interaction constants can be taken as (Shmelev et al.,
1978; Pavlovich & Epshtein, 1977) |C�q|2 ≡ |Cop

�q
|2 = 2πe2ω0 (1/χ∞ − 1/χ0)/ǫ0(q

2
⊥ + q2

z)V,

here V is the volume, ǫ0 is the permittivity of free space, χ∞ and χ0 are the high and
low-frequency dielectric constants, respectively. ω�q ≡ ω0 is the frequency of the optical

phonon in the equilibrium state. By using the electron - optical phonon interaction factor C
op
�q

,

the Bessel function and the electron distribution function nn,�p⊥ , from the general expression
for the nonlinear absorption coefficient of a strong electromagnetic wave in a quantum well
Eq.(12), we obtain the explicit expression of the nonlinear absorption coefficient α in quantum
well for the case electron-optical phonon scattering:

α =
α0

πL ∑
nn′

exp
(
− π2n′2

2mkBTL2

){[{
exp

(Ω − ω0

kBT

)
− 1

}

{
1 +

e2E2
0

mΩ3

3kBT

8Ω

[
1 +

1

2kBT

(
(ω0 − Ω) +

π2(n′2 − n2)

2mL2

)]}]
+ [ω0 →−ω0]

}
, (14)

where

α0 =
πe4n∗

0(kBT)2

2ǫ0c
√

χ∞Ω3

( 1

χ∞
− 1

χ0

)
. (15)

In bulk materials, there is a strong dispersion when the phonon energy is close to the optical
phonon energy. However, in a quantum well, we will see an increase in the absorption
coefficient of Electromagnetic Wave (see the numerical calculation and the discussion
sections). This is due to the surprising changes in the electron spectrum and the wave
function in quantum system. This also results in an significant property for low - dimensional
materials.

2.2.2 Elctron - acoustic phonon scattering

In the case, ω�q ≪ Ω (ω�q is the frequency of acoustic phonons), so we let it pass. The
electron-acoustic phonon interaction constants can be taken as (Mori & Ando, 1989; Shmelev
et al., 1978) |C�q|2 ≡ |Cac

�q |2 = ξ2q/2ρυsV, here V, ρ, υs, and ξ are the volume, the density, the

acoustic velocity and the deformation potential constant, respectively. In this case, we obtain
the explicit expression of α in quantum well for the case electron-acoustic phonon scattering:
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6 Electromagnetic Waves

Fig. 1. The dependence of α on T in a quantum well

α =
(kBT)3e2mn0ξ2

c
√

x∞υ2
s ρΩ3L

∑
n,n′

exp
[
− 1

kBT

(π2(n′2 − n2)

2mL2

)]

×
[
exp

( Ω

kBT

)
− 1

]{
1 +

β

2kBT
+

3

32

e2E2
0

mΩ4kBT
(β2 + 3βkBT + 12(kBT)2)

}
(16)

with β =
π2(n′2 − n2)

2mL2
− Ω. (17)

From Eqs. 14-17 we see that the nonlinear absorption coefficient are complex and has
difference from those obtained in normal bulk semiconductors. the nonlinear absorption
coefficient has the sum over the quantum number n. In addition, when the term in proportion
to a quadratic in the intensity of the electromagnetic wave (E2

0) tend toward zero, the nonlinear
result will turn back to the linear case which was calculated by another method-the Kubo -
Mori (Bau & Phong, 1998).

2.3 Numerical results and discussion

In order to clarify the mechanism for the nonlinear absorption of a strong electromagnetic
wave in a quantum well, we will evaluate, plot, and discuss the expression of the nonlinear
absorption coefficient for the case of a specific quantum well: AlAs/GaAs/AlAs. The
parameters used in the calculations are as follows (Bau et al., 2002; Pavlovich & Epshtein,
1977): χ∞ = 10.9, χ0 = 12.9, n0 = 1023 m−3, L = 100 Ao, m = 0.067m0, m0 being the mass of a
free electron, h̄ω0 = 36.25 meV, and Ω = 2.1014 s−1.

2.3.1 Electron - optical phonon scattering

Figure 1 show the nonlinear absorption in quantum wells. When the temperature T
of the system rises, its absorption coefficient decreased. However, for the case of bulk
semiconductors, the absorption coefficient increases following its temperature. In addition,
the absorption coefficient in bulk semiconductors is smaller than in quantum wells. The fact
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The Nonlinear Absorption of a Strong Electromagnetic Wave in Low-dimensional Systems 7

Fig. 2. The dependence of α on photon energy in a quantum well

proves that confined electrons in quantum wells have enhanced electromagnetic absorption
ability.
Figure 2 shows the nonlinear absorption coefficient as a function of the electromagnetic wave
energy (photon energy) for the case electron - optical phonon scattering. This figure shows
that the curve has a maximum where Ω = ω0.
Figure 3 shows the dependence of the nonlinear absorption coefficient depends on well’s
width L at different values of the electromagnetic wave energy, each curve has one maximum
peak. The resonance peak only appears when 20 nm < L < 40 nm, and it will be sharper if the
frequency of the electromagnetic wave is close to the frequency of the optical phonon Ω = ω0.
This suggests that when external parameters are not changed, we can change the width of
quantum well to get the absorption of a strong electromagnetic wave the best.

