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1. Introduction   

1.1 Historical perspective  

Interaction between electromagnetic waves and plasmas has been explored for several 
decades in various fields, such as ionosphere layers and outer space (Ginzburg, 1964), fusion 
plasmas (Stix, 1962; Swanson, 1989; Nishikawa & Wakatani, 1990), and plasma material-
processing reactors (Lieberman & Lichtenberg, 1994). When an electromagnetic wave is 
launched in or near a non-magnetized plasma whose size is much larger than the 
wavelength, it is transmitted, reflected, or absorbed; these features are determined by a set 
of the electromagnetic wave frequency, the electron plasma frequency, and the electron 
elastic collision frequency. These three parameters determine real and imaginary parts of 
permittivity. In other words, plasmas equivalently behave as conductors or dielectric 
materials for electromagnetic waves, and these behaviours are controllable by changing 
complex permittivity, or electron density and gas pressure, which is associated with the 
electron plasma frequency and the electron elastic collision frequency; this controllability 
and the time-varying manner for permittivity distinguish plasmas from other 
electromagnetic media. 
First of all, in this section, we briefly review the historical perspective of the electromagnetic 
waves in plasmas, and we point out the reasons why the concept of electromagnetic media 
composed of plasmas and their discontinuities is focused on in this chapter.  
Electromagnetic waves in magnetized plasmas have been well investigated for more than 
half century, aiming at ultimate goals of controlled fusion plasmas for energy production 
and space plasmas for launching human beings using spacecrafts. In a magnetized plasma, 
various kinds of wave branches are present from low to high frequency ranges, and change 
of the external magnetic field induces “walk” on the dispersion curves in a “zoo” of plasma 
waves. Sometimes a branch leads to another totally-different branch; that is called mode 
conversion (Stix, 1962; Swanson, 1989). These waves can be launched from the outer side of 
the plasma, but there are also many inherent waves found as magnetohydrodynamic and 
micro instabilities (Swanson, 1989; Nishikawa & Wakatani, 1990). Other characteristic 
features of plasma waves are their nonlinearity; shock waves, solitons, and nonlinear mode 
conversion originate from the aspects of high-energy-state substance (Swanson 1989). The 
main focus in this chapter is different from such conventional scientific interests. 
Before we start our description, one more comment about plasma production for industry 
should be addressed (Lieberman & Lichtenberg, 1994). Plasma production in fabrication 
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processes of thin film technology was quite successful, and several different methods have 
been developed for semiconductor industry, flat panel display markets, and photovoltaic 
cell production. Such a technology using plasmas is now somewhat mature, and several 
different ideas and schemes for researches on plasma science and engineering are being 
tested for other applicable fields.  
In such a sense, we study new types of plasma-wave interactions, especially arising from 
discontinuities in both space and time. Progress of techniques to control shape and 
parameters of plasmas enables us to make discontinuities in a clear and stable state. 

1.2 Emerging aspects of plasma wave propagation   

Since wave propagation in a magnetized plasma is well described elsewhere (Stix, 1962; 
Ginzburg, 1964; Swanson 1989), we here focus on the propagation in and around a non-
magnetized plasma. It is not so complicated to describe electromagnetic waves propagating 
in and around a bulk non-magnetized plasma (Kalluri, 1998), although the propagation in a 
spatially-nonuniform plasma, in which electron-density gradient is significant (Swanson, 
1989; Nickel et al., 1963; Sakai  et al., 2009) and/or the profiles of electron density is spatially 
periodic (Hojo & Mase, 2004; Sakai et al., 2005(1); Sakai et al., 2005(2); Sakai et al., 2007(1); 
Sakai et al., 2007(2); Sakaguchi et al., 2007; Sakai & Tachibana, 2007; Naito et al., 2008; Sakai 
et al., 2010(1); Sakai et al., 2010(2)), includes novel physical aspects which have not been 
described in usual textbooks of plasma physics.  
Also, complex dielectric constant or permittivity whose imaginary part is significantly large 
is observed and easily controlled in a plasma as a macroscopic value (Naito et al., 2008; 
Sakai et al., 2010(1)). This imaginary part strongly depends on field profiles of 
electromagnetic waves around plasmas when their spatial discontinuities exist, and so 
synthesized effects with Bloch modes in periodic structure lead to not only frequency band 
gap but also attenuation gap (Naito et al., 2008; Sakai et al., 2009). In another point of view, 
power dissipation due to the imaginary part leads to plasma generation (Lieberman & 
Lichtenberg, 1994), which is a quite nonlinear phenomenon. 
In this chapter, considering the spatial discontinuities and the complex permittivity, the 
fundamentals of theoretical understandings on electromagnetic waves in and around plasmas 
are described. In Section 2.1, properties of complex permittivity are generalized using 
equations and a newly-developed 3-dimensional (3D) drawing. In Section 2.2, starting from 
the momentum equation of electrons to treat plasma effects, the complex permittivity in the 
Drude model is derived, and the equation is compared with that for metals whose permittivity 
is also in the Drude model; such a description will reveal unique features in the case of 
discharge plasmas for control of electromagnetic waves. In Section 3.1, various methods to 
describe effects of periodic spatial discontinuities are demonstrated, including both analytical 
and numerical ones, and specific examples of band diagrams of 2D structures are shown. In 
Section 3.2, another aspect of the spatial discontinuity associated with surface wave 
propagation is described, in which propagation of surface waves on the interface with spatial 
electron-density gradient is clarified. Section 4 summarizes this chapter, showing emerging 
aspects of electromagnetic waves in and around plasmas.  

2. Fundamentals of new aspects for wave propagation  

In this Section, we demonstrate features and importance of complex permittivity which is 
usual in a low-temperature partially-ionized plasma. Section 2.1 includes general 
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description which is also applicable to other lossy materials (Sakai et al., 2010(1)), and 
Section 2.2 focuses on the momentum balance equations of electrons in a discharge plasma, 
which is the origin of characteristic wave propagation in and around plasmas. 

