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Practical Monte Carlo  
Based Reliability Analysis and  

Design Methods for Geotechnical Problems 

Jianye Ching 
National Taiwan University, Taiwan, 

Republic of China 

1. Introduction 

Reliability analysis is an important tool for quantifying uncertainties in analysis and design 
of engineering systems. In the past decades, the so-called first-order reliability method 
(FORM) (Ang & Tang, 1984) was the main stream method for reliability analysis. This 
method transforms a reliability analysis problem into an approximate optimization problem 
so that the required computation is minimized. Nonetheless, such transformation comes 
with some premises and tradeoffs: (a) to make the optimization problem tractable, the 
number of random variables of the target problem cannot be too many; (b) the problem at 
hand is better to be lightly nonlinear to avoid large bias in the estimated reliability; and (c) 
the engineers must have basic skills for solving nonlinear optimization problems. 
The first two premises may be questionable for realistic geotechnical problems because there 
are typically numerous random variables in realistic geotechnical engineering analyses and 
designs. Although techniques are developed to reduce the number of random variables 
(e.g., Ghanem & Spanos, 1991), their generality and accuracy are not yet proved. Therefore, 
for realistic geotechnical engineering analyses and designs, FORM may not be the best 
solution. More seriously, average engineers may not have the knowledge and skills for 
nonlinear optimization. It is not trivial for them to implement FORM, even for the simplest 
geotechnical design examples. 
Given the rapid growth of nowadays personal computers (PCs), massive computations are 
now more possible than ever. In particular, Monte Carlo simulations (MCS) can nowadays 
be implemented for the purpose of reliability analyses even with PCs. MCS is general for the 
number of random variables and the problem complexity; hence the limitation of FORM can 
be easily overcome. Moreover, the basic idea of MCS is very simple and intuitive. Finally, 
geotechnical models can be treated as black boxes when implementing MCS. All these 
features make MCS attractive for practicality. The only criticism for MCS is that it is 
inefficient for problems with very small failure probabilities (or with very high reliabilities).  
However, this limitation has been gradually removed by the recent advancements in the 
Monte Carlo based reliability methods. 
The goal of this chapter is to demonstrate the uses of some Monte Carlo based reliability 
methods and reliability-based design methods. In particular, a realistic geotechnical design 
example is developed for the purpose of demonstration: the implementation of all methods 
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will be presented based on the same example. First of all, this chapter will review practical 
Monte Carlo based reliability analysis methods, including 
a. Direct Monte Carlo simulation 
b. Importance sampling 
c. Subset simulation 
The traditional FORM will be also briefly reviewed for completeness. 
Second, this chapter will review state-of-the-art developments in the Monte Carlo based 
reliability-based design methods.  This subject is the inverse problem of reliability analyses: 
the purpose of reliability analyses is to obtain the reliability given the design dimension of 
an engineering system, but the purpose of reliability-based design is to obtain the design 
dimension given the target reliability.  The author himself (Ching & Phoon, 2010) has 
developed a series of Monte Carlo based methods in this line.  The review will be limited to 
the following design methods: 
a. Monte Carlo based safety factor design 
b. Monte Carlo based load-resistance factor design 
c. Monte Carlo based multiple resistance factor design 
d. Monte Carlo based partial factor design 
As opposed to the FORM-based reliability-based design methods, these Monte Carlo based 
methods are, again, not limited by the number of random variables and problem complexity 
and not requiring the acknowledge of optimization skills. 

2. Design example for demonstration 

Throughout this chapter, an example of geotechnical designs will be given to demonstrate 
the reviewed reliability analysis and reliability-based design methodologies. Consider a 
drilled shaft of 74.7 m long that is to be built at a site with ground profile shown in Table 1, 
 

Type 
Depth 

(m) 

Middle 
depth d 

(m) 

σ’v,m 
(kN/m2) 

Thickness 
t 

(m) 

su,m 

(kN/m2)
qu,m 

(kN/m2) 

Clay 0.0 – 42.1   42.1 = tc 70  

Sand 42.1 – 49.6 45.85 = ds 350 = σ’vs,m 7.5 = ts   

Gravel 49.6 – 69.7 59.65 = dg 480 = σ’vg,m 20.1 = tg   

Sandstone 69.7 – 74.7   5.0 = tr  900 

Table 1. Ground profile for the example design site 

where there are four strata, including clay ‘c’, sand ‘s’, gravel ‘g’, and rock ‘r’ layers; dx and 
tx respectively denote the middle depth and thickness of each layer (the subscript ‘x’ may be 

either ‘c’, ‘s’, ‘g’, or ‘r’, depending on the associated stratum type); σ’vs,m, σ’vg,m, su,m, and qu,m 
are respectively the measured in-situ effective stress in sand layer, in-situ effective stress in 
gravel layer, undrained shear strength of clay layer, and uniaxial compression strength of 
rock layer. The measurement is subjected to measurement errors: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, ,

ln ln ln ln

ln ln ln ln

vs vg

u u

vs m vs σ vg m vg σ

u m u s u m u q

σ σ e σ σ e

s s e q q e

′ ′′ ′ ′ ′= + = +

= + = +
 (1) 
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where σ’vs , σ’vg , su , qu are the corresponding actual values, and eσ’vs , eσ’vg , esu , equ  quantify 

measurement errors. These measurement errors are modeled as zero-mean normal random 

variables with standard deviations chosen to be 0.1, 0.1, 0.2, and 0.5, respectively. 

The axial compression capacity (Q) of the drilled shaft is provided by the side resistance (S) 

and tip resistance (T), and it can be computed using the equation given below: 

 Q S T= +  (2) 

Although the shaft tip may contribute to the overall compression resistance, the majority of 
the compression capacity is provided by the side resistance. Its contribution to the overall 
capacity often is ignorable compared to the side resistance. The side resistance is provided 
by the shaft adhesion for cohesive soils and rocks and shaft frictional resistance for 
cohesionless soils: 

 c s g rS S S S S= + + +  (3) 

where Sc, Ss, Sg, and Sr are side resistances for the clay, sand, gravel, and rock layers, 
respectively.  The side resistance in a given layer, denoted by Sx, can be computed as 

 x sx xS πBf t=  (4) 

where B is the diameter of the shaft; fsx is the unit side resistance provided by layer ‘x’. The 

unit side resistance fs is correlated to geotechnical parameters such as su, σ’v, and qu. Useful 

empirical correlation equations are listed in Table 2, where ε’s quantify the transformation 

uncertainties. These ε’s are modeled as zero-mean normal random variables with standard 
deviations listed in the table. It is then clear that 

 

,

''
,

'

2.7 0.3 ln2.7 0.3ln

1.0802 0.6588ln( ) ln( )1.0802 0.6588ln( ) ln( )

2.1792 0.7522.1792 0.7528ln( ) ln( )

u m s Su S u cc

s vs m σ Ss vs S vs ss

g vg Sg

s e ┝s ┝
c c c

d σ e ┝d σ ┝
s s s

d σ ┝
g g

S πBe t πBe t

S πBe t πBe t

S πBe t πBe

′

⎡ ⎤+ − ++ + ⎣ ⎦

⎡ ⎤− + − +− + + ⎣ ⎦

−− + +

= =

= =

= =
'

,

,

8ln( ) ln( )

3.0253 0.414 ln3.0253 0.414ln

g vg m σ Svg g

u m q Su S u rr

d σ e ┝
g

q e ┝q ┝
r r r

t

S πBe t πBe t

′
⎡ ⎤+ − +⎢ ⎥⎣ ⎦

⎡ ⎤+ − ++ + ⎣ ⎦= =

 (5) 

Reliability analyses and reliability-based designs will be demonstrated on this design 
example. The drilled shaft is subjected to an axial deal load LD and axial live load LL. They 

are modeled as lognormal random variables with mean values {μLD, μLL} and coefficients of 

variation (c.o.v.) {δLD = 0.1, δLL = 0.25}. The herein goal is to demonstrate (a) the calculation 
of the reliability of a drilled shaft with given dimension (i.e., diameter B = 1.2 m and length 
L = 74.7 m) and to demonstrate (b) the determination of the required dimension B and L to 
achieve a prescribed target reliability. The item (a) is the goal for reliability analysis, while 
item (b) is for reliability-based design. 