Fig. 3. The dependence of α on L (well’s width) in a quantum well
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8 Electromagnetic Waves

Fig. 4. The dependence of α on E0 in a quantum well

2.3.2 Electron - acoustic phonon scattering

The parameters used in the calculations are as follow (Bau et al., 2002; Pavlovich & Epshtein,
1977): χ∞ = 10,9, ξ = 13.5 eV, vs = 5370 m/s, ρ = 5320 kg/m3, n0 = 1023 m−3, L =
100 Ao, m = 0,067m0, m0 being the mass of free electron.
Figure 4 and figure 5 shows the nonlinear absorption coefficient in quantum wells for
the case electron - acoustic phonon scattering. The most important point is that in this
case, the absorption coefficient is very small. Figure. 5 shows the nonlinear absorption
coefficient dependence on the electromagnetic wave energy for the case electron - acoustic
phonon scattering. Different from the case electron - optical phonon scattering, the nonlinear
absorption coefficient α in this case has not maximum values (peaks).

Fig. 5. The dependence of α on photon energy in a quantum well
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The Nonlinear Absorption of a Strong Electromagnetic Wave in Low-dimensional Systems 9

3. The nonlinear absorption of a strong electromagnetic wave by confined

electrons in a doped superlattice

3.1 Calculations of the nonlinear absorption coefficient of a strong electromagnetic wave

by confined electrons in a doped superlattice

The total wave function of electrons and the electron energy spectrum in a doped superlattice
can be written as (Bau et al., 2002)

ψn,pz (z) =
s0

∑
j=0

eipz jzψn(z − jd), (18)

εn (�p⊥ ) =
�p2

⊥
2m

+ ωp

(
n +

1

2

)
, (19)

Here, ψn(z) is the wave function of the n-th state in one of the one-dimensional potential
wells which compose the doped superlattice potential, d is the doped superlattice period, s0

is the number of doped superlattice period, ωp =
(

4πe2nD
χ0m

)1/2
is the frequency plasma caused

by donor doping concentration, nD is the doping concentration. The electron form factor,
In,n′ (qz), is written as

In,n′ (qz) =
s0

∑
j=1

d∫

0

eiqzdψn (z − jd)ψn′ (z − jd)dz. (20)

In order to establish analytical expressions for the nonlinear absorption coefficient of a
strong electromagnetic wave by confined electrons in a doped superlattice, We insert the

expression for nn,ℓ,�p(t) into the expression for �j(t) and then insert the expression for �j(t)
into the expression for α in Eq.(11). Using the properties of Bessel function and realizing the
calculations, we obtain the nonlinear absorption coefficient of a strong electromagnetic wave
by confined electrons in a doped superlattice as

α =
8π2Ω

c
√

χ∞E2
0

∑
n,n′

|In,n′ |2 ∑
�q,�p

|C�q|2N�q

∞

∑
k=−∞

[
n̄n,�p − n̄n′ ,�p+�q

]
kJ2

k

( eE0�q

mΩ2

)
×

× δ(
(�p +�q)2

2m
+ ωp(n

′ + 1/2)− �p2
⊥

2m
− ωp(n + 1/2) + ω�q − kΩ) (21)

Using the time - independent component of the electron distribution function, the Bessel
function and the electron-optical phonon interaction constants, we can calculate to obtain
expression of the carrier current density and the nonlinear absorption coefficient of a strong
electromagnetic wave by confined electrons in a doped superlattice. we obtain the explicit
expression of α in a doped superlattice for the case electron-optical phonon scattering:

α =

√
2πn∗

0 (kBT)2 e4

8c
√

mχ∞ h̄3Ω3

(
1

χ∞
− 1

χ0

)
∑
n,n′

|In,n′ (qz)|2 exp

⎛
⎝−

h̄ωp

(
n + 1

2

)
+ ξ

2

kBT

⎞
⎠

× e−2
√

ρσ

(
ρ

|ξ|σ

) 1
2

{
1 +

3

16
√

ρσ
+

3e2E2
0

32m2Ω4

( ρ

σ

) 1
2

[
1 +

1√
ρσ

+
1

16ρσ

]}
(22)
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10 Electromagnetic Waves

Fig. 6. The dependence of α on the E0 in a doped superlattice

Here: ξ = h̄ωp (n′ − n) + h̄ω0 − h̄Ω; a = 3
8

(
eE0

2mΩ2

)2
;ρ = mξ2

2h̄2kBT
;σ = h̄2

8mkBT .

