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1. Introduction

Interest continues to grow in controlling the propagation of electromagnetic waves by
utilizing periodically or randomly arranged artificial structures made of metal, dielectric, and
other materials. When the size of the constituent structures and the separation between the
neighboring structures are much smaller than the wavelength of the electromagnetic waves,
the structure arrays behave as a continuous medium for the electromagnetic waves. That
is, macroscopic medium parameters such as effective permittivity and permeability can be
defined for the array. The artificial continuous medium is called a “metamaterial.”
In the frequency region below the microwave frequency, the use of metallic structures as
artificial media has been studied since the late 1940’s (Collin, 1990). At first, only control of
the permittivity was studied and not that of the permeability. However, Pendry et al. (1999)
proposed methods for fabricating artificial magnetic media, namely, magnetic metamaterials,
which were built from nonmagnetic conductors. It was shown that not only can relative
permeability be changed from unity but it also can have a negative value. Although
the relative permeabilities of naturally occurring media are almost unity in such high
frequency regions as microwave, terahertz, and optical regions, the restriction that the relative
permeability is almost unity can be removed using the metamaterial. Moreover, the magnetic
metamaterial enabled us to fabricate media with simultaneous negative permittivity and
permeability, or negative refractive index media that were predicted by Veselago (1968). In
fact, Shelby et al. (2001) made the first experimental verification of a negative refractive index
metamaterial in the microwave region. This increased researcher interest in metamaterials.
It was not possible to independently control the wavenumber and the wave impedance in a
medium until magnetic metamaterials were developed. The wavenumber is related to the
propagation and refraction of electromagnetic waves, and the wave impedance is connected
with the reflection. Phenomena about electromagnetic waves are described by these two
quantities. In dielectric media, both of the wavenumber and wave impedance change with
a change of the permittivity, and we cannot set these parameters independently. However,
the wavenumber and wave impedance can be changed independently in metamaterials
because we can control the permeability as well as the permittivity with metamaterials.
By utilizing the flexibility of the wavenumber and wave impedance in metamaterials, such
novel phenomena as a perfect lens (superlens) (Pendry, 2000; Lagarkov & Kissel, 2004), a
hyperlens (Jacob et al., 2006; Liu et al., 2007), and an invisibility cloak (Pendry et al., 2006;
Leonhardt, 2006; Schurig et al., 2006) have been proposed and verified experimentally.
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2 Electromagnetic Waves

In this chapter, we focus on Brewster’s no-reflection effect in metamaterials. The Brewster
condition is one of the laws of reflection and refraction of electromagneticwaves at a boundary
between two distinct media (Saleh & Teich, 2007). For a particular angle of incidence, known
as the Brewster angle, the reflected wave vanishes. The Brewster effect is applied in optical
instruments, for example, to generate completely polarized waves from unpolarized waves
only with a glass plate and to suppress the insertion losses of intracavity elements.
The Brewster effect arises for transverse-magnetic (TM)waves [transverse-electric (TE)waves]
at an interface between two distinct dielectric (magnetic) media. Hence, this phenomenon
can only be observed for TM waves and not for TE waves in naturally occurring media
that do not respond to high-frequency magnetic fields. However, since we can fabricate
magnetic media in high frequency regions with a metamaterial technique (Pendry et al.,
1999; Holloway et al., 2003; Zhang et al., 2005), the Brewster condition for TE waves can be
satisfied (Doyle, 1980; Futterman, 1995; Fu et al., 2005). In fact, the TE Brewster effect has
been experimentally observed in the microwave region (Tamayama et al., 2006) and also in
the optical region (Watanabe et al., 2008).
In addition to permittivity and permeability, chirality parameter and non-reciprocity
parameter can be controlled using metamaterials. It is also possible to control the anisotropy
in electromagnetic responses. Therefore, investigating the no-reflection condition for
generalized media is important. Brewster’s condition has been studied for anisotropic
media (Grzegorczyk et al., 2005; Tanaka et al., 2006; Shen et al., 2006; Shu et al., 2007), chiral
media (bi-isotropic media) (Bassiri et al., 1988; Lindell et al., 1994), and bi-anisotropic
media (Lakhtakia, 1992). However, thus far, the explicit relations among the medium
parameters for achieving non-reflectivity in chiral and bi-anisotropic media have not been
determined. The purpose of this chapter is to derive the explicit relation among the
permittivity, permeability, and chirality parameter of the chiral medium that satisfy the
no-reflection condition for a planar interface between a vacuum and the chiral medium.
The no-reflection condition is derived from the vanishing eigenvalue condition of the
reflection Jones matrix. The analysis can be largely simplified by decomposing the reflection
Jones matrix into the unit and Pauli matrices (Tamayama et al., 2008).
We find that in general chiral media, the no-reflection condition is satisfied by elliptically
polarized incident waves for at most one particular angle of incidence. This is merely a
natural extension of the usual Brewster effect for achiral (nonchiral) media. When the wave
impedance and the absolute value of the wavenumber in the chiral medium equal those
in a vacuum for one of the circularly polarized (CP) waves, the corresponding CP wave is
transmitted to the medium without reflection for all angles of incidence. The no-reflection
effect for chiral nihility media resembles that for achiral media.
We provide a finite-difference time-domain (FDTD) analysis (Taflove & Hagness, 2005) of the
no-reflection effect for CP waves. We analyze the scatterings of electromagnetic waves by a
cylinder and a triangular prism made of a chiral medium whose medium parameters satisfy
the no-reflection condition for one of the CP waves. The simulation demonstrates that the
corresponding CP wave is not scattered and the other CP wave is largely scattered. We show
that a circular polarizing beam splitter can be achieved by utilizing the no-reflection effect.