The collection of random variables is denoted by X∈Rp, where p is the dimension of X. For 

this example, X includes the measurement errors {eσ’vs, eσ’vg, esu, equ}, transformation 
uncertainties {eSc, eSs, eSg, eSr} and loads {LD, LL}. The collection of design parameters is 

denoted by θ∈Rq, where q is the dimension of θ. For this example, θ includes the diameter B 

and shaft length L. Let F denotes the failure event: F={SR(X,θ)<1}, where SR(X,θ) is called the 
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safety ratio, the random version of the classical safety factor. In general, a safety ratio less 
than 1 does not necessarily imply the complete collapse of the system but does imply 
unsatisfactory performance of the system in the sense of violating some limit states, e.g. 
serviceability, repairable, or ultimate limit states. Throughout the chapter, it can be assumed 

without loss of generality that SR(X,θ) is positive and that the probability density function 

(PDF) of the random vector X conditioned on θ (i.e., θ takes specific numerical values), 

denoted by p(x|θ), is known. 
 

 
Correlation Model for 

Unit Side Resistance fs (kN/m2) 

Standard Deviation of 
Transformation 

Uncertainty ε 

Clay ( )exp 2.7 0.3ln( )
cs u Sf s ┝= + +  0.3216 

Sand ( )'exp 1.0802 0.6588ln( ) ln( )
ss v Sf d σ ┝= − + +  0.5414 

Gravel ( )'exp 2.1792 0.7528ln( ) ln( )
gs v Sf d σ ┝= − + +  0.6689 

Rock ( )exp 3.0253 0.414ln( )
rs u Sf q ┝= + +  0.7160 

Table 2.  Correlation models for evaluating unit side resistance and the associated 
uncertainty for various strata 

For this particular example, the safety ratio SR(X,θ) can be defined as: 

 
c s g r

D L

S S S S
SR

L L

+ + +
=

+
 (6) 

As will be clear later, it is convenient to transform the entire problem into the standard 
Gaussian space, i.e., 
 

( )

'
, ,

'
, ,

2.7 0.3 ln 0.2 0.3216 1.0802 0.6588ln( ) ln( ) 0.1 0.5414

2.1792 0.7528ln( ) ln( ) 0.1 0.6689 3.0253 0.414 ln 0.5 0.7160

,

u m s S s vs m σ Su c vs s

g vg m σ Svg g u m qu

s z z d σ z z

c s

d σ z z q z z

g

e t e t
πB

e t e
SR Z ┠

′

′

⎡ ⎤ ⎡ ⎤+ − + − + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤− + − + ⎡ ⎤+ − +⎢ ⎥⎣ ⎦ ⎣ ⎦

+

+ +
=

( ) ( ) ( ) ( )2 2 2 2ln / 1 0.1 ln 1 0.1 ln / 1 0.25 ln 1 0.25

1.0802 0.6588ln(45.85) ln(350) 0.1 0.54142.7 0.3 ln(70) 0.2 0.3216

2.1792 0.7528ln(59.65) ln(4

42.1 7.5

Sr

LD LD LL LL

σ Ss S vs su c

r

μ z μ z

z zz z

t

e e

e e
πB

e

′

+ + + ⋅ + + + ⋅

⎡ ⎤⎡ ⎤ − + − ++ − +⎣ ⎦ ⎣ ⎦

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
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+

⋅ + ⋅

+
=

( ) ( ) ( ) ( )2 2 2 2

80) 0.1 0.6689 3.0253 0.414 ln(900) 0.5 0.7160

ln / 1 0.1 ln 1 0.1 ln / 1 0.25 ln 1 0.25

20.1 5.0
σ Svg g q Su r

LD LD LL LL

z z z z

μ z μ z

e

e e

′
⎡ ⎤− + ⎡ ⎤+ − +⎢ ⎥⎣ ⎦ ⎣ ⎦

+ + + ⋅ + + + ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ + ⋅⎣ ⎦

+

 (7) 

 

where Z = {zσ’vs, zσ’vg, zsu, zqu, zSc, zSs, zSg, zSr, zLD, zLL} are jointly standard Gaussian random 
variables, i.e., 

 ( )
1

2
/2

1
|

2

Tz z

p
p z ┠ e

π

−
=  (8) 
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{σ’vs,m, σ’vg,m, su,m, qu,m, ds, dg, tc, ts, tg, tr} are known numbers that can be found in Table 2, 

{μLD, μLL} are prescribed load mean values, and θ = {B, L} are the design parameters. 

3. Reliability analysis 

Let us now consider the following drilled shaft constructed at the site: B = 1.2 m, L = 74.7 m, 

and also let μLD = 8000 kN and μLL = 4000 kN. Four reliability methods will be presented in 

this chapter to determine the reliability of this particular shaft, including (a) Direct Monte 

Carlo simulation (MCS) (Ang & Tang, 1984); (b) first-order reliability method (FORM) 

(Hasofer & Lind, 1974; Der Kiureghian, 2000; Liu and Der Kiureghian, 1991); (c) importance 

sampling (IS) (Melchers, 1989; Hohenbichler & Rackwitz, 1988; Der Kureghian & Dakessian, 

1998; Au et al., 1999); and (d) subset simulation (Subsim) (Au & Beck, 2001). Note that only 

these four methods are reviewed due to their simplicity and practicality. More sophisticated 

methods are not the main theme of this chapter. The FORM is not a Monte Carlo based 

method.  It is presented here because the IS method requires the FORM solution. 

By definition, reliability is unity minus failure probability. As a result, central to reliability 

analysis is the determination of the failure probability, the probability that the failure event 

F occurs, denoted by P(F|θ). The failure probability can be found by evaluating the 

following integral: 

 ( ) ( )( ) ( )| 1 , 1 |P F ┠ SR z ┠ p z ┠ dz= <∫  (9)  

where 1(.) is the indicator function: it is unity if the statement is true and is zero otherwise.  

When the Z dimension (p) is high, the numerical solution for this integral is typically 

infeasible. A possible remedy is to adopt the Monte Carlo simulation to evaluate this 

integral. 