In a doped superlattice, the nonlinear absorption coefficient is more complex those obtained in
quantum well. The term in proportion to quadratic intensity of a strong electromagnetic wave
tend toward zero, the nonlinear result will turn back to the linear case which was calculated
by another method-the Kubo - Mori (Bau et al., 2002)

3.2 Numerical results and discussion

In order to clarify the mechanism for the nonlinear absorption of a strong electromagnetic
wave in a doped superlattice, we will evaluate, plot, and discuss the expression of the
nonlinear absorption coefficient for the case of a specific doped superlattice: n-GaAs/p-GaAs.
Figure 6 shows the dependence of the nonlinear absorption coefficient on intensity E0 of
electromagnetic wave in a doped superlattice. When intensity E0 of the electromagnetic
wave rises up, its absorption coefficient speeds up too. The absorption coefficient in bulk
semiconductors is smaller than it is in a doped superlattice. Otherwise, the absorption

Fig. 7. The dependence of α on the nD in a doped superlattice
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The Nonlinear Absorption of a Strong Electromagnetic Wave in Low-dimensional Systems 11

Fig. 8. The dependence of α on the Ω in a doped superlattice

coefficient changes insignificantly in bulk semiconductor. Figure 7 shows that the nonlinear
absorption coefficient in a doped superlattice depends strongly on the doping concentration
nD. When the doping concentration of the system rises up, its absorption coefficient speeds
up too.
Figure 8 presents the dependence of the nonlinear absorption coefficient on the frequency of
the electromagnetic wave. This figure shows that the curve has a maximum coincide with the
case Ω = ω0. That is, appear a resonance peak at Ω = ω0. However, compared with quantum
well, these absorption peaks are sharper.

4. The nonlinear absorption of a strong electromagnetic wave by confined

electrons in a cylindrical quantum wire

4.1 The electron distribution function in a cylindrical quantum wire

The Hamiltonian of the electron-phonon system in quantum wires. in the presence of a laser

field �E(t) = �E0sin(Ωt), can be written as

H = ∑
n,l,�p

εn,l(�p − e

c
�A(t))a+

n,l,�p
an,l,�p + ∑

�q

ω�q b+
�q

b�q

+ ∑
n,l,n′ ,l′ ,�p,�q

C�q In,l,n′ ,l′ (�q)a+
n,l,�p+�q an′ ,l′ ,�p (b�q + b+−�q), (23)

where e is the electron charge, c is the velocity of light, �A(t) = c
Ω
�E0cos(Ωt) is the vector

potential, �E0 and Ω are the intensity and the frequency of the electromagnetic wave ,
a+

n,ℓ,�p
(an,ℓ,�p) is the creation (annihilation) operator of an electron, b+

�q
(b�q) is the creation

(annihilation) operator of a phonon for a state having wave vector �q, ω�q is the frequency of a

phonon, C�q is the electron-phonon interaction constants. In,l,n′ ,l′ (�q) is the electron form factor.
In order to establish expressions for the electron distribution function in quantum wires, we
use the quantum kinetic equation for particle number operator of an electron, nn,ℓ,�p(t) =

〈a+
n,ℓ,�p

an,ℓ,�p〉t:
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i
∂nn,ℓ,�p(t)

∂t
= 〈[a+

n,ℓ,�p
an,ℓ,�p, H]〉t. (24)

From Eq. (24), using the Hamiltonian in Eq. (23) and realizing the calculations, we obtain the
quantum kinetic equation for the confined electrons in a cylindrical quantum wire. Using the
first-order tautology approximation method to solve this equation, we obtain the expression
of electron distribution function in cylindrical quantum wires, nn,ℓ,�p(t):

nn,ℓ,�p(t) = − ∑
�q,n′ ,ℓ′

|C�q|2|In,ℓ,n′ ,ℓ′ |2
∞

∑
k,l=−∞

Jk

( e�E0,�q

mΩ2

)
Jk+l

( e�E0,�q

mΩ2

) 1

lΩ
e−ilΩt×

×
{
−

n̄n,ℓ,�p(N�q + 1)− n̄n′ ,ℓ′ ,�p+�q N�q

εn′ ,ℓ′ ,�p+�q − εn,ℓ,�p + ω�q − kΩ + iδ
−

n̄n,ℓ,�p N�q − n̄n′ ,ℓ′ ,�p+�q(N�q + 1)