2. Propagation of electromagnetic waves in chiral media

We calculate the wavenumber and wave impedance in chiral media. The constitutive
equations for chiral media have several types of expressions. The Post and Tellegen
representations are mainly used as the constitutive equations. The Post representation is
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No-Reflection Phenomena for Chiral Media 3

written as
DDD = εPEEE− iξPBBB, HHH = µ−1

P BBB− iξPEEE, (1)

and the Tellegen representation is written as

DDD = εTEEE− iκTHHH, BBB = µTHHH + iκTEEE, (2)

where εP,T is the permittivity, µP,T is the permeability, and ξp and κT are the
chirality parameters. The subscript P (T) stands for the Post (Tellegen) representation.
These representations are equivalent and interchangeable with the following
transformation (Lakhtakia, 1992):

εT = εP + µPξ2P, µT = µP, κT = µPξP. (3)

In this chapter, we consistently use the Post representation and omit the subscript P for
simplicity.
Maxwell’s equation for a monochromatic plane electromagnetic wave is given by

kkk× EEE = ωBBB, kkk× HHH = −ωDDD, (4)

where kkk is the wavenumber vector and ω is the angular frequency. Substituting Eq. (1) into
Eq. (4) and assuming kkk = keeez (eeez is the unit vector in the z-direction), we obtain

k

⎡

⎢

⎢

⎣

1 O
1

1
O 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Ex

Ey

Hx

Hy

⎤

⎥

⎥

⎦

= ω

⎡

⎢

⎢

⎣

0 iµξ 0 µ
−iµξ 0 −µ 0
0 −(ε + µξ2) 0 iµξ

ε + µξ2 0 −iµξ 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Ex

Ey

Hx

Hy

⎤

⎥

⎥

⎦

. (5)

From the condition for a non-trivial solution of Eq. (5), we have

k = ±ω(
√

εµ + µ2ξ2 + µξ), ±ω(
√

εµ + µ2ξ2 − µξ). (6)

After substitution of the derived wavenumber into Eq. (5), the relation among the
wavenumber and the electromagnetic fields is obtained and summarized in Table 1. Here
we define the wave impedance Zc of the chiral medium as

Zc =

√

µ

ε + µξ2
. (7)

The eigenpolarizations in chiral media are found to be CP waves because Ey/Ex = ±i is
satisfied.
Equations (6) and (7) contain double-valued square root functions. Thus, the wavenumber
and wave impedance cannot be calculated without ambiguity. To choose the correct branch,
we diagonalize Eq. (5). By using the transformation matrix