3.1 Direct Monte Carlo simulation 

According to the Law of Large Number (Ang and Tang, 1984), the integral can be 

approximately evaluated as follows: 

 ( )

1

1
( | ) 1( ( , ) 1)

N
i MCS

F
i

P F ┠ SR Z ┠ P
N =

≈ < ≡∑  (10) 

where N is the total number of MCS independent samples; Z(i) is the i-th sample of Z, drawn 

from the jointly standard Gaussian distribution p(z|θ); PFMCS is the estimator for P(F|θ) 

based on MCS.  This estimator is unbiased, i.e., the expected value of PFMCS is exactly P(F|θ), 

and is with c.o.v. = {[1- P(F|θ)]/N/P(F|θ)}0.5.  Note that the c.o.v. does not depend on Z 

dimension and does not depend on the complexity of the problem, either. This is the key 

advantage for MCS, especially for geotechnical problems where nonlinearity and 

uncertainty dimension is usually high.   

The disadvantage of MCS is that it may require a large sample size when P(F|θ) is small. A 

rule of thumb is that it requires N = 10/P(F|θ) to achieve a reasonable accuracy, i.e., c.o.v. = 

30%. The disadvantage is acceptable when the calculation of SR is fast, e.g., the example 

design problem for drilled shaft.  For problems where a single calculation of SR is time 

consuming, e.g., finite element analysis, MCS may be infeasible. 
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For the example design problem of a drilled shaft, the following steps can be taken to 

estimate P(F|θ): 

a. Draw N independent samples of Z(i) = {z(i)σ’vs, z(i)σ’vg, z(i)su, z(i)qu, z(i)Sc, z(i)Ss, z(i)Sg, z(i)Sr, 

z(i)LD, z(i)LL} from the jointly standard Gaussian distribution. 

b. For each sample set, evaluate 

( )
( ) ( ) ( ) ( )

( ) ( )

( )

2.7 0.3 ln(70) 0.2 0.3216 1.0802 0.6588ln(45.85) ln(350) 0.1 0.5414

2.1792 0.7528ln(59.65) ln(480) 0.1 0.6689 3.0253 0

,

42.1 7.5

20.1

i i i i
s S σ Su c vs s

i i
σ Svg g

i

z z z z

z z

SR Z ┠

e e
πB

e e

′

′

⎡ ⎤ ⎡ ⎤+ − + − + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤− + − + +⎢ ⎥⎣ ⎦

⋅ + ⋅

+ ⋅ +
=

( ) ( ) ( ) ( )

( ) ( )

( ) ( )2 2 2 2

.414 ln(900) 0.5 0.7160

ln 8000/ 1 0.1 ln 1 0.1 ln 4000/ 1 0.25 ln 1 0.25

5.0
i i

q Su r

i i
LD LL

z z

z z
e e

⎡ ⎤− +⎣ ⎦

+ + + ⋅ + + + ⋅

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅⎣ ⎦

+

 (11) 

c. Let  

 ( )

1

1
1( ( , ) 1)

N
iMCS

F
i

P SR Z ┠
N =

= <∑  (12)  

By taking N = 106, PFMCS is found to be around 5.9×10-4.  Note that PFMCS is in general not the 

same as the actual P(F|θ) but is only its estimator.  It will be informative to also know the 

c.o.v. of PFMCS. This c.o.v. can be estimated as {[1- PFMCS]/N/PFMCS}0.5 = 4%. Figure 1 shows a 

conceptual plot for the MCS samples. These samples center at the origin, the location of the 

mean value of Z. Since the failure probability is small, most samples are in the non-failure 

region (SR > 1), while only few samples are in the failure region (SR < 1). Since the c.o.v. of 

PFMCS is {[1- P(F|θ)]/N/P(F|θ)}0.5 ≈ [1/(# of failure samples)]0.5, the disadvantage of MCS is 

due to lacking of failure samples. 

 

 

Fig. 1. Conceptual plot for the Monte Carlo samples in the standard Gaussian space 
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3.2 First-order reliability method 

The first-order reliability method (FORM) (Hasofer & Lind, 1974; Der Kiureghian, 2000; Liu 
and Der Kiureghian, 1991) is not a Monte-Carlo based method. It is introduced herein 
because it is the most popular reliability method that is used in civil engineering problems 
and also because the forthcoming Monte-Carlo based method, importance sampling, 
requires the knowledge of FORM. FORM is based on a mathematical fact that the shortest 

distance between the limit-state line SR(z,θ) = 1 to the origin z = 0p×1 is closely related to 

P(F|θ) (see Figure 2). In fact, this distance is called the reliability index β, and it can be 

shown that P(F|θ) is roughly equal to Φ(-β) for relatively simple problems, where Φ is the 
cumulative density function of standard Gaussian distribution. As a result, determining 

P(F|θ) is equivalent to finding the shortest distance by the following optimization problem: 

 min subjected to ( , ) 1
z

z SR z ┠ =  (13) 

 

 

Fig. 2. Significance of the design point in the standard Gaussian space 

The solution point of Eq. (13) is called the design point z*. For problems with differentiable 

SR, the following necessary conditions hold for the design point: (a) SR(z*,θ) = 1 and (b) the 

gradient vector of SR at z*, i.e., ∇zSR(z*,θ), is parallel to z*. The reliability index is simply the 
length of z*. There are many algorithms for finding the design point z*, but the following 
one is among the simplest (Ang and Tang, 1984): 
a. Initialize z0* at any location 

b. Evaluate ( ) ( ) ( ) ( )* * * *
0 0 1 0 2 0, , , ,z pSR z ┠ SR z ┠ z SR z ┠ z SR z ┠ z⎡ ⎤∇ = ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦A . This may 

require numerical approximations for the partial derivatives. 

c. Find α0 such that ( )*
0 0 , , 1

T

zSR α SR z ┠ ┠⎛ ⎞⋅∇ =⎜ ⎟
⎝ ⎠

 and let ( )* *
1 0 0 ,

T

zz α SR z ┠= ⋅∇ . It may 

require a Newton-method search for determining α0. 
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Cycle the Steps b-c until convergence. Once the algorithm converges, it is clear that the 
converging solution satisfy the two necessary conditions at the same time. For problems 
with very small failure probability, FORM can be much more efficient than MCS because the 
former does not require as many SR calculations as the latter. However, for problems with 
high dimensional Z, the optimization problem in Eq. (13) may become extremely 
challenging and even become intractable. 
For the example design problem of a drilled shaft, the gradient vector is simply 
 

 
( ) ( ) ( )

2.7 0.3 ln(70) 0.2 0.3216 1.0802 0.6588ln(45.85) ln(350) 0.1 0.5414

, ,
,

0.6 42.1 0.1 7.5

u vs

s S σ Su c vs s

z
s σ

z z z z

SR z ┠ SR z ┠
SR z ┠

z z

πB e e
′

′

⎡ ⎤ ⎡ ⎤+ − + − + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤∂ ∂
∇ = ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤= − × × − × ×⎢ ⎥⎣ ⎦

A

A

 (14) 

 

The above steps are taken to find the design point z*, which is found to satisfy z*su = -0.245, 

z*Sc = -1.333, z*σ’vs = -0.121, z*Ss = -0.664, z*σ’vg = -0.290, z*Sg = -1.953, z*qu = -0.345, z*Sr = -1.268, 
z*LD = 0.644, and z*LL = 0.894. Note that for all stabilizing variables, the design point 
coordinates are negative, and for the two destabilizing variables LD and LL, the design point 
coordinates are positive. The distance from the design point to the origin is shortest distance 

is 3.02, so the estimated P(F|θ) is equal to Φ(-3.02) = 1.3×10-3. This result is an approximation 

to the actual value of P(F|θ). 