εn′ ,ℓ′ ,�p+�q − εn,ℓ,�p − ω�q − kΩ + iδ
+

+
n̄n′ ,ℓ′ ,�p−�q(N�q + 1)− n̄n,ℓ,�p N�q

εn,ℓ,�p − εn′ ,ℓ′ ,�p−�q + ω�q − kΩ + iδ
+

n̄n′ ,ℓ′ ,�p−�q N�q − n̄n,ℓ,�p(N�q + 1)

εn,ℓ,�p − εn′ ,ℓ′ ,�p−�q − ω�q − kΩ + iδ

}
, (25)

where N�q (n̄n,�p) is the time-independent component of the phonon (electron) distribution

function, Jk(x) is the Bessel function, and the quantity δ is infinitesimal and appears due to
the assumption of an adiabatic interaction of the electromagnetic wave. Eq.(25) also can be
considered a general expression of the electron distribution function in quantum wires.

4.2 Calculations of the nonlinear absorption coefficient of a strong electromagnetic wave

by confined electrons in a cylindrical quantum wire

We consider a wire of GaAs with a circular cross section with a radius R and a length Lz

embedded in AlAs. The carriers (electrons) are assumed to be confined by infinite potential
barriers and to be free along the wire’s axis (Oz). It is noted that a cylindrical quantum wire
with radius R ∼ 160 Å has already been fabricated experimentally. In this case, the total wave
function of electrons in cylindrical coordinates (r,φ,z) takes the form (Zakhleniuk et al., 1996)

ψn,ℓ,�p(r,φ,z) =
1√
V0

einφeipzzψn,ℓ(r), r < R, (26)

where V0 = πR2Lz is the wire volume, n = 0, ±1 ± 2, ... is the azimuthal quantum number,
ℓ= 1, 2, 3, ... is the radial quantum number, �p = (0,0, pz) is the electron wave vector (along the
wire’s z axis), and ψn,ℓ(r) is the wave function of electron moving in the (x,y) plane and takes
the form

ψn,ℓ(r) =
1

Jn+1(Bn,ℓ)
Jn(Bn,ℓ

r

R
), (27)

with Bn,ℓ being the ℓ-th root of the n-th order Bessel function, corresponding to the equation
Jn(Bn,ℓ) = 0, for example, B01 = 2.405 and B11 = 3.832. The electron energy spectrum takes the
form [18]

εn,ℓ(�p) = ε(pz) + εn,ℓ, (28)

where ε(pz) = p2
z/2m is the electron kinetic energy in the z-direction and εn,ℓ = B2

n,ℓ/2mR2 is
the quantized energy in the other directions, m is the effective mass of the electron.
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The electron form factor can be written as (Wang & Lei, 1994)

In,ℓ,n′
ℓ
′ (q⊥) =

2

R2

∫ R

0
J|n−n′ |(q⊥R)ψ∗

n′ ,ℓ′
(r)ψn,ℓ(q⊥R)rdr. (29)

Due to the complexity of the expression for the radial function in Eq. (26), the integral in Eq.
(29) cannot be calculated analytically. However, according to (Gold & Ghazali, 1990), it can be
calculated for ground states of electrons by applying the approximate expression for the wave
function and for the energies of states: namely,

ψ0,1 ≈
√

3(1 − x2), I01,0,1(q⊥) = 24
J3(q⊥R)

(q⊥R)3
(30)

ψ±1,1 ≈
√

12(x − x2), I±1,1,0,1(q⊥) = 48
J4(q⊥R)

(q⊥R)3
. (31)

The carrier current density �j(t) and the nonlinear absorption coefficient of a strong
electromagnetic wave α take the form

�j(t) =
e

m ∑
n,ℓ,�p

(
�p − e

c
�A(t)

)
nn,ℓ,�p(t); α =

8π

c
√

χ∞E2
0

〈�j(t)�E0sinΩt〉t, (32)

In order to establish analytical expressions for the nonlinear absorption coefficient of a strong
electromagnetic wave by confined electrons in a cylindrical quantum wire, We insert the

expression for nn,ℓ,�p(t) into the expression for �j(t) and then insert the expression for �j(t)
into the expression for α in Eq.(32). Using the properties of Bessel function and realizing the
calculations, we obtain the nonlinear absorption coefficient of a strong electromagnetic wave
by confined electrons in a cylindrical quantum wire as

α =
8π2Ω

c
√

χ∞E2
0

∑
n,ℓ,n′ ,ℓ′

|In,ℓ,n′ ,ℓ′ |2 ∑
�q,�p

|C�q|2N�q

∞

∑
k=−∞

[
n̄n,ℓ,�p − n̄n′ ,ℓ′ ,�p+�q

]
×

× kJ2
k

( eE0�q

mΩ2

)
{δ(

(�p +�q)2

2m
+

B2
n′ ,ℓ′

2mR2
− �p2

2m
+

B2
n,ℓ

2mR2
+ ω�q − kΩ) + [ω�q →−ω�q]}, (33)

where δ(x) is the Dirac delta function.