2.1 Complex permittivity in a plasma 

To describe wave transmission and absorption as well as phase shift and reflection of the 

propagating waves, we here introduce a new drawing of dispersion relation in the 3D space 

of three coordinates consisting of wave frequency πω 2/ , real wavenumber rk , and 

imaginary wavenumber ik . A propagating wave which is launched at a spatial position 

0=x , or on the edge of a given media, is expressed as  

 
( ) ( ) ( ) ( )

( ) ( ) ( )( )
r

0 i r 0 r i

exp j ( , ) exp j( )

exp exp j( ) exp j ( j ) ,

A x t x A x t k x

A k x t k x A t k k x

ϕ ω

ω ω

= −

= − = − +
 (2.1.1)  

where )(xA  is the wave amplitude with the initial boundary condition of )0(0 == xAA , t  

is the time, and ),( xtφ  is the phase of the wave with the initial condition of 0)0,0( =φ . The 

dispersion relation in a collisionless plasma is usually expressed in the rk−ω  plane, and we 

can also obtain a useful information about wave attenuation from ik  as a function of ω  

when significant loss or wave attenuation takes place. 

Such a wave propagation in a bulk non-magnetized plasma is characterized by the 

permittivity pε  in the Drude model in the form  

 ,
)/j1(

1
m

2

2
pe

p ωνω

ω
ε

−
−=  (2.1.2) 

where peω  is the electron plasma frequency which is a function of electron density en , and 

πν 2/m  is the electron elastic collision frequency. We note that, since we choose a formula 

in equation (2.1.1) instead of ( ))(jexp r txk ω− , the sign in the bracket of equation (2.1.2) 

becomes “-”, and the imaginary part of the permittivity becomes negative in general (Pozar, 

2005). The detailed derivation of equation (2.1.2) is given in Section 2.2. Figure 1 shows pε  

at a fixed wave frequency (4 GHz) as a function of en  with various gas conditions on the 

complex plane (Sakai et al., 2010(1)). Here, we assume that the electron energy is 0.5 eV for a 

plasma in the afterglow and that the cross section for the electron elastic collisions is 
16100.5 −× cm2 for He and 16100.1 −× cm2 for Ar from the literature (Raizer, 1991). At 760 Torr 

of He, )Re( pε  is almost constant at unity for various en . On the other hand, at 5 Torr of Ar, 

)Im( pε  is roughly zero while )Re( pε  changes significantly in the negative polarity, and this 

feature almost corresponds to a collisionless plasma. This figure indicates that the change of 

gas species and pressure yields pε  with )Re(/)Im( pp εε  ranging from 0 to infinity for 

1)Re( p <ε  on the complex plane. 

Equation (2.1.2) gives us an understanding of dispersion relation in the 3D space ),,( ir kkω . 

Figure 2 displays a dispersion relation in a bulk non-magnetized plasma expressed by 

equation (2.1.2) (Sakai et al., 2010(1)). In the case at 5 Torr of Ar, which is nearly collisionless 

as mentioned earlier, the trajectory on the ),( rkω  plane is well known in textbooks of 

plasma physics. The working point is always on the ),( rkω  plane or on the ),( ikω  plane, 
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which can be understood easily from equation (2.1.2). However, in the case at 120 Torr of 

He, the working point goes far away from the two planes below peω  and leaves a trajectory 

on the ),( ir kk  plane; at such a point, the wave suffers attenuation as well as phase shift, as 

suggested in equation (2.1.1). 
Drawings of dispersion relations in this 3D space reveal significant physical parameters of 
electromagnetic media, as shown in the following. Knowledge from microwave engineering 
(Pozar, 2005) shows that 

 ,1
ωε
σμεω jk −=  (2.1.3) 

 

 

Fig. 1. Permittivity in a lossy bulk plasma with various gas condition and various en  (Sakai 

et al., 2010(1)). 

where ε , μ  and σ  is the permittivity, the permeability, and the conductivity of the media, 

respectively. From equation (2.1.3), the following equation is derived: 

 .
1

2 2
s

ir δ
σωμ
==kk  (2.1.4) 

Here sδ  is the skin depth of the wave into the media. ir kk  indicates an area on the ),( ir kk  

plane, and so a point projected on the ),( ir kk  plane expresses conductivity of the media on 

the assumption that μ  is constant. The inverse of the area on the ),( ir kk  plane corresponds 

to square of sδ ; as the area is larger, the skin depth is shorter. Another physical parameter 

which is visible in this 3D drawing is the metallic/dielectric boundary. From equation 

(2.1.3), we also obtain 

 .22
i

2
r μεω=− kk  (2.1.5) 

Comprehension of this equation gives us the following result. If ir kk > , ε  is positive when 

μ  is positive, leading to the fact that the media is dielectric, and if ir kk < , vice versa, and 
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we can recognize that the media is metallic. The line of ir kk =  becomes the boundary 

between metallic and dielectric media. 
 

 
(a) (b) 

Fig. 2. Dispersion relation of electromagnetic waves in a bulk plasma with 13
e 101×=n  cm-3 

in the 3D space. (a) In a plasma at 5 Torr of Ar gas. (b) In a plasma at 120 Torr of He gas. 
(Sakai et al., 2010(1)). 

These characteristics arising from lossy plasmas are distinguishable from other 

electromagnetic media; unlike plasmas, any other material never has a variety of parameter 

sets such as complex )j( ir εεε −=  and σ . Such a characteristic property can be enhanced by 

spatial periodicity; a simple periodic rε  distribution realized in a solid material makes a 

photonic or electromagnetic band material which exhibits band gaps. If we introduce the 

effects of iε  by a plasma array, new features can emerge with the complex-variable effects 

(Naito et al., 2008; Sakai et al., 2010(2)). That is, spatial periodic change in rε  leads to 

formation of frequency band gaps around which propagation-permitted frequency has a 

certain gap. As a novel feature in plasma cases, wave attenuation due to iε  is significantly 

different between two bands above and under this band gap; we call it an attenuation gap. 

This gap arises from change of field profiles of electromagnetic waves; on the upper band, 

fields are localized in the lower- rε  area, and vice versa on the lower band; such properties 

are demonstrated in Section 3.1.1 and 3.1.4. 