3.3 Importance sampling 

As mentioned before, for problems with small failure probability, the disadvantage of MCS 
is that it may require many samples to obtain sufficient failure samples. The importance 
sampling (IS) (Melchers, 1989; Hohenbichler & Rackwitz, 1988; Der Kureghian & Dakessian, 
1998; Au et al., 1999) method mitigates this issue by shifting the standard Gaussian 

distribution p(z|θ) to a new center that is closer to the failure region. The most logical choice 

of this new center is the design point z* from FORM. Let the shifted distribution be q(z|θ): 

 ( )
( ) ( )1

* *
2

/2

1
|

2

T
z z z z

p
q z ┠ e

π

− − −
=  (15) 

It is clear that 

 

( )( ) ( )
( ) ( )

( )( ) ( ) ( )
( )

1 1
* *

2 2

|
( | ) 1 , 1 |

|

1 , 1 |
TTz z z z z z

p z ┠
P F ┠ SR z ┠ q z ┠ dz

q z ┠

SR z ┠ e q z ┠ dz
− + − −

= <

= < ⋅

∫

∫

 (16)  

According to the Law of Large Number, 

 
( )1

* * *
( ) 2

1

1
( | ) 1( ( , ) 1)

iT TN z z z Z
i IS

F
i

P F ┠ SR Z ┠ e P
N

−

=

≈ < ⋅ ≡∑  (17) 

where the samples Z(i) are drawn from the shifted distribution q(z|θ).  Figure 3 shows the 
conceptual plots for the samples from the IS method: roughly one half of the samples falling 
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into the failure region. As a result, the c.o.v. for the IS estimator PFIS can be much smaller 
than that for PFMCS. 
 

 

Fig. 3. Conceptual plot for the IS samples in the standard Gaussian space 

For the example design problem of a drilled shaft, the following steps can be taken to 

estimate P(F|θ): 
a. Find the design point z* for FORM. 

b. Draw N independent samples of Z(i) = {z(i)σ’vs, z(i)σ’vg, z(i)su, z(i)qu, z(i)Sc, z(i)Ss, z(i)Sg, z(i)Sr, 

z(i)LD, z(i)LL} from the shifted distribution q(z|θ). 
c. For each sample set, evaluate 
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d. Let 

 
( )1

* * *
( ) 2

1

1
1( ( , ) 1)

iT TN z z z Z
iIS

F
i

P SR Z ┠ e
N

−

=
= < ⋅∑  (19) 

By taking N = 1000, PFIS is found to be around 6.1×10-4. Its c.o.v. is estimated to be around 
7%. Compared to MCS using 106 samples yielding a 4% c.o.v., the IS method is much more 
efficient. It seems like the IS method improves MCS, but in fact this is not entirely true: as 
reported in Au & Beck (2003), the IS method may suffer from the issue of high Z dimension 
(as FORM does), but MCS does not have such limitation. 
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3.4 Subset simulation 

Among the previous reliability methods, no method is suitable for complex problems with 
dimensional Z and with small failure probability. FORM is suitable for problems with 
small failure probability but not for those with high dimensional Z. In contrast, MCS is 
robust with Z dimension and problem complexity but may be inefficient for problems 
with small failure probability. The IS method also suffers from the issue of high 
dimensional Z. 
Subset simulation (Subsim) (Au & Beck, 2001) is among the few reliability methods that are 

robust again all the aforementioned aspects. Subsim inherits most advantages of MCS: it is 

robust against Z dimension and problem complexity, but its computational cost for 

problems with small failure probability is typically acceptable. The basic idea of Subsim is to 

express the failure probability P(F|θ) as a product of several larger conditional probabilities, 

so that the estimation of P(F|θ) can be achieved by estimating the conditional probabilities 

and multiply them together. 

Let us first introduce intermediate failure events {F1,F2,…,Fm}. For our purpose, these failure 

events can be defined as 

 ( ){ }, 1, ,i iF SR z ┠ b i m= < = …  (20)  

where b1 > b2 > … > bm = 1. It is then clear that the intermediate failure events are nested, 

i.e., F1 ⊃ F2 ⊃ … ⊃ Fm = F. Moreover, the failure event F is the intersection of all intermediate 

failure events. According to the operation of conditional probability, 
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A

A

∩ ∩
 (21)  

As a result, the estimation of P(F|θ) can be achieved through the estimation of the 

conditional probabilities P(F1|θ), P(F2|F1,θ), …, P(Fm|Fm-1,θ). Note that although P(F|θ) 

may be very small, the conditional probabilities P(F1|θ), …, P(Fm|Fm-1,θ) can be made large 
and can be estimated in a more accurate manner. Hence, the issue of small failure 
probability for MCS is resolved. In the following, the estimation of these conditional 
probabilities will be addressed. 

Estimation of P(F1|θ) 

This estimation can be easily done by using MCS, i.e., draw N0 samples of Z from the 

standard Gaussian distribution, denoted by {Z0(k): k=1,…, N0}.  Then, 

 
0

( )
1 1 10

0 1

1
( | ) 1( ( ) )

N
k SS

i

P F ┠ SR Z b P
N =

≈ < ≡∑  (22)  

Note that P(F1|θ) is typically quite large, hence the c.o.v. of P1SS is typically small. Among 

the N0 samples, let there be R0 samples, denoted by {Z0*(k): k=1, …, R0}, satisfying SR < b1.  

Let us call these samples the below-b1 samples. These samples are actually distributed as 

p(z|F1,θ), which can be expressed as 
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Estimation of P(F2|F1,θ) 

Suppose we know how to draw N1 samples, denoted by {Z1(k): k=1,…, N1}, from p(z|F1,θ).  

The estimation of P(F2|F1,θ) can then be made: 

 
1

( )
2 1 2 21

1 1

1
( | , ) 1( ( , ) )

N
k SS

k

P F F ┠ SR Z ┠ b P
N =

≈ < ≡∑  (24) 

However, drawing samples from p(z|F1,θ) is nontrivial.  Recall that the below-b1 samples 

{Z0*(k): k=1, …, R0} from stage 1 are already distributed as p(z|F1,θ).  It is then possible to use 
the Metropolis algorithm (Au & Beck, 2001) to generate more samples that are also 

distributed as p(z|F1,θ). Each below-b1 sample Z0*(k) is taken to be the initial sample of a 

Markov chain whose stationary distribution is p(z|F1,θ).  Let further the j-th sample of the k-
th Markov chain be Z1(k,j). The k-th below-b1 sample Z0*(k) from stage 1 is therefore Z1(k,1).  
The following Metropolis algorithm can then be taken to generate the rest samples {Z1(k,j): j = 
2, …} for the k-th Markov chain: 
a. Given the j-th sample Z1(k,j) in this chain, draw a candidate sample Z1C from a Gaussian 

distribution centered at Z1(k,j) and with a chosen covariance matrix Σ. 
b. Compute the following ratio r: 
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 (25)  

c. Accept the candidate sample, i.e., let Z1(k,j+1) be Z1C, with probability min(1,r), and repeat 
the previous sample, i.e., let Z1(k,j+1) be Z1(k,j), with probability 1-min(1,r). 