4.2.1 Electron-acoustic phonon scattering

Using the electron - acoustic phonon interaction factor Cac
�q , the time-independent component

of the electron distribution function nn,�p⊥ the Bessel function and the energy spectrum of an
electron in a cylindrical quantum wire, we obtain an explicit expression for α in a cylindrical
quantum wire for the case of electron-acoustic phonon scattering:

α =

√
2mπe2n∗

0ξ2(kbT)5/2

4c
√

χ∞ρυ2
s Ω3V

∑
n,ℓ,n′ ,ℓ′

|In,ℓ,n′ ,ℓ′ |2exp
{ 1

2kbT
D1

}[
1 − exp

{ Ω

kbT

}]
×

× D1

2kbT

[
1 +

3e2E2
0(kbT)2

4mΩ4D1

( D2
1

4(kbT)2
+

3D1

4kbT
+ 3

)]
, (34)

where D1 = (B2
n′
ℓ
′ − B2

n,ℓ)/2mR2 − Ω.
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14 Electromagnetic Waves

4.2.2 Electron-optical Phonon Scattering

By using the electron - optical phonon interaction factor C
op
�q

, the Bessel function and the

time-independent component of the electron distribution function nn,�p⊥ , from the general
expression for the nonlinear absorption coefficient of a strong electromagnetic wave in a
quantum well (Eq.33), we obtain the explicit expression for α in a cylindrical quantum wire
for the case of electron-optical phonon scattering:

α =

√
2πe4n∗

0(kbT)3/2

4cǫ0
√

mχ∞Ω3V

( 1

χ∞
− 1

χ0

)
∑

nℓ,ń,ℓ́

|Inℓ,ń,ℓ́|
2
{[[

exp
{ 1

kbT
(ω0 − Ω)

}
− 1

]
×

× exp
{ 1

kbT
B1

}[
1 +

3e2E2
0kbT

8mΩ4

(
1 +

B1

2kbT

)]]
+ [ω0 →−ω0]

}
, (35)

where B1 = (B2
n′
ℓ
′ − B2

n,ℓ)/2mR2 + ω0 − Ω.

From the analytic expressions for the nonlinear absorption coefficient of a strong
electromagnetic wave caused by confined electrons in a cylindrical quantum wire with an
infinite potential (Eq. 34 and Eq. 35), we can see that when the term proportional to the
quadratic intensity of the electromagnetic wave (E2

0) tends to zero, the nonlinear result will
become a linear result (Bau et al., 2007).

4.3 Numerical results and discussions

In order to clarify the results that have been obtained, in this section, we numerically calculate
the nonlinear absorption coefficient of a strong electromagnetic wave for a GaAs/GaAsAl
cylindrical quantum wire. The nonlinear absorption coefficient is considered as a function of
the intensity E0 and energy of strong electromagnetic wave, the temperature T of the system,
the radius R of cylindrical quantum wire. The parameters used in the numerical calculations
(Ariza-Flores & Rodriguez-Vargas, 2008; Bau et al., 2002) are ξ = 13.5eV, ρ = 5.32gcm−3, υs =
5378ms−1, ǫ0=12.5, χ∞ = 10.9, χ0 = 13.1, m = 0.066m0, m0 being the mass of free electron,
h̄ω0 = 36.25meV, kb = 1.3807 × 10−23 j/K, n0 = 1023m−3, e = 1.60219 × 10−19C, h̄ = 1.05459 ×
10−34 j.s.

4.3.1 Electron-acoustic phonon scattering

Figure 9 shows the dependence of the nonlinear absorption coefficient of a strong
electromagnetic wave on the wire’s radius at different values of the intensity, E0, of the
electromagnetic wave. It can be seen from this figure that the absorption coefficient depends
strongly and nonlinearly on the radius R of the wire. The absorption has the same maximum
values (peaks), but with different values of the radius of the wire. For example, at E0 =
1,6 × 106(V/m) and E0 = 3.6 × 106(V/m), the peaks correspond to R ∼ 23nm and R ∼
28nm respectively. The absorption coefficient has negative values, which was seen in the
case linear absorption (Bau et al., 2007) and is the difference between quantum wires and
bulk semiconductors (Pavlovich & Epshtein, 1977) as well as quantum wells and doped
duperlattices. α was changed strongly by the confinement of electron in a cylindrical quantum
wire.
The Figure 10 presents the dependence of the nonlinear absorption coefficient α on the
electromagnetic wave energy at different values of the wire’s radius R. It is seen that different
from the normal bulk semiconductors(Pavlovich & Epshtein, 1977) and two-dimensional
systems, the nonlinear absorption coefficient α in quantum wire has the maximum values
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Fig. 9. The dependence of α on R in a cylindrical quantum wire (electron-acoustic phonon
scattering)