2.2 Electron momentum balance equation and its effects for wave propagation 

When we consider wave propagation in a plasma, the rigorous starting point of description 
is electron momentum balance equation. Here, a non-magnetized plasma is assumed for 
simplicity; if an external magnetic field is present, other terms, for instance arising from the 
Lorentz force, might be included. The electron momentum balance equation deals with a 
plasma as a kind of fluids, and it keeps good matching with macroscopic parameters such as 
ε  and μ . Another method containing plasma effects is calculation of direct particle motion, 

such as a particle-in-cell simulation in which momentum balance of each single test particle 
is treated and collective effects of charged particles are integrated by the Poisson’s  
equation. Another comment of our treatment based on the fluid model is that ions are 
assumed to be immobile due to its huge relative mass compared with electrons. Dispersion 
relations of some electrostatic waves propagating in a plasma such as ion acoustic waves  
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are derived with the effects of ion motions, although they are removed from our curiosity 
here.  
Now, a general expression of the electron momentum balance is described as (Razer, 1991)  

 ,)()()()()(
d

)(d
)( meeee

e
e νrvrrrEr

rv
r mnpen

t
mn −∇−−=  (2.2.1) 

where t  is the time, r  the spatial position vector, ev  the electron fluid velocity, em  the 

mass of an electron, e  the charge of an electron, and E  the electric field. The left hand side 

contains a convective term arising from the change of electron position in time due to ev  as 

∇⋅+∂∂= e/d/d vtt , although this term is neglected in the following. The first term on the 

right hand side is Coulomb force by E . The second term expresses pressure-gradient term, 

where assumption of an isothermal plasma with a uniform spatial profile of electron 

temperature eT  enables to obtain )()( eee rr nkTp ∇=∇ . The third term implies friction 

against neutral particles, i.e., change of momentum that is as frequent as mν ; vn σν gm = , 

where gn  is the neutral gas density, σ, strongly depending of electron energy, is the cross 

section of the elastic collision, and vσ  is a statistically averaged value over the velocity 

distribution.  

First of all, complex permittivity of a plasma in the Drude model pε , as shown in equation 

(2.1.2), is derived in the following. In this case, we ignore the pressure term in equation 

(2.2.1) to see wave propagation in a bulk plasma. Then, current density by electrons J is 

given by 

 .2
pe0m EJ

J ωεν =+
∂
∂

t
 (2.2.2) 

If we express a variable )(~ ωx , as a frequency spectrum at ω , via Fourier transform from 

)(tx , equation (2.2.2) becomes for a wave with frequency πω 2/  

 ( ) .
~~

j 2
pe0m EJ ωενω =+  (2.2.3) 

Also, one of the Maxwell equations becomes  

 .
~~

j
~

0 JEH +=×∇ ωε  (2.2.4) 

Substituting E
~

 in equation (2.2.3) into equation (2.2.4), we obtain pε  in the following: 
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j
~
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m

2
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0 EEH εωε
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ω
ωε =

⎟
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⎜
⎜

⎝

⎛

−
−=×∇  (2.2.5) 

 

with the expression of pε  similar to equation (2.1.2), the well known form in the Drude 

model. We carefully note that, from the above discussion, this form is valid for sinusoidal 

waves.  
Secondly, we take a look on the contributions of the pressure term in equation (2.2.1). The 

pressure term will be significant on the edge of a plasma, and so this treatment is beneficial 
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when we consider wave propagation on the edge as a surface wave. Ignoring the friction 

term in equation (2.2.1), the current density in a plasma is given by  

 2
0 pe e .e

e

ekT
n

t m
ε ω∂

= − ∇
∂
J

E  (2.2.6) 

 

Then, we compare the effects of the pressure term with the cases of metals. In metal optics 

(Forstmann & Gerhardts, 1986), the theoretical framework similar to the fluid model in 

plasma physics is referred to as the hydrodynamic formulation. An expression of the current 

density is given as  

 .e
22

pe0 ne
t

∇−=
∂
∂ βωε E
J

 (2.2.7) 

 

That is, in the hydrodynamic formulation, the only different point between metals and 

discharge plasmas are pressure term ep ; in the case of metals, 2
e e ep m nβ=  with 

2
F

2 )5/3( v=β , where Fv  is the Fermi velocity, and in the case of discharge plasmas 

e e ep n kT= . This difference comes from the state-of-phase transition at Fe TT =  condition 

where the thermal energy is equal to the Fermi energy expressed by the Fermi temperature 

FT ; in the cases of metals, Fe TT <  and metals are in the quantum phase in the category of 

electron gases (Isihara, 1993). In a usual metal, parameter 2
em β  is by 3-4 orders larger than 

ekT , which yields significant differences for dispersion relations of surface wave modes 

between these two cases, which is discussed in Section 3.2. 

3. Emerging aspects due to spatial discontinuities  

3.1 Plasma periodic structure and deformation of wave propagation 

Stimulated by recent progresses in photonic crystals (Yablonovitch, 2000; Noda & Baba, 

2003), a number of researches have been performed about spatially periodic plasma 

structures which exhibit various novel phenomena that have not been expected when we 

use solid materials. To the best of our knowledge, the earliest publication associated with 

the plasma periodic structure was by Faith and Kuo (Faith et al., 1997); in their report, 

deformation of the band structure by rapidly generated 1D plasma structure that was 

analytically calculated was used for frequency upshift, and implied presence of photonic 

band gaps. Kalluri (Kalluri, 1998) summarized the variety of dispersion relations in the cases 

of both spatial and time discontinuities, and he pointed out photonic band gaps as 

forbidden bands. The terminology of a “plasma photonic crystal” was first announced by 

Hojo and Mase with its physical and technological importance (Hojo & Mase, 2004). After 

that, the first experimental verification of a 2D photonic crystal was performed by Sakai and 

his coworkers (Sakai et al., 2005(1); Sakai et al., 2005(2)), and they continued to extend their 

work in both theoretical and experimental results. Several groups followed these researches 

mainly from the theoretical points of view, as mentioned later, although Dong and her 

coworkers (Dong et al., 2007) performed simulated experiments of 2D plasma self-organized 

pattern formation, and Lo and coworkers (Lo et al., 2010) successfully observed effects for 

modification of propagating electromagnetic waves using metal-plasma composites.  
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In this section, the theoretical fundamentals for investigation of dispersion relations of 
plasma photonic crystals are reviewed. 1D dispersion relations are well described by the 
formula of a Bloch mode, given by  

 .sinsin
2

1
coscoscos ddnd

d

ddn

c

dN

c

dN

Z

Z

Z

Z

c

dN

c

dN
ka

ωωωω
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=  (3.1.1) 

Here nd  is the thickness of the region with N  where a plasma layer is present, and c  is the 
velocity of light. Z   is the wave impedance of the equivalent slab region with the plasma 
structure. We also assumed that dielectric layers with refractive index Nd, wave impedance 
Zd, and a thickness dd were set between the plasma layers. Several authors investigated 1D 
plasma photonic srystals using equation (3.1.1) or other fomulae (Faith et al., 1997; Kalluri, 
1998; Guo, 2009; Yin et al., 2009; Qi et al., 2010; Fan & Dong, 2010). However, for derivation 
of dispersion relations in 2D structures, which includes more scientific understandings as 
well as technical applications, several different methods have been developed, and they are 
described in the following.  