Suppose each Markov chain generate M1 samples, the following samples {Z1(k,j): k = 1,…,R0,  

j = 1, …, M1} are available.  All these samples are distributed as p(z|F1,θ), so there are  

N1 = R0M1 samples, rearranged to be {Z1(k): k = 1,…, N1}, for the estimation of P(F2|F1,θ) in 
Eq. (24). Among these N1 samples, let there be R1 samples, denoted by {Z1*(i): i=1, …, R1}, 
satisfying SR < b2. These samples are the below-b2 samples and are actually distributed as 

p(z|F2,θ), and the same Metropolis algorithm can be used to generate more samples from 

p(z|F2,θ) to estimate P(F3|F2,θ). This process continues until P(Fm|Fm-1,θ) is estimated.  

Finally, P(F|θ) can be estimated as 

 ( ) 1

11 1

|
m m

SS SSi
i F

ii i

R
P F ┠ P P

N
−

−= =

≈ = ≡∏ ∏  (26) 

In real application of Subsim, the threshold bi is adaptively chosen so that Ri-1 = Ni-1/10 
(except the final stage Rm-1 is not equal to Nm-1/10), i.e., bi is taken to be the 10% percentile of 
{SR(Zi-1(k),θ): k = 1, …, Ni-1}. Moreover, each Markov chain generate 10 samples, including 
the below-bi-1 sample from the previous stage. This makes N0 = N1 = … = Nm-1 = NSS.  Au 
and Beck (2001) show that the estimator PFSS is asymptotically unbiased. Ching et al. (2005) 
show that the c.o.v. of PFSS [δ(PFSS)] is bounded by 
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SSm m
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SS SSm m

P P
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N NP P

⎛ ⎞ ⎛ ⎞− −
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⎝ ⎠ ⎝ ⎠
 (27)  

For the example design problem of a drilled shaft, 1000 MCS samples of Z (NSS = 1000) are 

draw from the standard Gaussian distribution for the first stage. For each sample Z(i), its SR 

sample value is evaluated to get SR(Z(i),θ). The leftmost plot in Figure 4 shows such SR 

samples. It is clear that there are no failure samples, i.e., samples satisfying SR < 1. The first 

threshold SR = b1, shown in the left plot as the horizontal line, is then identified as the 10% 

percentile of the SR sample values, and F1 event is therefore {SR(z,θ) < b1}. As a result, 

P(F1|θ) ≈ P1SS = 0.1. The 100 below-b1 samples (the darker dots) are distributed as p(z|F1,θ).  

These below-b1 samples are then taken in the Metropolis algorithm to generate more 

samples also distributed as p(z|F1,θ): each below-b1 sample is taken to lead a Markov chain 

that generated 9 more samples distributed as p(z|F1,θ). These 1000 new samples are seen in 

the middle left plot. Note that all these samples have SR values less than b1 because they are 

distributed as p(z|F1,θ). 

 

 

Fig. 4. Evolution of the SR samples in various stages (stage 1 to 4 from left to right) for 
Subsim 

The second threshold SR = b2, shown in the middle left plot as the horizontal line, is then 

identified as the 10% percentile of the SR sample values, and F2 event is therefore {SR(Z,θ) < 

b2}. As a result, P(F2|F1,θ) ≈ P2SS = 0.1. Similarly, the 100 below-b2 samples (the darker dots) 

are distributed as p(z|F2,θ). These below-b2 samples are then taken in the Metropolis 

algorithm to generate 1000 samples also distributed as p(z|F2,θ), i.e., the samples seen in the 

rightmost plot.   

The third stage is similar to the previous stages (see the middle right plot). Similarly, the 

threshold b3 is adaptively chosen, and P(F3|F2,θ) ≈ P3SS = 0.1. The fourth stage is somewhat 

different because now the SR values of the 1000 samples distributed as p(z|F3,θ) (the gray 

dots in the rightmost plot) are close to the failure threshold b = 1. The 10% percentile of the 
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SR values is found to be less than 1, i.e., P(F|F3,θ) > 0.1.  In fact, 28.9% of 1000 SR values are 

less than 1. In this scenario, the fourth threshold b4 is no longer adaptively chosen as the 

10% percentile but is taken to be 1, and the entire Subsim algorithm ends at this stage.  

Consequently, P(F4|F3,θ) = P(F|F3,θ) ≈ P4SS = 0.289, and the Subsim estimate for P(F|θ) is 

simply PFSS = P1SS×P2SS×P3SS×P4SS = 2.89×10-4. The bounds for this estimator can be found to 

be 

( )1 1 0.289 1 1 0.289
9 3 17.2% 48.4% 9 99 2 11

1000 0.289 1000 0.289
SS
F├ P

− −⎛ ⎞ ⎛ ⎞× + = ≤ ≤ = + × + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (28)  

4. Reliability-based design 

In this section, state-of-the-art developments in the Monte Carlo based reliability-based 

design methods are reviewed. Reliability-based design (RBD) is the inverse problem of 

reliability analysis: the purpose of reliability analysis is to obtain the reliability given the 

design dimension of an engineering system, but the purpose of RBD is to design for the 

dimension that provides the target reliability. The Monte Carlo based methods recently 

developed by Ching & Phoon (2010) will be introduced. These Monte Carlo based methods 

are able to convert the RBD design constraint into simple algebraic design equations.  

Moreover, these methods inherit most of the advantages of MCS, i.e., not limited by the Z 

dimension, problem complexity, etc. One limitation is that the number of design parameters, 

e.g., dimension of θ, cannot be too large, which is usually the case for geotechnical designs. 

For RBD, the objective is to enforce the following probabilistic constraint during the design 
process: 

 ( )( ) ( ) ( )( ) *, 1 | 1 , 1 FP SR Z ┠ ┠ p z ┠ SR z ┠ dz P< = ⋅ < ≤∫  (29) 

where PF* is the target failure probability; 1(.) is the indicator function, i.e. it is equal to 1 if 

the argument (safety ratio less than one) is true; otherwise, it is zero. The purpose of this 

section is to show that this probabilistic design constraint can be transformed into a 

deterministic algebraic constraint of the following format: 

 ( ) 1c ┠ ≥  (30) 

Intuitively, c(θ) should be taken to be a conservative version of SR(z*,θ), i.e., c(θ) < SR(z*,θ), 
where z* is the characteristic value of Z, which can be taken to be the mean value or median 

value of Z. As a result, requiring c(θ) ≥ 1 is much stronger than requiring SR(z*,θ) ≥ 1, 
leading to a more conservative design with a small target failure probability PF*. Depending 

on how this conservatism is applied, there are four possible algebraic design formats: 
a. Safety factor design 

For this design format, c(θ) is taken to be the η quantile (η is called the probability 

threshold) of SR(Z,θ), denoted by SRη(θ). The probability threshold η is typically taken 
to be a small number, e.g., 0.05, to ensure a conservative design. For a normally 

distributed SR, the 5% quantile, SR0.05 = μSR (1 - 1.645 δSR), in which μSR and δSR are the 
mean and c.o.v. of SR. This definition is sensible because we are applying a value less 

than the mean. Requiring c(θ) ≥ 1 is equivalent to requiring 
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┟┟

SR z ┠ SR z ┠ SR z ┠
c ┠

SFSR z ┠ c ┠ SR z ┠ SR ┠
= = = ≥  (31) 

where SF is the safety factor, which clearly depends on η.  Note that the required SF is 
simply the nominal safety ratio SR(z*,θ) divided by the η quantile SRη(θ). 