U =
1

2

⎡

⎢

⎢

⎣

1 1 1 1
−i i i −i

iZ−1
c iZ−1

c −iZ−1
c −iZ−1

c
Z−1
c −Z−1

c Z−1
c −Z−1

c

⎤

⎥

⎥

⎦

, U−1 =
1

2

⎡

⎢

⎢

⎣

1 i −iZc Zc
1 −i −iZc −Zc
1 −i iZc Zc
1 i iZc −Zc

⎤

⎥

⎥

⎦

, (8)
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4 Electromagnetic Waves

k k+ −k+ k− −k−
Ex 1 1 1 1

Ey −i i i −i

Hx iZ−1
c iZ−1

c −iZ−1
c −iZ−1

c

Hy Z−1
c −Z−1

c Z−1
c −Z−1

c

Table 1. Relation among wavenumber and electromagnetic fields in chiral media. Ratio of
each electromagnetic field component to Ex is written for each eigenmode. Here

k± = ω(
√

εµ + µ2ξ2 ± µξ) = ω[Zc(ε + µξ2)± µξ] and Zc =
√

µ/(ε + µξ2) [Re (Zc)> 0].

Eq. (5) is diagonalized as follows:

k

⎡

⎢

⎢

⎣

Ex + iEy − iZcHx + ZcHy

Ex − iEy − iZcHx − ZcHy

Ex − iEy + iZcHx + ZcHy

Ex + iEy + iZcHx − ZcHy

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

k+ O
−k+

k−
O −k−

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Ex + iEy − iZcHx + ZcHy

Ex − iEy − iZcHx − ZcHy

Ex − iEy + iZcHx + ZcHy

Ex + iEy + iZcHx − ZcHy

⎤

⎥

⎥

⎦

, (9)

where we use the relation Zc(ε + µξ2) = µZ−1
c [Z2

c = µ/(ε + µξ2)] and set

k± = ω[Zc(ε + µξ2)± µξ]. (10)

If Zc is determined, k± can be calculated unambiguously. The real part of the wave impedance
Re (Zc) is related to the time-averaged Poynting vector, which governs the power flow of
electromagnetic waves. When a branch of Zc is chosen so that Re (Zc) > 0 is satisfied, the
power flows of eigenmodes represented by the first and third (second and fourth) rows of
Eq. (9) are directed to the positive (negative) z-direction. Thus, k+ and k− (−k+ and −k−)
are the wavenumbers for the eigenmodes whose power flows are directed to the positive
(negative) z-direction. Even if we choose a branch of Zc that satisfies Re (Zc) < 0, we can
obtain the same result by regarding −Zc as the wave impedance. Therefore, there is no loss
of generality in supposing that the real part of Zc is positive. The wavenumber and wave
impedance can be calculated from Eqs. (7) and (10) and the condition Re (Zc) > 0 without
ambiguity. We define the eigenmodes represented by the first and second (third and fourth)
rows of Eq. (9) as left circularly polarized (LCP) [right circularly polarized (RCP)] waves.

3. Reflectivity and transmissivity for chiral media

We derive the reflectivity and transmissivity at the boundary between a vacuum and
an isotropic chiral medium (Bassiri et al., 1988). As shown in Fig. 1, suppose that a
monochromatic plane electromagnetic wave is incident from the vacuum (permittivity ε0,
permeability µ0) on the chiral medium at an incident angle of θ. The electromagnetic fields of
the incident (i), reflected (r), and transmitted (t) waves are written as follows:

EEEi = EEE1 exp [ik0(xcosθ − ysinθ)], (11)

HHHi = HHH1 exp [ik0(xcosθ − ysinθ)], (12)

EEEr = EEE2 exp [ik0(−xcosθ − ysinθ)], (13)

HHHr = HHH2 exp [ik0(−xcosθ − ysinθ)], (14)

EEEt = EEE3 exp [ik+(xcos θ+ − ysinθ+)] + EEE4 exp [ik−(xcos θ− − ysinθ−)], (15)

HHHt = HHH3 exp [ik+(xcos θ+ − ysinθ+)] + HHH4 exp [ik−(xcosθ− − ysinθ−)], (16)
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y

x

Ei

Ei

k0

θ
θ θ+

θ-
Er

Er
k0

Et+

Et-

k+

k-

ε0, µ0 ε, µ, ξ

Fig. 1. Geometry of coordinate system. Incident, reflected, and transmitted waves are
denoted by subscripts i, r, and t. Region x < 0 represents vacuum, and region x ≥ 0
represents the chiral medium.

where

EEE1 = Ei⊥eeez + Ei‖(cosθeeey + sinθeeex), (17)

HHH1 = Z−1
0 [Ei‖eeez − Ei⊥(cosθeeey + sinθeeex)], (18)