3.1.1 Plane-wave expansion method for dispersive media 

The plane-wave expansion method has been widely used to derive analytically photonic 
band diagrams of 2D and 3D dielectric periodic structures (Ho et al., 1990; Phihal et al., 
1991). A spatially periodic permittivity, which is constant over a certain frequency range, is 
converted into the summation of spatial Fourier coefficients, and an assumption that 
multiplane-waves are superposed leads to dispersion relations by solving eigenvalue 
problems. That is, for the first task to use the plane-wave expansion method, we have to 
derive the spatial Fourier coefficients in advance, which is all right if an assumed structure 
is quite simple, although complicated structures are hardly treated in this procedure.  
When a solid dielectric array in the plane-wave expansion method is replaced by a 2D 

plasma structure, the permittivity depends on ω, and the normal plane-wave expansion 
method is ineffective. Kuzmiak and Maradudin developed a plane-wave expansion method 
applicable to derivation of the photonic band structures of metallic components (Kuzmiak & 
Maradudin, 1997), and here we use a similar technique to solve the eigenvalue problems 
and further investigate cases similar to the experimental conditions (Sakaguchi et al., 2007). 
That is, the important point of the development of this method by Kuzmiak and Maradudin 
is that their formulae enable us to deal with dispersive media, or frequency-dependent 
permittivity, one of which is observed in a plasma in the Drude model, as shown in 
equation (2.1.2). Here we briefly describe this modified plane-wave expansion method 
introduced in (Kuzmiak & Maradudin, 1997) and followed in (Sakai et al., 2007(1)).  

We set the dielectric region with permittivity dε  outside the plasma column, since in 

experiments we frequently confine discharge gases and plasmas in a dielectric container. 

Using equation (2.1.2), the position vector at the site of lattice point ||x , and translation 

vector ||G ( 2211 bb hh += , where 1b  and 2b  are the primitive translation vectors of the 

reciprocal lattice and 1h  and 2h  are arbitrary integers), spatially and frequency-dependent 

permittivity )|( || ωε x  in a square lattice is expressed by Fourier coefficients )(ˆ ||Gε  as 

 ( ) ( ) ( )|||||||| jexpˆ|
||

xGGx
G

⋅=∑εωε  (3.1.2) 
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with 
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 (3.1.3b) 

where 22 /aRf π=  is the filling fraction and R  is the radius of the cross section of a plasma 

column with lattice constant a. This frequency-dependent complex value of )|( || ωε x  

complicates the eigenvalue problem.  

From Maxwell equations with fields varying harmonically in time t  in the form of )jexp( tω , 

we can expand the z component of the magnetic field in the TE (H polarization) mode, 

where the ),( yx  plane exhibits the spatial periodicity of the permittivity as 

 ( ) ( ) ( ){ }.jexp
~

||||||||||||

||

xGkGkxH
G

⋅+=∑Az ω  (3.1.4) 

When we substitute equation (3.1.4) into the wave equation about zH
~

, coefficients 

)}({ ||||GkA  fulfill the following equation: 

 ( ) ( ) ( ) ( ),)(ˆ
||||2

2

||||||||||||||||

||

GkGk'GG'GkGk
'G

A
c

A
ωκ =−+⋅+∑  (3.1.5) 

where )}(ˆ{ ||Gκ  are the Fourier coefficients of )|(/1 || ωε x . 

In the case of TM (E polarization) mode, the z component of electric field zE
~

 is  

 ( ) ( ) ( ){ }
||

|| || || || || ||exp j .z Bω = + ⋅∑
G

E x k G k G x#  (3.1.6) 

Components )}({ ||||GkB  fulfill the following equation as 

 ( ) ( ) ( ) ( ) ( ) ( ),ˆˆ
||||||||2

2

||||2

2

||||
2

||||

||

Gk'GGGk0GkGk
'G

B
c

B
c

B ∑ −+=+ εωεω  (3.1.7) 

where ∑ 'G||
denotes summation except for the case with 'GG |||| = . 

In the process of solving equation (3.1.5) or (3.1.7), we obtain a polynomial formula for 

c/ω , which can be transferred to a linear problem using matrix forms. Practically, when we 

set a specific value of k , which is a wavenumber vector composed of real numbers we 

obtain complex wave frequency, that is, ir jωωω += . We can plot them, as they are, as a 

function of k , but if we convert iω  to ik  via igi kv−=ω  with group velocity gv , we can 

get a set of ( irr ,),( kkωω = ).  

Figure 3 shows a dispersion relation in 2D wavenumber, or a band diagram, of a plasma 

photonic crystal with a significant value of νm (Sakai et al., 2009), in which we use a 3D 

drawing in the ( ir ,, kkω ) space described in Section 2.1. In the rk−ω  plane in Fig. 3, a band 
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gap was clearly observed from ca πω 2/  = 0.29 to 0.32, and the dispersion relation was 

divided into upper and lower bands. In the lower band, there was a gap from ca πω 2/  = 

0.17 to 0.21 arising from the crossing of one flat band, but rk  and ik  were continuous on 

both sides of the gap. This fact indicates that this is a simple frequency band gap caused by 

deformation of the flat-band crossing. However, the band gap from ca πω 2/  = 0.29 to 0.32 

yielded very large differences between the upper and lower bands. Although rk  was equal 

on both sides at ca πω 2/  = 0.29 and 0.32, ik  of the upper band was one order of magnitude 

larger than that of the lower band. The trajectory on the rk - ik  plane clarifies that these two 

bands had completely different properties, and we refer it as an attenuation gap. This is 

mainly attributed to different wave-field profiles in one lattice (Sakai & Tachibana, 2007). On 

the upper band, wave fields concentrate on the plasma region where ε  is relatively small, 

but on the lower band, wave fields are localized outside the plasma region where ε  is 

relatively large. If a band gap is located above πω 2/pe , the differences in the field profile 

change only the matching condition between inside and outside the array region, and the 

band gap shows the features of a band-stop filter. On the other hand, if a band gap is located 

below πω 2/pe , the field profile in the periodic structure strongly affects attenuation of the 

propagating waves by electron elastic collisions. 
 