b. Load-resistance factor design (LRFD) 
For many geotechnical design problems, the safety ratio SR(z,θ) has the format of 

 ( ) ( )
( ) ( )L

,
,

, ,D

S z ┠
SR z ┠

L z ┠ L z ┠
=

+
 (32) 

where S is the total resistance, and LD and LL are the dead and live loads.  In the case, a 
possible choice for c(θ) is 

 ( ) ( )
( ) ( )1 1

┟

┟ ┟
D L

S ┠
c ┠

L ┠ L ┠− −=
+

 (33) 

where Sη(θ) is the η quantile of S(Z,θ), and LD1-η(θ) and LL1-η(θ) are the 1-η quantiles of 
LD(Z,θ) and LL(Z,θ). The same probability threshold η (e.g., 0.05) is applied to all three 
random variables. This would not only ensure a conservative design but also ensure 
that all random variables have the same exceedance/non-exceedance probability over 
the corresponding quantiles. Requiring c(θ) ≥ 1 is equivalent to requiring 
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⋅
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 (34) 

where γS is the resistance factor, while γLD and γLL are the load factors. These factors 
clearly depend on η. It is also clear that γS < 1 and that γLD,γLL > 1 if the probability 
threshold η is small. Note that the required resistance factor is simply the η quantile 
Sη(θ) divided by the nominal resistance S(z*,θ), and the required load factor is simply 
the 1-η quantile L1-η(θ) divided by the nominal load L(z*,θ). 

c. Multiple resistance factor design (MRFD) 
For some geotechnical design problems, the total resistance S is contributed by several 
different components. Let us denote the various components by Sx. For the drilled shaft 
example, the subscript ‘x’ can be either ‘c’, ‘s’, ‘g’, or ‘r’, depending on which stratum 
provides the side resistance, and 

 ( )
( ) ( ) ( ) ( )

( ) ( )L

, , , ,
,

, ,

c s g r

D

S z ┠ S z ┠ S z ┠ S z ┠
SR z ┠

L z ┠ L z ┠
+ + +

=
+

 (35) 

In the case, a possible choice for c(θ) is 

 ( )
( ) ( ) ( ) ( )

( ) ( )1 1

┟ ┟ ┟ ┟
c s g r

┟ ┟
D L

S ┠ S ┠ S ┠ S ┠
c ┠

L ┠ L ┠− −

+ + +
=

+
 (36) 
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Again, the same probability threshold η is applied to all six random variables to ensure 
that all random variables have the same exceedance/non-exceedance probability over 

the corresponding quantiles. Requiring c(θ) ≥ 1 is equivalent to requiring 
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 (37) 

where γSc, γSs, γSg, and γSr are the resistance factors, while γLD and γLL are the load factors.  

It is clear that all resistance factors are less than 1 and that γLD,γLL > 1 if the probability 

threshold η is small. Note that the required resistance factor is simply the η quantile 

Sη(θ) divided by the nominal resistance S(z*,θ), and the required load factor is simply 

the 1-η quantile Lη(θ) divided by the nominal load L(z*,θ). 
d. Partial factor design 

In contrast to LRFD and MRFD where the factors are applied to load and resistance 
terms, the partial-factor design format applies the (partial) factors to Z directly, i.e., 

 ( ) ( )1
1 2, ,..., , 1┟ ┟ ┟

pc ┠ SR z z z ┠−= ≥  (38) 

where either the η or 1-η quantile of Zi is taken depending on its characteristic. For Zi 

that is clearly stabilizing, η quantile of Zi should be taken, while 1-η quantile should be 
adopted for destabilizing Zi. For Zi that is not influential or whose effect cannot be 
clearly discerned as stabilizing or destabilizing, the mean or median value may be 

taken. Requiring c(θ) ≥ 1 is equivalent to requiring 

 ( ) ( )
1

* * * * * *1 2
1 2 1 21 2* * *

1 2

, ,..., , , ,..., , 1

┟┟ ┟
p ┟ ┟ ┟

p p p
p

zz z
c ┠ SR z z z ┠ SR ┛ z ┛ z ┛ z ┠

z z z

−⎛ ⎞
⎜ ⎟= = ≥
⎜ ⎟
⎝ ⎠

 (39) 

where γ’s are the partial factors. For stabilizing random variables, the partial factors are 

less than 1, and for destabilizing random variables, the partial factors are greater than 1. 

Note that the required partial factor is simply the η quantile zi
η divided by its 

characteristic value zi* if zi is stabilizing and is the 1-η quantile zi1-η divided by its 

characteristic value zi* if zi is destabilizing. 

Note that algebraic design constraints based on the above four formats are convenient, 

because to make sure c(θ) ≥ 1 holds, it only requires a single algebraic evaluation of SR(Z,θ) 

using deterministic factors γ’s and characteristic values z*. However, RBD is more 

theoretically involved and computationally demanding: in order to verify if Eq. (29) holds, it 

requires a reliability analysis, which in the most general case, may take millions of Monte 

Carlo evaluations of SR(Z,θ). If the equivalence between the four algebraic design formats 

and the RBD can be established, it will be significant in the following practical sense: 
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a. One can then achieve a RBD by using any of the four algebraic formats, which is much 
simpler and more convenient than the former. 

b. Practical geotechnical engineers who are not familiar with reliability concept can easily 
achieve reliability-based design by using the equivalence. 

To establish the equivalence, it is necessary to find the relation between the probability 
threshold η and the target failure probability PF*. It is clear that η controls the degree of 

conservatism. Recall that the algebraic design constraint is to require c(θ) ≥ 1, hence a 
smaller η will lead to a more conservative design because the value of c(θ) decreases with 
decreasing η. As a result, it seems reasonable to use a small η when the target failure 
probability PF* is small, and vice versa. 

4.1 Statement of the equivalence principle 

In Ching & Phoon (2010), it is postulated that the four algebraic design formats associated 

with a proper probability threshold η can be made equivalent to rigorous RBD based on a 
direct probability check. The key hypothesis needed for the principle to be practical is also 
clarified explicitly using a mathematical proof in Appendix. To be specific, we postulate that 

there exists pairs of (η,PF*) such that the following constraints are equivalent: 

 ( ) 1c ┠ ≥  (40) 

and 

 ( )( ) *, 1 FP SR Z ┠ ┠ P< ≤  (41) 

Moreover, the functional relation between the pair (η,PF*) is as follows: 

 
( )
( )

*1
,

F

c ┠
P ┠ P

SR Z ┠
⎛ ⎞

> =⎜ ⎟⎜ ⎟
⎝ ⎠

 (42) 

In Eq. (42), note that the numerator is a deterministic number and the denominator is a 

random variable depending on θ. Equation (42) is the key equation in the proposed 
algebraic design formats. 

4.2 Uniformity of the equivalence 

The proposed approach is not practical if the relation between (η,PF*) depends on the design 
parameter θ. If this happens, one needs to find the (η,PF*) relation for all design scenarios 
under consideration, and the resulting design factors will vary for different design 
scenarios. In principle, the distribution c(θ)/SR(Z,θ) should depend on θ and hence, we state 
the contrary as a hypothesis in Appendix. The empirical study shows that this hypothesis is 
reasonable. In this section, we attempt to explain qualitatively why the distribution of 
c(θ)/SR(Z,θ) does not appear to change drastically with θ. 