(peaks). The electromagnetic wave energy at which α has a maximum are changed as the
radius R of wire is varied.
Figure 11 shows the dependence of the nonlinear absorption coefficient α on the temperature
T of the system at different values of the wire’s radius R. It can be seen from this figure
that the nonlinear absorption coefficient α has depends strongly and nonlinear on T. The
nonlinear absorption coefficient α has the same maximum value, but with different values
of T. For example, at R = 15nn and R = 25nn, the peaks correspond to T ∼ 135K and 120K,
respectively, it is also a difference compared to the normal bulk semiconductors (Pavlovich &
Epshtein, 1977), quantum wells and doped superlattices . To start from the maximum value,
the nonlinear absorption coefficient α decreases when the temperature T rises.
Figure 12 presents the dependence of the nonlinear absorption coefficient α on the intensity
E0 of electromagnetic wave. This dependence shows that the nonlinear absorption coefficient
α is descending when the intensity E0 of electromagnetic wave increases. Different from

Fig. 10. The dependence of α on h̄Ω in a cylindrical quantum wire (electron-acoustic phonon
scattering)
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16 Electromagnetic Waves

Fig. 11. The dependence of α on T in a cylindrical quantum wire (electron-acoustic phonon
scattering)

normal bulk semiconduction (Pavlovich & Epshtein, 1977) and two-dimensional systems,
the nonlinear absorption coefficient α in quantum wire is bigger. This is explained that
when electrons are confined in quantum wire, the electron energy spectrum continue to be
quantized. So the absorption of a strong electromagnetic wave is better. This fact is also
reflected in the expressions of the nonlinear absorption coefficient (Eqs 34-35). Besides the sum
over quantum n (as in quantum well), the expressions of the nonlinear absorption coefficient
in quantum wire have the sum over the quantum number ℓ.

4.3.2 Electron-optical phonon scattering

Figures 13 shows the dependence of α on the radius R of wires in the case electron- optical
phonon scattering. It can be seen from this figure that like in the case electron- acoustic phonon
scattering, the nonlinear absorption coefficient α has the peak. But the absorption coefficient

Fig. 12. The ependence of α on E0 in a cylindrical quantum wire (electron-acoustic phonon
scattering)
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Fig. 13. The dependence of α on radius R in a cylindrical quantum wire (electron-optical
phonon scattering)

does not have not negative values. Figure 14 presents the dependence of α on the intensity E0

of electromagnetic wave. Different from the case electron - acoustic phonon scattering, in this
case, α increases when the intensity E0 of electromagnetic wave increases. Figure 15 presents
the dependence of α on the electromagnetic wave energy at different values of the radius of
wire. It is seen that α has the same maximum values (peaks) at Ω ≡ ω. The electromagnetic
wave energy at which α has a maximum are not changed as the radius of wire is varied. This
means that α depends strongly on the frequency Ω of the electromagnetic wave and resonance
conditions are determined by the electromagnetic wave energy.

Fig. 14. The dependence of α on the intensity E0 in a cylindrical quantum wire
(electron-optical phonon scattering)
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Fig. 15. The dependence of α on h̄Ω in a cylindrical quantum wire (electron-optical phonon
scattering)

5. The nonlinear absorption of a strong electromagnetic wave by confined

electrons in a rectangular quantum wire

5.1 Calculations of the nonlinear absorption coefficient of a strong electromagnetic wave

by confined electrons in a rectangular quantum wire

In our model, we consider a wire of GaAs with rectangular cross section (Lx × Ly) and length
Lz, embedded in GaAlAs. The carriers (electron gas) are assumed to be confined by an infinite
potential in the (x,y) plane and are free in the z direction in Cartesian coordinates (x,y,z). The
laser field propagates along the x direction. In this case, the state and the electron energy
spectra have the form (Mickevicius & Mitin, 1993)

|n,ℓ,�p〉 = 2eipzz

√
LzLx Ly

sin
(πnx

Lx

)
sin

(πℓy

Ly

)
; εn,ℓ(�p) =

p2

2m
+

π2

2m

( n2

L2
x
+

ℓ2

L2
y

)
(36)

where n and ℓ (n, ℓ=1, 2, 3, ...) denote the quantization of the energy spectrum in the x and y
direction, �p = (0,0, pz) is the electron wave vector (along the wire’s z axis), m is the effective
mass of electron. The electron form factor, it is written as (Mickevicius & Mitin, 1993)