  
(a) (b) 

Fig. 3. (a) Dispersion relation (or band diagram) of microplasma array calculated by 

modified plane-expansion method. A microplasma has a diameter of 1.0 mm with lattice 

constant of square lattice 2.5 mm. The profile of electron density with 4x1013 cm-3 is slab 

shape, and the electron elastic collision frequency is set to be 0.5 peω .  (b) Dispersion relation 

(or band diagram) of microplasma array in 3D space with the similar parameters to those in 

(a). Data points of ik  at i / 2 1.0k a π >  are out of range in this figure. (Sakai et al., 2009) 

3.1.2 Direct Complex-Amplitude (DCA) method 

Direct numerical analysis of Maxwell equations is usually by a finite difference time-domain 
(FDTD) method, and it successfully gave rise to band diagrams of a 2-dimensional plasma 
structures as well as those of metallic photonic crystal, which is described in Section 3.1.3. 
What we use here to obtain band diagrams numerically is a different method dealing with 
the complex values of electromagnetic fields that enables us to obtain a static solution of the 
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fields in shorter central processing unit CPU time. A description of the method is found in 
(Sakai & Tachibana, 2006) and (Sakai et al., 2007(1)). We note that this method was originally 
applied to investigate wave propagation in a fusion plasma (Fukuyama et al., 1983). Here 
we mention its details. 
From the Maxwell equations, the elimination of magnetic fields leads to a wave equation 

composed of electric fields E
~

 and external current density ext
~
J , written as 

 ,
~

j
~~

ext0
2 JEE ωμμεεω =−×∇×∇  (3.1.8) 

which is spatially discretized (for instance, 2020×  square meshes in one lattice) based on 

the finite difference method. We note that ε  is expressed as )(p ωε  in equation (2.1.2) inside 

a plasma. 2D complex-value electric fields in the form expressed in equation (2.1.1) are 

considered, and so the TE mode in which an electric field is parallel to a 2D lattice plane can 

be analyzed when electric field vectors are vertical to plasma columns, in applications of the 

Bloch theorem to electric and magnetic (or gradient of electric) fields on the boundaries of a 

lattice in the form of 
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where ),( 00 yx  is a position vector on the boundary of lattices. In the case of the TM mode 

analysis, 2D magnetic field vectors will be solved numerically. From these boundary 

conditions, the 2D wave number of a propagating wave ),( yx kk  is specified. The external 

current source is hypothetically set within a lattice. Then equation (3.1.8) is solved using the 

finite difference method at each discrete frequency from 0 to 150 GHz, and the local wave 

power density at a specific point is chosen as a cost function to detect a propagation branch. 

That is, when one set of frequency and wave number is matched with a propagating wave 

condition, the cost function represents resonance-like peaking with a very narrow frequency 

region (usually less than 0.1 GHz width) and with a nonlocal electric field pattern 

independent of the position of the hypothetical current source. On the other hand, when 

another set is not along the propagation branch, the electric field profile only shows a near-

field pattern localized around the hypothetical current source with a very small value of the 

cost function value. A complex value of the electric field includes phase information, and so 

the wave number assumed in equations (3.1.9) and (3.1.10) can be reconfirmed by a spatially 

differential value of the phase )( xk ⋅  at the resonance-like frequency. In this method, no 

derivation of a spatial Fourier coefficient is required, and so an arbitrary structure inside a 

lattice such as a complicated plasma shape and an arbitrary ε  profile can be treated. 
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This method does not use time-domain discretization, unlike the FDTD method. In the case 
of the FDTD method, time evolution of propagating waves in media is converted into 
frequency spectra. To deal with the wide frequency range simultaneously, it is required to 
perform auxiliary calculation to reinforce the dispersive dependence of the permittivity such 
as shown in equation (2.2.2), and such a scheme is referred to as frequency-dependent FDTD 
method, which is shown in Section 3.1.3. In our method used here, a monochromatic wave 
at one frequency is assumed in each calculation step with a corresponding and precise value 
of the permittivity from equation (2.1.2). In other words, the frequency step which we set for 
searching wave propagation is crucial to assure the entire calculation accuracy. A narrower 
frequency step will yield a more accurate determination of a propagating wave, although 
more CPU time is required. 

Using this scheme, we calculated band diagrams with ων <<m , that is, a collisionless case, 

as shown in Figs. 5-9. When mν  is introduced as a finite value comparable to ω  and peω , 

note that the resonance-like frequency is searched on the complex frequency for a real wave 

number, like in the cases of the plane-wave expansion method described in Section 3.1.1. If 

we consider spatial wave damping of the static propagation in a finite region, a complex 

wave number is derived for a real value of frequency. This method enables us to take such a 

flexible approach. The relation of complex wavenumber and complex wave frequency was 

well investigated by Lee et al.(Lee & Mok, 2010). 
 

 

Fig. 4. 2D Wave propagation along a chain structure composed of columnar plasams at 6.2 

GHz. Inset figures shows assumed configuration with assumed en  profile in shape of 0th 

order Bessel function with peak density of 13105.1 × cm-3. 