EEE2 = Er⊥eeez + Er‖(−cosθeeey + sinθeeex), (19)

HHH2 = Z−1
0 [Er‖eeez + Er⊥(cosθeeey − sinθeeex)], (20)

EEE3 = Et+[i(cosθ+eeey + sinθ+eeex) + eeez], (21)

HHH3 = Et+Z
−1
c [−(cosθ+eeey + sinθ+eeex) + ieeez], (22)

EEE4 = Et−[−i(cosθ−eeey + sinθ−eeex) + eeez], (23)

HHH4 = Et−Z−1
c [−(cosθ−eeey + sinθ−eeex)− ieeez]. (24)

In the above equations, k0 = ω
√

ε0µ0 is the wavenumber in the vacuum, Z0 =
√

µ0/ε0 is the
wave impedance of the vacuum, and eeex, eeey, and eeez are respectively the unit vectors in the x-,
y-, and z-directions. Due to the translational invariance of the interface, Snell’s equations

k0 sinθ = k+ sinθ+ = k− sinθ−, (25)
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6 Electromagnetic Waves

are satisfied. From the continuity of the tangential components of the electromagnetic fields
across the boundary, we obtain

Ei⊥ + Er⊥ = Et+ + Et−, (26)

Ei‖ cosθ − Er‖ cosθ = iEt+ cosθ+ − iEt− cosθ−, (27)

Z−1
0 (Ei‖ + Er‖) = iZ−1

c (Et+ − Et−), (28)

Z−1
0 (−Ei⊥ cosθ + Er⊥ cosθ) = −Z−1

c (Et+ cosθ+ + Et− cosθ−). (29)

The reflection and transmission matrices are derived from Eqs. (26)-(29) and written as

[

Er⊥
Er‖

]

=

[

R11 R12

R21 R22

][

Ei⊥
Ei‖

]

,

[

Et+
Et−

]

=

[

T++ T+−
T−+ T−−

][

Ei+
Ei−

]

, (30)

where

R11 =
(Z2

c − Z2
0)cosθ(cosθ+ + cosθ−) + 2Z0Zc(cos

2 θ − cosθ+ cosθ−)
∆

, (31)

R12 =
i2Z0Zc cosθ(cosθ+ − cosθ−)

∆
, (32)

R21 =
−i2Z0Zc cosθ(cos θ+ − cosθ−)

∆
, (33)

R22 =
−(Z2

c − Z2
0)cos θ(cosθ+ + cosθ−) + 2Z0Zc(cos

2 θ − cosθ+ cosθ−)
∆

, (34)

T++ =
2Zc(Zc + Z0)cosθ(cos θ + cosθ−)

∆
, (35)

T+− =
−2Zc(Zc − Z0)cos θ(cosθ − cosθ−)

∆
, (36)

T−+ =
−2Zc(Zc − Z0)cos θ(cosθ − cosθ+)

∆
, (37)

T−− =
2Zc(Zc + Z0)cosθ(cos θ + cosθ+)

∆
, (38)

∆ = (Z2
c + Z2

0)cosθ(cosθ+ + cosθ−) + 2Z0Zc(cos
2 θ + cosθ+ cosθ−), (39)

Ei± =
Ei⊥ ∓ iEi‖

2
. (40)

4. No-reflection conditions for chiral media

We find from Eqs. (30)-(34) that the relation between the electric field of the incident wave and
that of the reflected wave is written as (Tamayama et al., 2008)

[

Er⊥
Er‖

]

=
1

∆
MR

[

Ei⊥
Ei‖

]

, MR = cu I + c2σ2 + c3σ3, (41)

cu = 2Z0Zc(cos
2 θ − cosθ+ cosθ−), (42)

c2 = −2Z0Zc cosθ(cosθ+ − cosθ−), (43)

c3 = (Z2
c − Z2

0)cosθ(cos θ+ + cosθ−), (44)
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Fig. 2. Contour lines of no-reflection angles for TM and TE waves (a) in first quadrant and (b)
in third quadrant of (εr,µr)-plane. No-reflection condition exists for TM (TE) waves in white
(gray) region.

where we introduce the unit matrix I and the Pauli matrices (Sakurai, 1994):

σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

. (45)

The reflection matrix MR can be rewritten as

MR = cu I + cϕσϕ, (46)

where cϕ =
√

c22 + c23, σϕ = σ2 sinϕ + σ3 cos ϕ, sinϕ = c2/cϕ, and cos ϕ = c3/cϕ .