In,l,ń,ĺ(�q) =
32π4(qx Lxnń)2(1 − (−1)n+ńcos(qx Lx))

[(qx Lx)4 − 2π2(qx Lx)2(n2 + ń2) + π4(n2 − ń2)2]2
×

32π4(qyLyℓℓ́)2(1 − (−1)ℓ+ℓ́cos(qyLy))

[(qyLy)4 − 2π2(qyLy)2(ℓ2 + ℓ́2) + π4(ℓ2 − ℓ́2)2]2
(37)

In order to establish analytical expressions for the nonlinear absorption coefficient of a strong
electromagnetic wave by confined electrons in a rectangular quantum wire, we insert the

expression of nn,ℓ,�p(t) into the expression of �j(t) and then insert the expression of �j(t) into
the expression of α. Using properties of Bessel function and realizing calculations, we obtain
the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in
a rectangular quantum wire.
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α =
8π2Ω

c
√

χ∞E2
0

∑
n,ℓ,n′ ,ℓ′

|In,ℓ,n′ ,ℓ′ |2 ∑
�q,�p

|C�q|2N�q

∞

∑
k=−∞

[
n̄n,ℓ,�p − n̄n′ ,ℓ′ ,�p+�q

]
×

× kJ2
k

( eE0�q

mΩ2

)
{δ(

(�p +�q)2 − �p2

2m
+

π2

2m

(n′2 − n2

L2
x

+
ℓ′2 − ℓ2

L2
y

)
+ ω�q − kΩ) + [ω�q →−ω�q]}

(38)

In the following, we study the problem with different electron-phonon scattering mechanisms.

5.1.1 Electron-optical phonon scattering

In this case, ω�q ≡ ω0 is the frequency of the optical phonon in the equilibrium state.

Using he electron-optical phonon interaction constants C
op
�q

, Bessel function and Fermi-Dirac

distribution function for electron, we obtain the explicit expression of α in a rectangular
quantum wire for the case electron-optical phonon scattering

α =

√
2πe4n∗

0(kbT)3/2

4cǫ0
√

mχ∞Ω3V

( 1

χ∞
− 1

χ0

)
∑

nℓ,ń,ℓ́

|Inℓ,ń,ℓ́|
2
{[[

exp
{ 1

kbT
(ω0 − Ω)

}
− 1

]
×

× exp
{ 1

kbT

π2

2m

( ń2

L2
x
+

ℓ́2

L2
y

)}[
1 +

3e2E2
0kbT

8mΩ4

(
1 +

B

2kbT

)]]
+ [ωo →−ω0]

}
(39)

where B = π2[(ń2 − n2)/L2
x + (ℓ́2 − ℓ2)/L2

y]/2m + ω0 − Ω.

5.1.2 Electron- acoustic phonon scattering

In the case, ω�q ≪ Ω (ω�q is the frequency of acoustic phonon), so we let it pass. Using
electron-acoustic phonon interaction constants Cac

�q , we obtain the explicit expression of α in a

rectangular quantum wire for the case electron-acoustic phonon scattering

α =

√
2mπe2n∗

0ξ2(kbT)5/2

4c
√

χ∞ρυ2
s Ω3V

∑
n,ℓ,n′ ,ℓ′

|In,ℓ,n′ ,ℓ′ |2exp
{ 1

kbT

π2

2m

( ń2

L2
x
+

ℓ́2

L2
y

)}
×

×
[
exp

{ Ω

kbT

}
− 1

][
1 +

D

2kbT

[
1 +

3e2E2
0(kbT)2

4mΩ4D

( D2

4(kbT)2
+

3D

4kbT
+ 3

)]]
(40)

where D = π2[(ń2 − n2)/L2
x + (ℓ́2 − ℓ2)/L2

y]− Ω

5.2 Numerical results and discussions

In order to clarify the results that have been obtained, in this section, we numerically calculate
the nonlinear absorption coefficient of a strong electromagnetic wave for a GaAs/GaAsAl
rectangular quantum wire. The nonlinear absorption coefficient is considered as a function of
the intensity E0 and energy of strong electromagnetic wave, the temperature T of the system ,
and the parameters of a rectangular quantum wire.
Figure 16 shows the dependence of α of a strong electromagnetic wave on the size L (Ly and
Lx) of wire. It can be seen from this figure that α depends strongly and nonlinear on size L of
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Fig. 16. The dependence of α on Ly and Lx in a rectangular quantum wire (electron-acoustic
phonon scattering)