3.1.3 Finite-difference time domain method for dispersive media 

In Section 3.1.2, we mentioned a different numerical method which saves computer 
resources, but the FDTD method is more popular and well developed if they are sufficient. 
We note that, even if it is possible to use the FDTD method, it provides quasi-steady 
solution which is difficult to be detected as a completely steady state one; human judgement 
will be finally required. Here, we describe the ways how the FDTD method can be 
applicable to analysis of wave propagation in and around plasmas.  
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Maxwell equations are linearized according to Yee’s Algorism (Yee, 1966), as used in a 
conventional FDTD method. In addition, to deal with frequent-dependent permittivity 
equivalently, equation (2.2.2) is combined with Maxwell equations (Young, 1994) in the 
similar dicretization manner. Here, we ignored a pressure-gradient term from the general 
momentum balance equation in equation (2.2.1) because the pressure-gradient term is in the 
order of 10−7 of the right hand side of equation (2.2.2), although we have to treat it 
rigorously when electron temperature is quite high or when electromagnetic waves 
propagate with very short wavelength in the vicinity of resonance conditions. The boundary 
layers on the edges of the calculation area is set to be in Mur’s second absorption boundary 
condition if the waves are assumed to be absorbed, and also we can use the Bloch or Froquet 
theorem described in equations (3.1.9) and (3.1.10) to assure the spatial periodic structure. 

Figure 4 shows one example of the calculated results using this FDTD method. The peak en  

value in each plasma column assures the condition with peωω <  in which surface waves can 

propagate, as mentioned in Section 3.2. The launched waves from the lower side propagate 

along the chain structure of the isolated plasmas, and the fields are not inside plasmas but 

around them, similar to localized surface plasmons in the photon range along metal 

nanoparticles (Maier et al., 2002). That is, using this method, not only ne profiles in one 

plasma but also the entire configuration surrounding plasma structures can be handled 

easily, although the limitation mentioned above reminds us of cross checking of the 

calculated results by other methods.  
 

 

Fig. 5. Band diagram of TE mode in square lattice of plasma columns by direct complex-
amplitude method. Lattice constant a is 2.5 mm. Columnar plasma with 1.75 mm in 
diameter is collisionless and ne = 1013 cm-3. (Sakai & Tachibana, 2007) 
 

 

Fig. 6. Calculated profiles of electric fields normalized in amplitude in case of kxa/2π = 0.50 
and ky = 0. Parameters used are similar to Fig. 5. (Sakai & Tachibana, 2007) 
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3.1.4 Examples of wave propagation in periodic plasma structures  

Now, we demonstrate some specific examples of electromagnetic wave propagation (Sakai 
& Tachibana, 2007), especially with coupling of surface waves on the interface of 2-
dimensional structures. The method to derive field profiles as well as band diagrams is the 
direct complex-amplitude (DCA) method, shown in Section 3.1.2.  
Figure 5 shows a band diagram of a columnar plasma 2D array, derived by DCA method. 
The 2D plane was discretized into 20 × 20 meshes in one square-shaped lattice cell. This band 
diagram clarified typical features of 2D plasma photonic crystals, such as the band gaps, the 
flat bands, and the Fano mode. We also successfully obtained a case with a gradient electron 
density profile (Sakai et al., 2009) , in which the width of the flat band range increases due to 
lower density region in the periphery without changing other propagation properties; this 
mechanism of the wider flat band range is investigated in Section 3.2.  
A unidirectional band gap in the Γ−X direction, which lies around 61 GHz in Fig. 5, is 
reviewed in the following. Forbidden propagation is enhanced due to anisotropic wave 
propagation in the vicinity of the band gap (Sakai et al., 2007(2)). Figure 6(a) and (b) shows 
the electric field profiles around the plasma columns obtained as subproducts of the band 
calculation shown in Fig. 5 by DCA method. The electric fields showed different patterns 
just below or above this band gap; their amplitude was smaller in the plasma region than in 
the outer area just below the band gap (61.4 GHz), but their maximum region spreads over 
the center of the plasma just above the band gap (64.0 GHz). These structures were similar 
to 1D standing waves, and effects of the plasma with circular cross section were ambiguous. 
Next, we focus on properties of the flat bands. As shown in Figs. 3 and 5, the flat bands with 

very low group velocity region are present below πω 2/pe = 28.4 GHz. Such a wide 

frequency range arises from both localized surface modes and their periodicity. 

Surface modes around a metal particle were well investigated in the photon frequency range 

(Forstmann & Gerhardts, 1986). When electromagnetic waves encounter an individual metal 

particle smaller than the wavelength, they are coupled with localized surface modes called 

“surface plasmon polalitons.” Their maximum frequency spectrum is at )1(/ dpe εω + , 

where dε  is the permittivity of the dielectric medium surrounding the metal particle. The 

localized surface modes have azimuthal (angular) mode number l  around the particle, and 

l  becomes larger as the frequency approaches )1(/ dpe εω + , which corresponds to ~20 

GHz in Fig. 5.   
In our case, however, structure periodicity complicates the problem. Recently, several 
reports about metallic photonic crystals (Kuzmiak & Maradudin, 1997; Ito & Sakoda, 2001; 
Moreno et al., 2002; Torder & John, 2004; Chern et al., 2006) have dealt with this issue. We 
investigated the electric field profiles calculated by DCA method along the band branches to 
clarify the roles of surface plasmons and their periodic effects. Figure 7 shows several 
amplitude profiles of electric fields in the propagating waves in the 2D columnar plasmas, 
with the same parameters as Figs. 5 and 6. 
Electric fields in the Fano mode, present below the flat band region, are shown in Fig. 7(a). 
The amplitude of the electric field inside the columnar plasma was very small, and most of 
the wave energy was uniformly distributed and flowed outside the plasma. As we 
mentioned earlier, this wave branch coalesces with the flat bands at their lowest frequency 
as the frequency increases. 
Electric fields of the waves on flat bands are shown in Fig. 7(b)–(h). A clearly different point 
from Fig. 7(a) is that the electric fields were localized on the boundary between the plasma 
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and the vacuum. Another unique feature was the change of l  of the standing waves around 

the plasma column. At lower frequency, l around the plasma column was low, and it became 
multiple at a higher frequency. This tendency is consistent with the general phenomena of 

surface plasmons around a metal particle. The highest l  number (∼6) was observed around 20 

GHz, as shown in Fig. 7(e), and this frequency was approximately in the condition of 2/peω  

which agrees with the predicted top frequency of the surface plasmon around a metal sphere 

( )1(/ dpe εω +  in the case where the surrounding medium is a vacuum ( dε  = 1)).  