This weak dependency is explained as follows by considering the special case of η = 0.5. In 
this case, c(θ) is similar to the nominal value of SR(Z,θ). Although the distribution of SR(Z,θ) 
may change drastically with θ (see Figure 5(a)), the distribution of c(θ)/SR(Z,θ) usually does 
not (see Figure 5(b)) due to the cancellation effect between SR(Z,θ) and the nominal value of 

SR(Z,θ). The same phenomenon remains for η ≠ 0.5. Later in the demonstrating drilled shaft 
example, the invariance of the c(θ)/SR(Z,θ) distribution over θ will be verified empirically. 
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(a) 

 

 
(b) 

Fig. 5. Illustration of the distributions of SR(Z,θ) and c(θ)/SR(Z,θ) (a). Illustration of the 

distribution of SR(Z,θ) (b). Illustration of the distribution of c(θ)/SR(Z,θ) 

If the distribution of c(θ)/SR(Z,θ) is indeed approximately invariant over θ, the relation 
between (η,PF*) can be found by the following equation: 

 
( )
( )

*1
,

F

c ┠
P P

SR Z ┠
⎛ ⎞

> =⎜ ⎟⎜ ⎟
⎝ ⎠

 (43) 

where ┠ is treated as random and uniformly distributed over the allowable design region.  It 
is clear that PF* is simply the exceedance probability of c(θ)/SR(Z,θ) over the unity. 
Therefore, the relation between η and PF* can be determined by any reliability method, in 
particular the Monte Carlo simulation (MCS): draw N samples of (Z,θ), where Z samples are 
drawn from p(z|θ), and θ samples are drawn from the uniform distribution over the 
allowable design region. Each (Z,θ) sample pair can be used to obtain a sample of 
c(θ)/SR(Z,θ). At the end of MCS, we have N samples of c(θ)/SR(Z,θ). For a chosen η value, 
the corresponding PF* value can be simply estimated as the ratio that c(θ)/SR(Z,θ) samples 
are greater 1. By changing the η value and repeating the MCS, one can obtain the entire 
relation between η and PF* 

According to Appendix and the above discussions, the reliability constraint Eq. (41) can be 
transformed into the algebraic design constraint Eq. (40) if the distribution of c(θ)/SR(Z,θ) is 
invariant over θ. Let us denote ΣR = {θ: P(SR(Z,θ)<1|θ) ≤ PF*} be the design region that 
satisfies the reliability constraint that failure probability is less or equal to the target failure 

( )
( ),

c

SR Z

θ
θ

θ

( ),SR Z θ

( )c θ

θ
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probability, PF*.  From Appendix, if the distribution of c(θ)/SR(Z,θ) is indeed invariant over 
θ, it is assured that the region ΣR is identical to the following region: ΣS = {θ: c(θ)≥1}, so the 
algebraic design formats and RBD become equivalent. 

4.3 Determining the design factors based on the principle 

The following steps can be taken to find the design factors, such as safety factor, load 
factors, resistance factors, and partial factors, corresponding to any prescribed PF*: 

1. Find the relation between η and the design factors: 
a. For the safety-factor design format, the safety factor SFη is SR(z*,θ)/SRη(θ), where 
 the η quantile SRη(θ) can be easily estimated by MCS. 

b. For LRFD, the resistance factor γS
η is Sη(θ)/S(z*,θ), while the load factor γLx

η is Lx1-

 η(θ)/Lx(z*,θ). 
c. For MRFD, the resistance factor γSx

η is Sx
η(θ)/Sx(z*,θ), while the load factor γLx

η is 
 Lx1-η(θ)/Lx(z*,θ). 

d. For the partial-factor design format, the partial factor γi
η for Zi is zi

η/zi* if Zi is 
 stabilizing and is zi1-η/zi* if Zi is destabilizing. 

2. Find the relation between the pair (η,PF*) by solving Eq. (43). This has been presented 
previously, i.e., simulating c(θ)/SR(Z,θ) samples and find the ratio of less than 1. In Eq. 

(43), the definition of c(θ) for various algebraic design formats are different: 
a. For the safety-factor design format, c(θ) = SR(z*,θ)/SFη. 
b. For LRFD, c(θ) = γS

ηS(z*,θ)/[γLD
ηLD(z*,θ) +γLL

ηLL(z*,θ)]. 

c. For MRFD, c(θ) = Σx[γSx
ηSx(z*,θ)]/[γLD

ηLD(z*,θ) +γLL
ηLL(z*,θ)]. 

d. For the partial-factor design format, c(θ) = SR(γ1
ηz1*,γ2

ηz2*,…, γp
ηzp*,θ). 

3. Given the prescribed target failure probability, PF*, find the corresponding probability 

threshold η from the result in Step 1. 
4. Once the corresponding probability threshold η is found, the required design factor can 

be determined accordingly according to the relations presented in Step 1. 

a. For safety-factor design format, the resulting algebraic design constraint is c(θ) = 
 SR(z*,θ)/SFη ≥ 1. 
b. For LRFD, the resulting algebraic design constraint is c(θ) = γS

ηS(z*,θ)/ 
 [γLD

ηLD(z*,θ)+γLL
ηLL(z*,θ)] ≥ 1. 

c. For MRFD, the resulting algebraic design constraint is c(θ) = Σx[γSx
ηSx(z*,θ)]/ 

 [γLD
ηLD(z*,θ)+γLL

ηLL(z*,θ)] ≥ 1. 
d. For partial-factor design format, the resulting algebraic design constraint is c(θ) = 
 SR(γ1

ηz1*,γ2
ηz2*,…, γp

ηzp*,θ) ≥ 1. 
According to the derivations given in Appendix A, the design based on the algebraic 
constraint c(θ) ≥ 1 is identical to the probabilistic constraint P(SR(Z,θ)<1|θ) ≤ PF*. 

4.4 Example 

The same drilled shaft problem that was taken in the previous section will be used to 

demonstrate the RBD. Let the diameter B and length L be the two design parameters (i.e., θ 
contains B and L) that are subjected to change in the design process. Let us further assume 

there is a practicality design constraints 0.8 m ≤ B ≤ 1.5 m and 49.6 m ≤ L ≤ 74.7 m. These 
practicality design constraints are realistic since most drilled shafts have diameters ranging 
from 0.8 m to 1.5 m and since most drilled shafts may be bottomed in strata with high 
strengths, in our case, the gravel or rock layer (49.6 m and 74.7 m are the limiting depths of 
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the gravel and rock layers). Other conditions, such as the ground profile and the mean 
values and c.o.v.s of LD and LL, remain the same as in the reliability analysis section. The 
target failure probability PF* is taken to be 0.001, i.e., the design goal is to adopt a certain 

combination of B and L so that P(SR(Z,θ)<1|θ) ≤ 0.001. For brevity, only the detailed steps 
for MRFD will be demonstrated, but the results for the safety-factor design, LRFD, and 
partial-factor design will be still presented. Recall that the total resistance S is provided by 
Sc, Ss, Sg, and Sr: 
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Note that B and L are now subjected to change in the design process; min(A,B) is the 
minimum value among A and B, and the two terms min(L-tc-ts, tg) and min(L-tc-ts-tg, 0) are 
there due to the fact that the shaft may not penetrate the entire gravel and rock layers when 
the length L is not large enough. 