wire. When L decreases, the nonlinear absorption coefficient will increases until its maximum
at Lx and Ly ∼ 24nm then started to decrease.
Figure 17 presents the dependence of the nonlinear absorption coefficient α on the temperature
T of the system at different values of the intensity E0 of the external strong electromagnetic
wave. It can be seen from this figure that the nonlinear absorption coefficient α has depends
strongly and nonlinearly on the temperature T and it has the same maximum value but with
different values of T. For example, at E0 = 2.6 × 106V/m and E0 = 2 × 106V/m, the peaks
correspond to T ∼ 170K and 190K, respectively, this fact was not seen in bulk semiconductors
(Pavlovich & Epshtein, 1977) as well as quantum wells and doped superlattices, but it fit the
case of linear absorption (Bau et al., 2007)
Figure 18 presents the dependence of α on the electromagnetic wave energy at different values
of the radius of wire. It is seen that α has the same maximum values (peaks) at Ω ≡ ω0. The
electromagnetic wave energy at which α has a maximum are not changed as the radius of wire

Fig. 17. The dependence of α on T in a rectangular quantum wire (electron-acoustic phonon
scattering)
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Fig. 18. The dependence of α on h̄Ω in a rectangular quantum wire (electron-optical phonon
scattering)

is varied. This means that α depends strongly on the frequency Ω of the electromagnetic wave
and resonance conditions are determined by the electromagnetic wave energy.

6. Conclusion

In this chapter, the nonlinear absorption of a strong electromagnetic wave by confined
electrons in low-dimensional systems is investigated. By using the method of the quantum
kinetic equation for electrons, the expressions for the electron distribution function and the
nonlinear absorption coefficient in quantum wells, doped superlattics, cylindrical quantum
wires and rectangular quantum wires are obtained. The analytic results show that the
nonlinear absorption coefficient depends on the intensity E0 and the frequency Ω of the
external strong electromagnetic wave, the temperature T of the system and the parameters
of the low-dimensional systems as the width L of quantum well, the doping concentration
nD in doped superlattices, the radius R of cylindrical quantum wires, size Lx and Ly of
rectangular quantum wires. This dependence are complex and has difference from those
obtained in normal bulk semiconductors (Pavlovich & Epshtein, 1977), the expressions for
the nonlinear absorption coefficient has the sum over the quantum number n (in quantum
wells and doped superlattices) or the sum over two quantum numbers n and ℓ (in quantum
wires). It shows that the electron confinement in low dimensional systems has changed
significantly the nonlinear absorption coefficient. In addition, from the analytic results, we see
that when the term in proportion to a quadratic in the intensity of the electromagnetic wave
(E2

0)(in the expressions for the nonlinear absorption coefficient of a strong electromagnetic
wave) tend toward zero, the nonlinear result will turn back to a linear result (Bau &
Phong, 1998; Bau et al., 2002; 2007). The numerical results obtained for a AlAs/GaAs/AlAs
quantum well, a n-GaAs/p-GaAs doped superlattice, a GaAs/GaAsAl cylindrical quantum
wire and a a GaAs/GaAsAl rectangular quantum wire show that α depends strongly and
nonlinearly on the intensity E0 and the frequency Ω of the external strong electromagnetic
wave, the temperature T of the system, the parameters of the low-dimensional systems. In
particular, there are differences between the nonlinear absorption of a strong electromagnetic
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wave in low-dimensional systems and the nonlinear absorption of a strong electromagnetic
wave in normal bulk semiconductors (Pavlovich & Epshtein, 1977), the nonlinear absorption
coefficient in a low-dimensional systems has the same maximum values (peaks) at Ω ≡
ω0, the electromagnetic wave energies at which α has maxima are not changed as other
parameters is varied, the nonlinear absorption coefficient in a low-dimensional systems is
bigger. The results show a geometrical dependence of α due to the confinement of electrons
in low-dimensional systems. The nonlinear absorption in each low-dimensional systems is
also different, for example, these absorption peaks in doped superlattices are sharper than
those in quantum wells, the nonlinear absorption coefficient in quantum wires is bigger than
those in quantum wells and doped superlattices,... It shows that the nonlinear absorption of
a strong electromagnetic wave by confined electrons depends significantly on the structure of
each low-dimensional systems.
However in this study we have not considered the effect of confined phonon in
low-dimensional systems, the influence of external magnetic field (or a weak electromagnetic
wave) on the nonlinear absorption of a strong electromagnetic wave. This is still open for
further studying.
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