However, the sequence of l along the frequency axis was not perfect for the surface waves 

around an individual metal sphere in the array. Above 20 GHz in Figs. 5 and 7 there are 

some flat bands, separated from the group below 20 GHz. In this group, however, no 

sequential change of l  was found in Fig. 7. This might arise from the periodicity, as 

suggested by Ito and Sakoda (Ito & Sakoda, 2001). That is, Fig. 7(f)–(h) shows a different 

tendency from that below 20 GHz, and these electric field profiles imply that surface wave 

modes are localized in the gap region of the adjacent plasma columns and no boundary 

condition for standing waves around the column affects them. Note that this group of the 

flat bands above 20 GHz was hardly detected using the modified plane-wave method 

described in Section 3.1.1, as shown in Ref. (Sakai & Tachibana, 2007), where the region with 

no detection of flat bands ranges from 20 GHz to πω 2/pe . The structures of wave 

propagation are too fine to be detected in the modified plane-wave method, and therefore, 

an increase of assumed plane waves might be required to detect them in this method. 
In summary, wave propagation on the flat bands of a 2-D columnar plasma array is mainly 
attributed to the dispersion of the localized surface modes around an individual columnar 
plasma and is modified by periodicity in the plasma array. These phenomena analogically 
resemble light waveguides composed of metal nanoparticle chains (Maier et al., 2002). The 
property observed in the aforementioned calculations will be applied to the dynamic 
waveguide of the electromagnetic waves composed of localized surface modes, similar to 
that shown in Fig. 4, since flat bands can intersect with the wave branches with various 
characteristic impedances. 
 

 

Fig. 7. Calculated profiles of electric fields normalized in amplitude in case of kxa/2π = 0.25 
and ky = 0. Parameters used are similar to Fig. 5. (Sakai & Tachibana, 2007) 

www.intechopen.com



 Wave Propagation 

 

346 

So far, we have investigated wave propagation in an array of plasma columns. The next 

target is antiparallel structure, which is an infinite-size plasma with periodic holes. Above 

πω 2/pe , periodic dielectric constant in space will contribute to form a similar band 

diagram. When the frequency is low enough, since there is no continuous vacuum space in 

this structure, wave propagation below πω 2/pe  is considered difficult from the first guess 

of the wave-propagation theory in a bulk plasma.  
 

 

Fig. 8. Band diagram of TE mode in square lattice of plasma holes by direct complex-
amplitude method. Lattice constant a is 2.5 mm. Circular holes with 1.75 mm in diameter are 
in a collisionless infinite plasma with ne = 1013 cm-3. (Sakai & Tachibana, 2007) 
 

   

Fig. 9. Calculated profiles of electric fields normalized in amplitude in case of kxa/2π = 0.25 
and ky = 0. Parameters used are similar to Fig. 8. (Sakai & Tachibana, 2007) 

A band diagram of the infinite plasma with periodic holes, calculated by DCA method, is 

shown in Fig. 8. The basic features are common to the diagram in Fig. 5, and several different 

points from Fig. 5 can be found in Fig. 8. The first band-gap frequency in the Γ−X direction 

was slightly higher, since the filling fraction of the plasma region in one lattice cell in Fig. 8 

(0.62) was larger than that in Fig. 5 (0.38) and it reduced the synthetic dielectric constant above 

πω 2/pe . No Fano mode was present in the low frequency region since there was no 

continuous vacuum region. Note that wave propagation remained below πω 2/pe  and the flat 

band region expanded to lower frequencies, which are examined in the following. 
Figure 9 shows the electric field profiles in one lattice cell at various frequencies. In this case, 

no clear dependence of the azimuthal mode number l  on the frequency was found; for 

instance, l  = 1 at 12.3 GHz, l  = 4 at 12.7 GHz, and l  = 2 at 14.6 GHz. The path for the wave 
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energy flow is limited to four points from the adjacent lattice cells through the short gap 
region between holes, and a plasma hole works as a wave cavity. Furthermore, conditions 
for standing eigenmodes along the inner surface of the hole are also required. In contrast, in 
the case of the columnar plasmas in Fig. 7, wave energy freely flows around the column, and 
therefore, wave patterns fulfill eigenmode conditions around the plasma columns and their 
periodicity. These facts yield differences between the cases of columnar plasmas and plasma 
holes. 

It is difficult to express the penetration depth of the electromagnetic waves in surface 

plasmon in a simple formula (Forstmann & Gerhardts, 1986), but here, for the first 

approximation, we estimate usual skin depth sδ  on the plasma surface with a slab en  

profile instead. We use the well-known definition in a collisionless plasma as pes /ωδ c= , 

where c is the velocity of light, and sδ  is 1.7 mm using the assumed en  value in the 

aforementioned calculation as 1013 cm−3. Since this value is comparable to the size and the 

gap of the plasma(s) in the aforementioned calculation, no wave propagation is expected in 

the normal cases in the cutoff condition. That is, wave propagation in the case of the hole 

array is supported not only by tunnelling effects but also by resonant field enhancement on 

the boundary that can amplify the local fields that strongly decay in the plasma region but 

couple with those in adjacent cells as near fields. 
Using metals and waves in the photon range, similar phenomena will be found when holes 

are made in the 2-D lattice structure in the bulk metal, and waves propagate along this 2-D 

plane. In that case, some amount of light will pass through the metal in the usual cutoff 

condition; opaque material will become transparent to a certain extent, although damping by 

electron collisions will be present in the actual metallic materials. 
 

      
 

 
Fig. 10. Schematic view of surface waves on various models. (a) Model for ideal metal 
surface. (b) Bulk selvage model for metal surface. (c) Model for a discharge plasma. 

3.2 Surface wave propagation in a plasma with spatially gradient electron density 

In Section 3.1.4, several features of the localized surface waves in plasma periodic structures 
have been demonstrated. Some features are in common with the cases of light propagation 
on metal particles, but others are not; in this section, we clarify the different points from the 
surface waves or the surface plasmon polaritons on metal surfaces.  

www.intechopen.com



 Wave Propagation 

 

348 

Figure 10 displays schematic views of surface waves and ne profiles in both plasma and 

metal cases. In most cases of metal surfaces, since a ne profile is almost similar to a slab 

shape, analysis of surface waves is rather easy, and surface plasmon polaritons have been 

well understood so far. On the other hand, in the plasma case, characteristic length of ne is 

much larger than the presence width of the density gradient. This point is identical to 

plasma surface waves, although rigorous reports of these waves have been very few (Nickel 

et al., 1963; Trivelpiece & Gould, 1959; Cooperberg, 1998; Yasaka & Hojo, 2000). Here, we 

describe these waves using analytical approaches (Sakai et al., 2009).  