The no-reflection condition is satisfied when MR has at least one vanishing eigenvalue,
namely, det (MR) = 0 or rank (MR) ≤ 1. For the incident wave with the corresponding
eigenpolarization, the reflection is nullified. From Eq. (46), we observe that the eigenvalue
problem for MR is reduced to that for σϕ. The eigenvalues of σϕ are ±1, and their
corresponding eigenpolarizations are eeeϕ+ = cos (ϕ/2) eeez + i sin(ϕ/2)(eeex sinθ + eeey cosθ) and
eeeϕ− = sin(ϕ/2) eeez − i cos (ϕ/2)(eeex sinθ + eeey cosθ). Therefore, MR has one vanishing
eigenvalue when cu = cϕ �= 0 (cu = −cϕ �= 0) is satisfied, and no-reflection is achieved for
the incident wave with polarization eeeϕ− (eeeϕ+). When cu = cϕ = 0, MR becomes a zero matrix;
no-reflection is achieved for arbitrary polarized incident waves.

4.1 In case of ξ = 0 (achiral media)
The reflection matrix is written as MR = cu I + c3σ3. The eigenpolarizations are eeex sinθ +
eeey cosθ and eeez; therefore, the no-reflection condition can only be satisfied for linearly polarized
waves. The no-reflection effect is observed at a particular incident angle that satisfies cu=±c3.
The condition cu = c3 (cu = −c3) yields a no-reflection angle, called the Brewster angle, for
TM (TE) waves in isotropic achiral media.
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8 Electromagnetic Waves

From cu = ±c3, the no-reflection angles θTM and θTE for TM and TE waves are derived as
follows:

θTM = arcsin

√

ε2r − εrµr

ε2r − 1
, θTE = arcsin

√

µ2
r − εrµr

µ2
r − 1

, (47)

where εr = ε/ε0 is the relative permittivity and µr = µ/µ0 is the relative permeability. Figure
2 shows the contour lines of the no-reflection angles. The no-reflection effect can be observed
for TM (TE) waves in the white (gray) region. The no-reflection condition exists in the

whole region of the first and third quadrants of the (εr,µr)-plane except εr = µ−1
r �= ±1.

The intersection of the contour lines of the no-reflection angles in the first quadrant of
the (εr,µr)-plane corresponds to a vacuum (εr,µr) = (1,1) and that in the third quadrant
corresponds to an anti-vacuum (εr,µr) = (−1,−1). For the medium with parameters that
correspond to these intersections, MR becomes a zero matrix for any incident angle; arbitrary
polarized waves are not reflected for all angles of incidence.

4.2 In case of ξ �= 0, k+ �=−k−, and Zc �= Z0 (impedance unmatched chiral media)

The conditions ξ �= 0, k+ �= −k−, and Zc �= Z0 give ϕ �= nπ/2 with integer n. The
eigenpolarizations are eeeϕ±; hence, the no-reflection condition can only be satisfied for
elliptically polarized (EP) waves. The no-reflection effect is observed at a particular incident
angle satisfying cu = ±cϕ, which is a natural extension of the usually observed no-reflection
effect, or the Brewster effect in achiral media.
The no-reflection angles are derived from the zero eigenvalue condition cu = ±cϕ. The
contour lines of the no-reflection angles are shown in the left panels of Fig. 3. The no-reflection
condition in the case of ξ = 0 exists in the whole region of the first and third quadrants

of the (εr,µr)-plane except εr = µ−1
r �= ±1, as shown in Fig. 2, while in the case of ξ �= 0,

there is a region where the no-reflection condition does not exist, which is represented as the
gray region in Fig. 3. In addition, the no-reflection condition also exists in the second and
fourth quadrants, which correspond to strong chiral media (k+k− < 0). The right panels of
Fig. 3 show the incident polarization for which the no-reflection condition is satisfied. The
polarization is described in terms of the ellipticity α = arctan (E‖/iE⊥). The condition α > 0

(α < 0) denotes left (right) elliptically polarized wave and |α| = 90◦ (|α| = 0) corresponds
to TM (TE) wave. When |α| > 45◦ (|α| < 45◦), the major axis of the polarization ellipse is
perpendicular (parallel) to eeez and the minor axis is parallel (perpendicular) to eeez, namely, the
no-reflection condition is satisfied for TM-like (TE-like) EP waves.