Step 1 – determine the relations between η and the MRFD design factors. Note that these 
relations are independent of the diameter B and the embedment lengths in various strata, 
i.e. tc, ts, min(L-tc-ts, tg), etc. Therefore, these relations can be determined by fixing B and L at 
any values, for this example, B = 1.2 m and L = 74.7 m. Recall that the resistance factor 

corresponding to η is Sx
η(θ)/Sx(z*,θ), while the load factor corresponding to η is Lx1-

η(θ)/Lx(z*,θ). The nominal values Sx* and those for the dead and live loads are taken to be 
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As a result, 
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Figure 6 shows the relations between η and the MRFD design factors. 
 

 

Fig. 6. Relations between η and the MRFD design factors. 

Step 2 – find the relation between (η,PF*) by solving Eq. (43). For instance, when η = 0.1, the 

corresponding design factors can be readily from Figure 6 to be γSc = 0.658, γSs = 0.495, γSg = 

0.422, γSr = 0.387, γLD = 1.136, and γLL = 1.370. Therefore, 
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According to Eq. (43), the corresponding PF* is exactly P(c(θ)/SR(Z,θ)>1). Monte Carlo 

simulation can be taken to simulate many c(θ)/SR(Z,θ) samples estimate, and the estimate of 

www.intechopen.com



Practical Monte Carlo Based Reliability Analysis  
and Design Methods for Geotechnical Problems   

 

777 

the probability of exceeding 1 is exactly the PF* value corresponding to η = 0.1. Note that for 
the MCS, the design parameters B and L should be taken to be random and uniformly 

distributed over the allowable design region 0.8 m ≤ B ≤ 1.5 m and 49.6 m ≤ L ≤ 74.7 m. The 

entire (η,PF*) relation can be obtained by changing the probability threshold η and conduct 

the same MCS. Figure 7 shows the resulting relation between (η,PF*). Since the target failure 
probability PF* is 0.001, the required probability threshold should be 0.071 (see Figure 7).  By 

inverting Figure 6 with η = 0.071, it can be found that γSc = 0.618, γSs = 0.446, γSg = 0.372, γSr = 

0.336, γLD = 1.158, and γLL = 1.436. These are the MRFD factors that should be taken for a 
RBD with PF* = 0.001, and the resulting algebraic design constraint is 

 ( )
* * * *0.618 0.446 0.372 0.336

1
1.158 8000 1.436 4000

c s g rS S S S
c ┠

× + × + × + ×
= ≥

× + ×
 (48) 

 

 

Fig. 7. Relation between (η,PF*) 

To examine the robustness of the resulting MRFD design factors for PF* = 0.001, the 

following approach is taken.  In the allowable design region 0.8 m ≤ B ≤ 1.5 m and 49.6 m ≤ L 

≤ 74.7 m, each of the coordinate axes is discretized into discrete points, creating grid points.  
MCS with a very large sample size is then conducted at each grid point, giving each point an 

independent estimate of the failure probability P(SR(Z,θ)<1|θ). The dividing boundary for 

P(SR(Z,θ)<1|θ) less and greater than 0.001 is plotted shown in Figure 8. Therefore, the 

region above the boundary is exactly the allowable reliability design set ΣR = {θ: 

P(SR(Z,θ)<1|θ) ≤ PF*}. On the other hand, the allowable design region for the algebraic 

constraint, i.e., ΣS = {θ: c(θ) ≥ 1}, can be also found and is marked with label ‘o’. For the 

unsatisfactory region with c(θ) < 1, it is marked with label ‘x’. Such comparisons are made in 
Figure 8, not only for the MRFD design format but also for the other three aforementioned 
design formats, although the detailed steps of those three design formats are not presented. 
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It can be seen from Figure 8 that the two sets match one another reasonably well for all four 
design methods. 
 

 

Fig. 8. Comparison between algebraic design constraints and rigorous RBD 

4.5 Iterative design process 

Given the required MRFD factors γSc = 0.618, γSs = 0.446, γSg = 0.372, γSr = 0.336, γLD = 1.158, 

and γLL = 1.436, the goal now is to design the diameter B and length L of the drilled shaft so 

that c(θ) ≥ 1. The resulting design should also satisfy failure probability less than 0.001. The 
design process is iterative. Let us start with a design with diameter = 1.2 m and depth = 70 
m. Based on this design dimension and also the information in Table 1, the nominal 
resistance can be computed from Eq. (45): Sc* = 8448 kN, Ss* = 2345 kN, Sg* = 14808 kN and Sr* 
= 389 kN. Note that when calculating Sc*, Ss*, Sg*, Sr*, the characteristic values of the 
geotechnical parameters must be fixed at the measured values (or average values) of those 
parameters.  Now compute 
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It is therefore concluded that the design is not satisfactory for target failure probability less 
than 0.001. A design with greater length or larger diameter is needed, and iterations should 

be taken until c(θ) is greater than 1. 

www.intechopen.com



Practical Monte Carlo Based Reliability Analysis  
and Design Methods for Geotechnical Problems   

 

779 

5. Conclusion 

Monte Carlo based reliability analysis methods and reliability-based design methods are 

introduced in this chapter. A realistic geotechnical design example is developed and is used 

to demonstrate the uses of all methods. The main benefits for the Monte Carlo based 

methods include (a) their implementations do not require the knowledge of optimization 

skills, as required by the first-order reliability methods; and (b) they are mostly general and 

robust to the dimension of random variables and problem complexity, hence ideal for 

geotechnical problems. One possible drawback is that these Monte Carlo based methods are 

more time consuming, but this issue has been alleviated greatly due to recent development 

of powerful personal computers. As a result, these methods are believed to be ideal for 

practical implementations. 

6. Appendix derivations for the equivalence principle 

The safety ratio SR(Z,θ) is a positive-valued random variable, taking values strictly larger 

than 0, i.e., SR(Z,θ) > 0, and c(θ) is a positive-valued deterministic function of θ. 
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Observe that P(c(θ)/SR(Z,θ) > x|θ) is a non-increasing (i.e. equal or decreasing) function 

with x (a constant), since P(c(θ)/SR(Z,θ) > x|θ) = P(SR(Z,θ) < c(θ)/x|θ) is cumulative 

distribution function of SR(Z,θ) which is a non-decreasing (i.e. equal or increasing) function 

with c(θ)/x by definition. 

Hence, if c(θ) ≥ 1, 

 ( ) ( ) ( )( ) ( ) ( )( ), | , 1|P c ┠ SR Z ┠ c ┠ ┠ P c ┠ SR Z ┠ ┠> ≤ >  (51) 

 

If we further let 

 ( ) ( )( ) *, 1| FP c ┠ SR Z ┠ ┠ P> =  (52) 

Then, 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) *, 1| , | , 1| FP SR Z ┠ ┠ P c ┠ SR Z ┠ c ┠ ┠ P c ┠ SR Z ┠ ┠ P< = > ≤ > =  (53) 

 

Note that the hypothesis is required for practicality. The above constitutes a proper proof of 

equivalence if we allow η to be a function of θ. In summary, the practical usefulness of the 

equivalence between the statement {θ: c(θ) ≥ 1} and {θ: P(SR(Z,θ)<1|θ) ≤ PF*} is predicated on 

the possibility of finding a η which is not a function of θ for any prescribed target failure 

probability, PF*. 
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