The plasma is assumed to be infinite in the half space for the spatial coordinate 0<z  with 

vacuum region for 0>z . Since we deal with wave propagation, a variable x  has two 

components as  

 ,10 xxx +=  (3.2.1) 

where subscripts 0 and 1 correspond to static and fluctuating (wave-field) parts, 

respectively, equation (2.2.6) in the fluid or the hydrodynamic model is rewritten as  
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Here, Poisson’s equation given as  

 011
2 /)( ερϕ −=∇ z  (3.2.3) 

with 11 ϕ−∇=E  and continuity equation given as  

 0d/d 11 =+⋅∇ tρJ  (3.2.4) 

 

are coupled with equation (3.2.2), where ϕ  is the electric potential and ρ  the amount of 

charge. We also assume electron temperature =eT 1 eV as a constant value. To make it 

possible to obtain an analytical solution, a specific en  profile is assumed as  

( ))(cosh1)()( 1
22

0pe
2

0pe zz αωω −−−∞=  

 

for 0<z  and 0)( 2
0pe =zω  for 0≥z , in the similar manner to the previous studies (Eguiluz 

& Quinn, 1976; Sipe, 1979), where 1α  represents density gradient factor, and solutions are 

derived using the similar method in Ref. (Sipe, 1979). 

Here we point out common and different properties between metals and plasmas deduced 

from this model. Figure 11(a) shows analytical dispersion relations including two lowest-

order multipole modes on a plasma half space with en  gradient region characterized by 

=1α 40 cm-1, where nω  is the eigen frequency of the multipole mode number n . There 

should be a number of multipole modes with every odd number n , and the two lowest 

cases ( =n 1 and 3) are displayed in Fig. 11(a). Higher multiple modes can exist as long as 

the density decay region works as a resonance cavity. A branch similar to the ordinary 

surface plasmon with the resonance frequency of 2/pesp ωω =  is observed, and the two 

multipole modes are located at much lower frequencies than spω . 
 

www.intechopen.com



Propagation of Electromagnetic Waves in and around Plasmas   

 

349 

 

(a) (b) 

Fig. 11. Analytically calculated dispersion relations of surface waves propagating along a 
surface of a plasma half space with a gradual electron density profile. (a) Dispersion 

relations with α1 = 40 cm-1 and ωpe/2π ~ 28 GHz. (b) Dependence of gradient parameter α1 
on length of density gradient Lz in the top figure and eigenfrequencies of the two lowest 
order in the bottom figure. Eigenfrequencies are plotted for two different pressure terms. 

As previously described in Section 2.2, in a usual metal, parameter 2βm  is much larger than 

ekT , which yields significant differences for dispersion relations of surface wave modes 

between plasma and metal cases. One of them is expressed in Fig. 11(b), which indicates the 

difference of frequency region of the surface wave modes. The top figure of Fig. 11(b) shows 

approximate length of gradient region zL  as a function of the parameter 1α . From the 

bottom part of Fig. 11(b), at one value of 1α , the frequency range of the surface wave modes 

(from 1ω  to spω ) in the case of gas-discharge plasmas is much larger than that in the case of 

metals with 81085.0 ×=β  cm/sec. That is, not only inherent density gradient on the edge 

but also accelerating factor by the difference of the pressure term widens frequency region 

of the surface wave modes in a gas-discharge plasma. 
Up to now, we have concentrated on surface waves on an infinite flat interface. Usually the 

excitation of surface waves on such a flat surface requires some particular methods such as 

ATR configuration or periodic structure like fluctuating surface. If we generate an isolated 

plasma from the others whose size is less than the wavelength, localized surface waves can 

be excited through electromagnetic waves in a free space, as shown in Section 3.1.4. In this 

case, we also observe similar wave propagation in comparison with the case of the flat 

surface (Sakai et al., 2009); the spectra of the waves propagating along the chain structure of 

the isolated plasmas with spatial ne gradient are much wider than that without the density 

gradient. That is, using such inherent property of the density gradient with the pressure 

term determined by electron temperature, we expect a very wide range waveguide 

composed of plasma chains; an example was demonstrated in Fig. 4.  
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Figure 12 shows conceptual dispersion relations of surface wave modes on surfaces of 

isolated plasmas, as a summary of the discussion here. In a case of the gradual profile of en  

shown in Fig. 12(a), the propagating modes are on z−ω  plane. Wave fields are distributed 

around the condition of 0=ε , i.e., on the layer with peωω = , and localized in a narrower 

region whose width is less than δs. Their frequency region is very wide and the surface 

modes can be present at frequencies much lower than )0(peω  by one or two orders. On the 

other hand, In a case of the slab profile of en  shown in Fig. 12(b), the propagating modes are 

on εω −  plane with narrow permittivity region (e.g., 12 −<<− ε ). Wave fields are distributed 

around a surface of solids, i.e., 0=z  in Fig. 12(b), where en  is discontinuous, and expand in a 

spatial range approximately equal to δs. Such newly-verified features of surface wave modes 

on small gas-discharge plasmas will open new possibilities of media for electromagnetic 

waves such as plasma chains demonstrated in Fig. 4 and spatially narrow waveguide on a 

en -gradient plasma surface.  
 

 
(a) (b) 

Fig. 12. Summary of dispersion relations of surface wave modes with two different electron 
density profiles. (a) Case of a gradual density profile. (b) Case of a slab density profile.  

4. Concluding remarks   

In this chapter, we investigate emerging features of electromagnetic wave propagation when 
we consider spatial structures of plasmas with complex permittivity. We derived the complex 
permittivity and introduce its drawing technique. We also obtained several methods to derive 
propagation of waves in two-dimensional plasma structures, and analytical solution of surface 
waves with the effects of significant ne gradient. Combining these results, we verified wave 
propagation as localized surface modes. Clearly, the properties of wave propagation are 
different from those of surface waves on metals as well as those in waves propagating solid 
photonic crystals. These fundamentals will be applicable to various physical approaches as 
well as technological applications for control of electromagnetic waves.  
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