4.3 In case of ξ �= 0, k+ �=−k−, and Zc = Z0 (impedance matched chiral media)

The reflection matrix becomes MR = cu I + c2σ2. The eigenpolarizations are [eeez ± i(eeex sinθ +

eeey cosθ)]/
√
2; hence, the no-reflection condition can only be satisfied for CP waves. The

condition cosθ+ = cosθ (cosθ− = cosθ) is required to satisfy cu = −c2 (cu = c2), which is the
no-reflection condition for LCP (RCP) waves. Note that once |k+| = k0 (|k−| = k0) is satisfied
by selecting the constants of medium, cu = −c2 (cu = c2) is satisfied for any incident angle.
That is, the no-reflection condition is satisfied for all angles of incidence (Tamayama et al.,
2008).
We derive the explicit relations among ε, µ, and ξ for the no-reflection condition for CPwaves.
From the above discussion, both Zc = Z0 and |k+|= k0 (|k−|= k0) are necessary and yield the
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scale of (c) is different from other figures.] (left panels); contour lines of no-reflection angles.
L+ and R+ (L− and R−) represent the no-reflection conditions for LCP and RCP waves
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represent no-reflection condition for LCP (RCP) waves. Dashed lines are projections of solid
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following relations:

εr = −(±ξr− 1), µr =
±1

ξr ± 1
(from k± = k0), (48)

εr = ±ξr − 1, µr = − ±1

ξr ± 1
(from k± = −k0), (49)

where ξr = ξZ0 is the normalized chirality parameter. The positive (negative) sign in Eqs. (48)
and (49) indicates the condition for LCP (RCP) waves. Figures 4(a) and 4(b) [4(c) and 4(d)]
represent the relations among εr, µr, and ξr shown in Eq. (48) [Eq. (49)]. Note that the
no-reflection conditions for CP waves correspond to the intersections of the contour lines of
the no-reflection angles in Fig. 3. By using the electric susceptibility χe = εr − 1 and magnetic

susceptibility χm = 1− µ−1
r , Eqs. (48) and (49) are reduced to simpler forms:

χe = χm = ∓ξr, (50)

χe + 2= χm − 2= ±ξr, (51)

respectively, where the upper (lower) sign corresponds to the condition for LCP (RCP) waves.
We clarify the physical meaning of the no-reflection effect for CP waves by considering the
mediumpolarization PPP andmagnetization MMM induced by EEE and BBB in CPwaves. For simplicity,
assume that the no-reflection condition is satisfied for LCP waves. PPP and MMM are given by PPP =

PPPE + PPPB and MMM = MMMB + MMME, where PPPE = (ε − ε0)EEE, PPPB = −iξBBB, MMMB =−(µ−1 − µ−1
0 )BBB, and

MMME= iξEEE (Serdyukov et al., 2001). First, we calculate PPP and MMMwhen Eq. (48) is satisfied. From
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the relation HHH = (i/Zc)EEE that is satisfied for LCP waves (see Table 1) and Eqs. (1) and (48),
it is not difficult to confirm that PPP = 0 and MMM = 0 are satisfied regardless of the propagation
direction. Due to the electromagnetic mixing attributed to ξ, the polarization PPPB, which is
induced by the magnetic flux density, completely cancels out the polarization PPPE, which is
induced by the electric field. Similarly, MMME cancels out MMMB. As a result of the destructive
interference of electric and magnetic responses, net polarization and magnetization vanish in
the case of LCPwaves in the chiral medium. This implies that the chiral medium is identical to
the vacuum for LCPwaves. Next, we calculate PPP and MMMwhen Eq. (49) is satisfied. By applying
a similar procedure, we obtain PPP = −2ε0EEE and MMM = −2HHH, which equal the corresponding
value of the anti-vacuum. Therefore, the chiral medium behaves as an anti-vacuum for LCP
waves.

4.4 In case of k+ = −k− (chiral nihility media)
In the case of chiral nihility media (k+ = −k−) (Tretyakov et al., 2003), we obtain MR = cu I +
c3σ3, which is the same representation as that in the achiral case. The no-reflection angles for
TM and TE waves are written as

θTM = arcsin

√

Z−2
r − 1

Z−2
r − n−2

, θTE = arcsin

√

Z2
r − 1

Z2
r − n−2

, (52)

respectively, where Zr = Zc/Z0 and n= k+/k0 =−k−/k0. The no-reflection effect in this case
resembles but is different from that in the achiral case. While the transmitted wave is a linearly
polarized wave in the achiral case, LCP and RCP waves that satisfy θ+ =−θ− are transmitted
in this case. Equations (30) and (35)-(38) show that the intensities of the transmitted LCP and
RCP waves are equal.
The medium parameters satisfying the no-reflection condition are derived from

(εr + µrξ
2
r)µr = 0, µr/(εr + µrξ

2
r) = Z2

r , µrξr = ±n. (53)

The first is the condition for chiral nihility (k+ = −k−), and the second and third are the
conditions for the wave impedance andwavenumber. To satisfy these equations at a particular
angular frequency ω0, the medium parameters need to be written as the following equations
around ω0:

εr =
n

Zr

[

f (ω − ω0)−
1

f (ω − ω0)

]

, µr = nZr f (ω − ω0), ξr = ± 1

Zr f (ω − ω0)
, (54)

where the function f satisfies limω→ω0 f (ω − ω0) = 0.
When Zr = 1 and n = ±1, namely, Zc = Z0 and |k±| = k0 are satisfied, the reflection matrix
MR becomes a zero matrix. Since the conditions Zc = Z0 and |k±| = k0 are independent of
the incident angle, MR becomes a zero matrix for all angles of incidence; arbitrary polarized
waves are not reflected for any incident angle. This phenomenon has been confirmed by
numerically calculating the reflectivity when Zc = Z0 and |k±| ≈ k0 are satisfied (Qiu et al.,
2008).
We consider the physical meaning of Eq. (54) when both Zr = 1 and n = ±1 are satisfied.
For simplicity, suppose that (εr,µr,ξr) = [ f (ω − ω0)− f (ω − ω0)

−1, f (ω − ω0), f (ω − ω0)
−1]

are satisfied in this paragraph. The medium polarization and magnetization are found to be
PPP = ε0 f (ω − ω0)EEE → 0 and MMM = f (ω − ω0)HHH → 0 for LCP waves and PPP = ε0[ f (ω − ω0)−
2]EEE→−2ε0EEE and MMM= [ f (ω − ω0)− 2]HHH→−2HHH for RCP waves when ω → ω0. This implies
that the medium behaves as a vacuum for LCP waves and as an anti-vacuum for RCP waves.
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Fig. 5. Scattering of electromagnetic waves by cylindrical chiral medium when diameter of
chiral medium is (a) smaller and (b) larger than beam width of electromagnetic wave. Left
panels show propagations of LCP waves and right panels show those of RCP waves.

The no-reflection condition in the case of Zc = Z0 and |k±|= k0 can be regarded as the case of
|ξr| → ∞ in Eqs. (48) and (49). From Eqs. (48) and (49), we find that the vacuum condition for
LCP (RCP) waves and the anti-vacuum condition for RCP (LCP) waves can be simultaneously
satisfied when |ξr| → ∞. In other words, the points represented by L+ and R− (L− and R+)
in Fig. 3 approach each other with increasing |ξr| and the two points become identical in the
case of |ξr| → ∞.

5. FDTD analysis of no-reflection effect for CP waves

From now, we focus on the no-reflection effect for CP waves and analyze the no-reflection
effect by an FDTDmethod (Tamayama et al., 2008). Here, the parameters of the chiral medium
are set as εr = 0.75, µr = 0.8, and ξr = 0.25, which give Zc = Z0, k+ = k0, and k− = 0.6k0. That
is, the no-reflection condition (vacuum condition) is satisfied for LCP waves.
First, we analyze the scattering of electromagnetic waves by a cylinder made of the chiral
medium. To adopt the two-dimensional FDTD method, Maxwell’s equations for CP waves
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14 Electromagnetic Waves

are rearranged as follows:

∂Ez±
∂y

= iω(µ ± µξZc)Hx±, (55)

− ∂Ez±
∂x

= iω(µ ± µξZc)Hy±, (56)

∂Hy±
∂x

− ∂Hx±
∂y

= −iω

[

(ε + µξ2)± µξ

Zc

]

Ez±, (57)

where the relation HHH=±(i/Zc)EEE is used and the positive (negative) sign corresponds to LCP
(RCP) waves. Section 4.3 and Eqs. (30) and (35)-(38) show that the incident CP wave is not
converted into the other CPwave on the reflection and refraction because the wave impedance
matching condition Zc = Z0 is satisfied in this case. Thus, we may separately analyze the
propagations of LCP and RCP waves. Figure 5 shows the propagations of electromagnetic
waves when the diameter of the cylindrical chiral medium is smaller and larger than the beam
width of the electromagnetic waves. One sees that LCP waves propagate with no scattering,
and RCP waves are largely scattered.
Next, we analyze the propagation of electromagnetic waves when they are incident on a
triangular prismmade of the chiral medium. For k− = 0.6k0, Snell’s equation for RCPwaves is
expressed as sinθ = 0.6sinθ−; hence, the critical angle for RCPwaves is θc = arcsin(0.6)≃ 37◦ .
Therefore, LCP waves are completely transmitted without any reflection, while RCP waves
are totally reflected with the incident angle greater than 37◦ . This implies that we can divide
the incident waves into LCP and RCP waves. That is, the prism can be utilized as a circular
polarizing beam splitter. The left (right) panels of Fig. 6 show the propagations of LCP (RCP)
waves. Simulations are performed for three incident angles: 26.5◦ , 45◦, and 63.5◦. The LCP
wave is transmitted straight through the chiral medium without reflection for any incident
angle. Although the RCP wave is partially reflected and partially transmitted in the case of
θ < θc, it is totally reflected at the surface of the chiral medium when θ > θc. This result
confirms that the incident wave can be split into LCP and RCP waves, and the circular
polarizing beam splitter is achieved when the incident angle exceeds θc.

6. Conclusion

We studied the no-reflection conditions for a planar boundary between a vacuum and a chiral
medium. The comparison of the no-reflection conditions for achiral and chiral media is
shown in Table 2. While the no-reflection effect arises for TM and TE waves in the case of
achiral media (ξ = 0), it arises for EP waves in the case of chiral media (ξ �= 0) whose wave
impedances do not equal the vacuum wave impedance. These no-reflection conditions are
satisfied for a particular incident angle. When the wave impedance and the absolute value of
the wavenumber in the chiral medium equal those in the vacuum for one of the CP waves, the
corresponding CPwave is transmitted with no-reflection for all angles of incidence. Although
the no-reflection effect for chiral nihility media resembles that for achiral media, the two cases
of the no-reflection effect are different from each other in the transmitted waves.
We analyzed the no-reflection effect for CPwaves by an FDTDmethod. The simulation results
showed that a chiral medium, whose medium parameters satisfy the no-reflection effect for
one of the CP waves, does not scatter the corresponding CP wave and it largely scatters the
other CP wave. The FDTD simulation also demonstrated that a circular polarizing beam
splitter can be achieved by a triangular prismmade of the chiral medium.

428 Wave Propagation

www.intechopen.com



ξ = 0

Wave impedance Zc �= Z0 Zc
Medium parameters,
Incident angle

cu = c3 cu = −c3 k ≡ k

Polarization TM TE

No-reflection angle ∃θ ∃θ

Refraction yes yes
no (whe

yes (when

ξ �= 0

Wave impedance Zc �= Z0 Zc

Medium parameters,
Incident angle

cu = cϕ, Zc > Z0

or
cu = −cϕ, Zc < Z0

cu = −cϕ, Zc > Z0

or
cu = cϕ, Zc < Z0

k+ = ±k0

Polarization TM-like EP TE-like EP LCP

No-reflection angle ∃θ ∃θ ∀θ

Refraction yes yes
no (when k+ = k0)

yes (when k+ = −k0)

Table 2. Classification of no-reflection conditions for achiral (ξ = 0) and chiral (ξ �= 0) media.
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16 Electromagnetic Waves

For future studies, we must prepare metamaterials whose εr, µr, and ξr satisfy
the no-reflection conditions for EP and CP waves. Such metamaterials can be
realized by employing chiral structures (Kuwata-Gonokami et al., 2005; Zhang et al., 2009;
Rockstuhl et al., 2009; Wang et al., 2009) and by electromagnetically induced chirality in
atomic systems (Sautenkov et al., 2005; Kästel et al., 2007).
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